jmag教程中Step Control怎么设置?可以随意吗?

ANSYS中接触单元参数设置要点
ANSYS中接触单元参数设置要点
一、ANSYS接触单元几个关键选项的含义
The element KEYOPTS allow you to control several aspects of
contact behavior.
·&&&&&&&&
Degrees of freedom (KEYOPT(1))
·&&&&&&&&
·&&&&&&&&
·&&&&&&&&
·&&&&&&&&
·&&&&&&&&
Contact stiffness variation range (KEYOPT(6))
·&&&&&&&&
·&&&&&&&&
·&&&&&&&&
·&&&&&&&&
·&&&&&&&&
·&&&&&&&&
&1、KEYOPT(1)
Selects DOF
&2、KEYOPT(2)
Selecting a Contact Algorithm&
·&&&&&&&&
Penalty method (KEYOPT(2) = 1)
·&&&&&&&&
Augmented Lagrangian (default) (KEYOPT(2) = 0)
·&&&&&&&&
Lagrange multiplier on contact normal and penalty on tangent
(KEYOPT(2) = 3)
·&&&&&&&&
Pure Lagrange multiplier on contact normal and tangent (KEYOPT(2) =
·&&&&&&&&
Internal multipoint constraint (MPC) (KEYOPT(2) = 2)
&&Compared to
the penalty method, the augmented Lagrangian method usually leads
to better conditioning and is less sensitive to the magnitude of
the contact stiffness.
相对罚函数法,扩大拉格朗日法不易引起病态条件,对接触刚度数值敏感性更小。
& Chattering Control
Parameters(跳跃控制参数)
& The Lagrange multiplier methods
(KEYOPT(2) = 3, 4) do not require contact stiffness, FKN and FKT.
Instead they require chattering control parameters, FTOLN and TNOP,
by which ANSYS assumes that the contact status remains unchanged.
FTOLN is the maximum allowable penetration and TNOP is the maximum
allowable tensile contact pressure.
&& The behavior
can be described as follows:
·&&&&&&&&
If the contact status from the previous iteration is open and the
current calculated penetration is smaller than FTOLN, then contact
remains open. Otherwise the contact status switches to closed and
another iteration is processed.
·&&&&&&&&
If the contact status from the previous iteration is closed and the
current calculated contact pressure is positive but smaller than
TNOP, then contact remains closed. If the tensile contact pressure
is larger than TNOP, then the contact status changes from closed to
open and ANSYS continues to the next iteration.
&& The objective
of FTOLN and TNOP is to provide stability to models which exhibit
contact chattering due to changing contact status. If the values
you use for these tolerances are too small, the solution will
require more iterations. However, if the values are too large, the
accuracy of the solution will be affected since a certain amount of
penetration or tensile contact force is allowed.
&&参数FTOLN和TNOP
主要为结构提供稳定性,该类结构一般会因接触状态的改变而呈现出接触跳跃。
4、KEYOPT(4)
&The nodal detection algorithms require
the smoothing of the contact surface (KEYOPT(4) = 1) or the
smoothing of the target surface (KEYOPT(4) = 2), which is quite
time consuming. You should use this option only to deal with
corner, point-surface, or edge-surface contact (see
Figure 3.13: "Contact Detection Point Location at Nodal
Point"). KEYOPT(4) = 1 specifies that the contact normal be
perpendicular to the contact surface. KEYOPT(4) = 2 specifies that
the contact normal be perpendicular to the target surface. Use this
option (KEYOPT(4) = 2) when the target surface is smoother than the
contact surface.
&节点检测算法要求接触面光滑(KEYOPT(4) =
1)或目标面光滑(KEYOPT(4) =
2),上述要求均造成计算耗时较大。一般用户仅在处理角点、点-面、边-面接触问题时才用到该选项。KEYOPT(4) =
1表明,接触单元方向垂直于接触面表面。KEYOPT(4) =
2表明,接触单元方向垂直于目标面表面。当目标面较接触面光滑时,使用KEYOPT(4) =
CNOF/ICONT Automated adjustment:
No automated adjustment
Close gap with auto CNOF
Reduce penetration with auto
Close gap/reduce penetration with auto
Auto ICONT
&Use real constant CNOF to
specify a contact surface offset.
specifies the positive or negative offset value applied to
the contact surface.
Specify a positive value to offset the entire contact surface
towards the target surface. Use a negative value to offset the
contact surface away from the target surface.ANSYS can
automatically provide the CNOF value to either just close the gap
or reduce initial penetration& Set KEYOPT(5)
defines an initial closure factor (or adjustment
SetKEYOPT(5) =4.Use the real constant ICONT to specify a small
initial contact closure. This is the depth of an "adjustment band"
around the target surface.
Any contact detection points that fall within this adjustment
band are internally shifted to be on the target surface .Only a
very small cor otherwise, severe discontinuity
may occur (see Figure (b)).
& The difference between CNOF and ICONT is that
the former shifts the entire contact surface with the distance
value CNOF, the latter moves all initially open contact points
which are inside of adjustment band ICONT onto the target
&6、KEYOPT(6)
& &Contact
stiffness variation range
&& The default
method of updating normal contact stiffness is suitable for most
applications. However, the variational range of the contact
stiffness may not be wide enough to handle certain contact
situations. In the case of a very small penetration tolerance
(FTOLN), a larger normal contact stiffness is often needed.
Furthermore, to stabilize the initial contact condition and to
prevent rigid body motion, a smaller normal contact stiffness is
默认的法向接触刚度更新方式对于大多数应用来说是合适的。然而,接触刚度的变化范围并不是足够大到处理某些特定问题。在穿透容差非常小的情况下,需要较大的法向接触刚度;而且,为了稳定初始接触状态,并阻止刚体运动,需要较小的法向刚度。
&& The allowed
contact stiffness variation is intended to enhance stiffness
updating when KEYOPT(10) & 0 by calculating an
optimal allowable range in stiffness for use in the updating
shceme. To increase the stiffness variational range, set KEYOPT(6)
= 1 to make a nominal refinement to the allowable stiffness range,
or KEYOPT(6) = 2 to make an aggressive refinement to the allowable
stiffness range.
& 当KEYOPT(10) &
0时,通过刚度更新程序,软件可计算最优容许刚度范围,用来提高刚度更新速度。为了增加刚度变化范围,取KEYOPT(6) =
1可对容许刚度范围进行名义上的细化,取KEYOPT(6) = 2 可对容许刚度范围进行更积极改进。
7、KEYOPT(7)
& Time step control is an automatic time
stepping feature that predicts when the status of a contact element
will change and cuts the current time step back.
& Use KEYOPT(7) to take one of four actions to
control time stepping, where KEYOPT(7) = 0 provides no control (the
default), and KEYOPT(7) = 3 provides the most control.
KEYOPT(7) = 0: No control. The time step size is unaffected by
the prediction. This setting is appropriate for most analyses when
automatic time stepping is activated and a small time step size is
KEYOPT(7) = 1: Time step size is bisected if too much
penetration occurs during an iteration, or if the contact status
changes dramatically.
KEYOPT(7) = 2: Predict a reasonable increment for the next
KEYOPT(7) = 3: Predict a minimal time increment for the next
8、KEYOPT(8)
& Asymmetric contact is defined as having all
contact elements on one surface and all target elements on the
other surface. This is sometimes called "one-pass contact." This is
usually the most efficient way to model surface-to-surface contact.
However, under some circumstances asymmetric contact does not
perform satisfactorily. In such cases, you can designate each
surface to be both a target and a contact surface. You can then
generate two sets of contact pairs between the contacting surfaces
(or j for example, a self-contact case). This
is known as symmetric contact (or "two-pass contact"). Obviously,
symmetric contact is less efficient than asymmetric contact.
However, many analyses will require its use (typically to reduce
penetration). Specific situations that require symmetric contact
include models where
The distinction between the contact and target surfaces is not
Both surfaces have very coarse meshes. The symmetric contact
algorithm enforces the contact constraint conditions at more
surface locations than the asymmetric contact algorithm.
& If the meshes on both surfaces are identical
and sufficiently refined, the symmetric contact algorithm may not
significantly improve performance and may, in fact, be more
"expensive" in CPU time. In such circumstances, pick one surface to
be the target and the other the contact surface.
For a symmetric contact definition, ANSYS may find one side of a
contact surface as closed and the other side of the surface as
closed. In this case, it can be difficult to interpret the results.
The total contact pressure acting on both sides is the average of
the contact pressures on each side of the surface.
Effect of initial penetration or
Include both initial geometrical
penetration or gap and offset
Exclude both initial geometrical
penetration or gap and offset
Include both initial geometrical
penetration or gap and offset, but with ramped effects
Include offset only (exclude
initial geometrical penetration or gap)
Include offset only (exclude
initial geometrical penetration or gap), but with ramped
KEYOPT(9) provides the following
capabilities:
To include initial penetration
from both geometry and contact surface offset, set KEYOPT(9) = 0.
This is the default.
To ignore initial penetration from
both effects, set KEYOPT(9) = 1. When KEYOPT(12) = 4 or 5, this
setting for KEYOPT(9) will also ignore the initial force in
open-gap springs, thus creating an initially "perfect" contacting
surface having no initial forces acting across the contact
interface.
To include the defined contact
surface offset (CNOF) but ignore the initial penetration due to
geometry, set KEYOPT(9) = 3. When KEYOPT(12) = 4 or 5, this setting
for KEYOPT(9) will also ignore the initial force in open-gap
springs, thus creating an initially "perfect" contacting surface
having no initial forces acting across the contact
interface.
&& For problems
such as an interference fit, over-penetration is expected. These
problems often have convergence difficulties if the initial
penetration is step-applied in the first load step. You may
overcome convergence difficulties by ramping the initial
penetration over the first load step, see . The
following KEYOPT(9) settings provide ramped
capabilities:
To ramp the total initial
penetration (CNOF + the offset due to geometry), set KEYOPT(9) =
To ramp the defined contact
surface penetration, but ignore the penetration due to geometry,
set KEYOPT(9) = 4.
For both of the above KEYOPT(9)
settings, you should also set ,0 and not specify any external loads in the
first load step. Also, be sure that the pinball region is big
enough to capture the initial interference.
10、 KEYOPT(10)
&& 接触刚度的更新方式
& 接触法向和切向刚度有5种更新方式,如下:
·&&&&&&&&
KEYOPT(10) = 0, the contact stiffness will be updated at each load
step if FKN or FKT is redefined by the user. Stiffness and other
settings (ICONT, FTOLN, SLTO, PINB, PMAX, and PMIN) are averaged
across contact elements in a contact pair. The default contact
stiffness is determined by underlying element depth and material
properties.
FKN or FKT 在每个荷载步内更新,刚度值和其他数值均为平均值。
·&&&&&&&&
KEYOPT(10) = 1 (covers KEYOPT(10) = 0), the normal contact
stiffness will be updated at every substep based on the mean stress
of the underlying elements from the previous substep and the
allowable penetration, FTOLN, except in the first substep of the
first load step. The default normal contact stiffness for the first
substep of the first load step is the same as described for
KEYOPT(10) = 0. If bisections occur in the beginning of the
analysis, the normal contact stiffness will be reduced by a factor
of 0.2 for each bisection. The tangential contact stiffness will be
updated at each iteration based on the current contact pressure,
MU, and allowable slip (SLTO).
&FKN 在每个子步内更新, FKT
在每次迭代内更新,刚度值和其他数值均为平均值。
·&&&&&&&&
KEYOPT(10) = 2 (covers KEYOPT(10) = 1), the normal contact
stiffness will be updated at each iteration based on the current
mean stress of the underlying elements and the allowable
penetration, FTOLN, except in the very first iteration. The default
normal contact stiffness for the first iteration is the same as
described for KEYOPT(10) = 0. If bisections occur in the beginning
of the analysis, the normal contact stiffness will be reduced by a
factor of 0.2 for each bisection. The tangential contact stiffness
will be updated at each iteration based on the current contact
pressure, MU, and allowable slip (SLTO).
在每次迭代内更新, FKT 在每次迭代内更新,刚度值和其他数值均为平均值。
·&&&&&&&&
KEYOPT(10) = 3, same as KEYOPT(10) = 0, except stiffness and
settings are not averaged across the contact elements in a contact
pair. If bisections occur in the beginning of the analysis, the
normal contact stiffness will be reduced by a factor of 0.2 for
each bisection.
同KEYOPT(10) = 0,只是刚度值和其他数值不为平均值。
·&&&&&&&&
KEYOPT(10) = 4, same as KEYOPT(10) = 1, except stiffness and
settings are not averaged across the contact elements in a contact
&&&&&同KEYOPT(10)
= 1,只是刚度值和其他数值不为平均值。
·&&&&&&&&
KEYOPT(10) = 5, same as KEYOPT(10) = 2, except stiffness and
settings are not averaged across the contact elements in a contact
同KEYOPT(10) =2,只是刚度值和其他数值不为平均值。
In most cases we recommend that you use KEYOPT(10) = 2 to allow the
program to update contact stiffnesses automatically.
一般情况下,建议使用KEYOPT(10) = 2 ,允许程序自动更新接触刚度。
12、Using KEYOPT(12)
&& Use KEYOPT(12) to model
different contact surface behaviors.
KEYOPT(12) = 0 models standard unilateral (单侧的) that is,
normal pressure equals zero if separation occurs.
KEYOPT(12) = 1 models perfectly rough frictional contact where
there is no sliding. This case corresponds to an infinite friction
coefficient and ignores the material property MU.
KEYOPT(12) = 2 models no separation contact, in which the target
and contact surfaces are tied (although sliding is permitted) for
the remainder of the analysis once contact is
established.模拟不分离接触状态,一旦接触已经产生,在后续分析中目标单元和接触单元会粘结在一起,但在切向允许滑移
KEYOPT(12) = 3 models "bonded" contact, in which the target and
contact surfaces are bonded in all directions (once contact is
established) for the remainder of the
analysis.模拟粘结状态,一旦接触产生,在后续分析中接触单元表面将在各个方向均粘结于目标单元。
KEYOPT(12) = 4 models no separation contact, in which contact
detection points that are either initially inside the pinball
region or that once involve contact always attach to the target
surface along the normal direction to the contact surface (sliding
permitted).模拟粘结状态,在该状态中,接触测点或者在初始阶段就位于乒乓区域,或者在分析中间曾经产生过接触,均沿接触单元的法向粘结于目标单元表面,在切向可以滑移。
KEYOPT(12) = 5 models bonded contact, in which contact detection
points that are either initially inside the pinball region or that
once involve contact always attach to the target surface along the
normal and tangent directions to the contact surface (fully
bonded).模拟粘结状态,在该状态中,接触测点或者在初始阶段就位于乒乓区域,或者在分析中间曾经产生过接触,均沿接触单元的法向和切向完全粘结于目标单元表面。
KEYOPT(12) = 6 models bonded contact, in which the contact
detection points that are initially in a closed state will remain
attached to the target surface and the contact detection points
that are initially in an open state will remain open throughout the
analysis.模拟粘结状态,在该状态中,初始位于接触近区的接触测点在后续分析中依然粘结于目标单元表面;初始远离接触近区的接触测点在后续分析中依然脱离目标单元表面。
&& For the no-separation
option (KEYOPT(12) = 4) and the bonded-always option (KEYOPT(12) =
5), a relatively small PINB value (pinball region) may be used to
prevent any false contact. For these KEYOPT(12) settings, the
default for PINB is 0.25 (25% of the contact depth) for small
deformation analysis (,OFF)
and 0.5 (50% of the contact depth) for large deformation analysis
(The default PINB value may differ from what is described here if
CNOF is input. See
for more information.)
&& For the bonded-initial
option (KEYOPT(12) = 6), a relatively large ICONT value (initial
contact closure) may be used to capture the contact. For this
KEYOPT(12) setting, the default for ICONT is 0.05 (5% of the
contact depth) when KEYOPT(5) = 0 or 4.
二、接触单元实常数
define the target element geometry.
defines a normal contact stiffness factor.
is a factor based on the thickness of the element which
is used to calculate allowable penetration.
defines an initial closure factor (or adjustment
defines a "pinball" region.
define an allowable penetration range for initial
penetration.
specifies the maximum contact friction.
specifies the positive or negative offset value applied to
the contact surface.
specifies the stiffness factor applied when contact opens
or the damping coefficient for standard contact.
specifies the tangent contact stiffness factor.
specifies the cohesion sliding resistance.
specifies the thermal contact conductance coefficient.
specifies the fraction of frictional dissipated energy
converted into heat.
specifies the Stefan-Boltzmann constant.
specifies the radiation view factor.
FWGT specifies the weight factor for the distribution of heat
between the contact and target surfaces
specifies the electric contact conductance or capacitance
per unit area.
specifies the fraction of electric dissipated energy
converted into heat.
specifies the ratio of static to dynamic coefficients of
specifies the decay coefficient for static/dynamic
controls maximum sliding distance when MU is nonzero and
the tangent contact stiffness (FKT) is updated at each iteration
(KEYOPT(10) = 2).
specifies the maximum allowable tensile contact
adds a small tolerance that extends the edge of the target
specifies the magnetic contact permeance (3-D only).
& define an allowable penetration
range for initial penetration.
&& Use real constants PMIN and
PMAX to specify an initial allowable penetration range. When either
PMAX or PMIN is specified, ANSYS brings the target surface into a
state of initial contact at the beginning of the analysis 。If the
initial penetration is larger than PMAX, ANSYS adjusts the target
surface to reduce penetration. If the initial penetration is
smaller than PMIN (and within the pinball region), ANSYS adjusts
the target surface to ensure initial contact. Initial adjustment
for contact status is performed only in translational modes.
ANSYS工程结构数值分析p442
接触单元不得穿透目标面,但目标单元可以穿适接触面。对于刚体—柔体接触,目标面总是刚体表面,而接触面总是柔体表面。对于柔体—柔体接触,选择不同的接触面或目标面可能会引起不同的穿透旦,从而影响求解结果,可根据“凸密柔高小为接触面”的原则确定,即:
凸面定义为接触面,平面或凹面为目标面;
较密网络的面定义为接触面,较粗网格的面为目标面;
较柔(软)的面定义为接触面,较刚(硬)的面定义为目标面
高阶单元定义为接触面,低阶单元为目标面;
较小的面定义为接触面,较大的面为目标面。
2)接触性能说明 摘自 ANSYS非线性分析指南 接触分析
&& 更多内容参考:
已投稿到:
以上网友发言只代表其个人观点,不代表新浪网的观点或立场。基于NI VeriStand和JMAG-RT进行高性能电机仿真 - National Instruments
选购测量产品
基于NI VeriStand和JMAG-RT进行高性能电机仿真
NI VeriStand的JMAG附件将NI实时测试软件技术与JMAG-RT结合,JMAG-RT是JSOL公司JMAG有限元分析(FEA)工具套件中的一部分。借助于该软件模块,您可以使用NI VeriStand轻松地实时运行高仿真有限元电机模型。这样的电机仿真精确度极高,可减少花费在昂贵的物理测试上的时间。您可以使用Windows操作系统计算机在仿真环境中运行模型,使用实时操作系统进行硬件在环(HIL)仿真 ,或使用NI可重配置的I / O(RIO)硬件进行以FPGA为基础的HIL仿真,实现最佳性能。
JSOL公司与NI合作开发了用于NI VeriStand的JMAG附加软件模块,JSOL是JMAG机电设计和开发仿真软件的缔造者。该附加软件模块使用由FEA生成的电感与反电动势(EMF)数据,进行电机模型的实时仿真。由于电机结构的不对称性会产生非正弦通量和电流,经典的D-Q模型就不再适用,这时就需要采用FEA技术。混合动力汽车制造商采用了高速电机,这对于优化生产空间和成本来说十分重要。
图1. NI VeriStand和JMAG RT相结合,提供了前所未有的仿真精度和运行速度。
电机的多种用途
电机在汽车行业的应用范围不断扩大, 其在绿色能源领域的应用也为嵌入式控制系统开发人员和测试工程师带来了新的挑战,速度便是其一。电子驱动引擎控制单元(ECU)控制算法的运行速度必须远快于内部燃烧引擎的动力传达ECU。更快的速度需求使得传统的HIL测试不足以支持测试电机ECU。而电机的仿真必须具备高仿真精度,HIL测试系统则必须在1 us的时间内执行仿真模型,以充分显示电机的实际操作。之前,高精度仿真和高速度运行似乎不可能并存,许多测试工程师不得不因此采用更为昂贵的测功器或现场测试来验证他们的嵌入式软件。
图2. 该略图显示了电机控制系统测试的不同阶段。
基于有限元分析(FEA)仿真的益处
在进行高级电机驱动仿真时,工程师面临的最大的挑战之一就是如何同时保证模型的仿真度和仿真步长时间。虽然简单的常量参数D-Q模型足以进行部分HIL测试,但模型的高仿真精度在高级电机驱动设计中很多时候也是必须的。高精度的仿真可用于高效率电机应用程序中控制系统性能的优化,该应用在汽车和能源行业中非常常见。使用高仿真的JMAG FEA模型,您可以对复杂、非理想行为进行仿真,如齿轮扭矩,并设计控制器来减少扭矩脉动。 同样地,您可以对高电流时的电机电感变化进行仿真,高电流对电机产生的转矩影响很大,还能相应地测试控制器。而仿真度低的模型并不能完全对齿轮扭矩、高电流时的电机电感,以及其他非线性进行仿真,由此便会降低HIL测试的有效性。为了充分测试嵌入式控制软件,测试人员不得不进行更多的实地测试,并增加开发时间。
图3. 扭矩计算中包含了D-Q模型、离线JMAG模型和JMAG-RT模型,D-Q模型对扭矩的平均值进行仿真,而JMAG与JMAG-RT模型对扭矩失真进行仿真。
在FEA仿真中,电机模型极其精确,且具有高精度,可充分体现电机中的非线性 。然而,这种高精真的仿真耗时严重,之前来说还是天方夜谭。设计工程师们不得不测量电机参数,并在后处理过程中进行数据分析。 对于复杂的电机模型,该过程需要花费数个小时。NI与JSOL公司合作,借助其FEA工具、JMAG和JMAG-RT,可生成高精度模型,再搭配使用NI LabVIEW系统设计软件和NI VeriStand软件来配置实时测试应用程序,最终完成验证任务。 通过这样的方式,NI满足了电机测试和仿真中的主要需求。现在您可以使用LabVIEW FPGA和基于FPGA的NI RIO硬件,从而以微秒的速度运行FEA电机模型。这些模型可精确地仿真复杂的非线性行为, 然后您就可以将在FPGA中运行的模型连接至其它硬件,以高I / O速率进行完整测试。
用于NI VeriStand的JMAG附加软件
NI VeriStand是基于配置的软件环境,可用于创建实时测试应用。其即买即用的特点可帮助您进行实时目标主机通信、数据记录、激励生成,以及报警检测和响应。NI VeriStand从仿真测试到HIL测试的转换相当快速,可让您复用测试组件,包括测试文件、预警、步骤和分析程序等。您可以轻松地重新映射模型、硬件通道等参数,以促成真实I / O。如此简单的转换能够节省您的回归测试时间,并帮助您使用NI TestStand等测试执行软件完成自动化测试。
NI VeriStand具备开放的框架,可通过实时插件创建特定应用功能,这为测试系统提供了最大的灵活性。您可以借助NI VeriStand的JMAG附件在HIL测试中运行具有高精度的实时模型。它能够启动内联FEA仿真,将分析时间从几小时缩短至微秒。您还可在NI PXI实时控制器上运行具备中等精度的FEA模型,其仿真步长约为20至30μs。在基于NI RIO的FPGA上运行FEA模型,可实现对仿真度要求极高的应用程序。这些基于FPGA的模型的步长可低达1us。JMAG电机模型库拥有各种不同类型的电机,可与多种电机型号进行匹配。您能够将可定制度高的模型修改成特定的电机类型,从而避免创建自定义模型。
图4. 该电机仿真图说明了,根据自身的应用需求,您在不同的终端上应该如何部署针对NI VeriStand的JMAG附加软件。
NI VeriStand和针对NI VeriStand的JMAG附加软件可在NI PXI实时控制器和NI RIO FPGA I/ O设备上运行。NI PXI提供了多种高速和高精度的I / O模块,可确保您获取所需的I / O,来满足特定的应用需求。除了实时的PXI功能,PXI的NI RIO模块在FPGA上还具备极高的处理速度。NI PXIe-7965R极高的性能让您放心借助FPGA进行模型计算,即使是在具备最高精度的JMAG-RT FEA模型上也可行。
实时仿真速度
理想运行终端硬件
基本运行终端硬件
非实时: 数分钟至数小时
Windows PC
D-Q模型与常量参数
LabVIEW实时
D-Q模型与JMAG-RT
LabVIEW实时
JMAG空间谐波模型
LabVIEW实时
             
在真实系统中测试多种顺变电流以及故障情况往往很麻烦或难操作,但这一点可通过实时高精度电机仿真实现。在这之前,通过HIL测试以及标准电机D-Q模型来实现许多情况,例如电机终端上或直流和交流总线间的故障仿真,几乎不可能完成。
NI的HIL平台可提供最高仿真度的实时仿真,让您在开发的早期阶段就发现问题并优化性能。全面的HIL测试可减少验证嵌入式软件的现场测试次数,最终缩短产品上市时间,并提高开发效率。
若对NI电机HIL系统有任何疑问,可发送电子邮件至
书签收藏和分享
NI助力工程师和科学家解决各类工程难题。
关于美国国家仪器公司
800-820-3622
National Instruments Corporation. 上海恩艾仪器有限公司 版权所有.
我们非常重视您的反馈!

我要回帖

更多关于 jmag11.1 的文章

 

随机推荐