徐工汽车吊重量传感器器可以筛选东西混乱的东西吗装在机械方式

浙江需要称重传感器的机械厂家,有知道的告诉我谢谢_百度知道
浙江需要称重传感器的机械厂家,有知道的告诉我谢谢
浙江需要称重传感器的机械厂家,有知道的告诉我谢谢
我有更好的答案
也想知道,我们也是传感器生产厂家,力合鑫源听过吗,在深圳
宁波柯力啊!
题目都没有看清楚。不要乱答
其他类似问题
为您推荐:
称重传感器的相关知识
等待您来回答
下载知道APP
随时随地咨询
出门在外也不愁哪些东西利用了仿生学?_百度作业帮
哪些东西利用了仿生学?
哪些东西利用了仿生学?
蝴蝶 五彩的蝴蝶颜色粲然,如重月纹凤蝶、褐脉金斑蝶等,尤其是萤光翼凤蝶,其后翊在阳光下时而金黄,时而翠绿,有时还由紫变蓝.科学家通过对蝴蝶色彩的研究,为军事防御带来了极大的稗益.在二战期间,德军包围了列宁格勒,企图用轰炸机摧毁其军事目标和其他防御设施.苏联昆虫学家施万维奇根据当时人们对伪装缺乏认识的情况,提出利用蝴蝶的色彩在花丛中不易被发现的道理,在军事设施上覆盖蝴蝶花纹般的伪装.因此,尽管德军费尽心机,但列宁格勒的军事基地仍然无恙,为赢得最后的胜利奠定了坚实的基础.根据同样的原理,后来人们还生产出了迷彩服,大大减少了战斗中的伤亡. 人造卫星在太空中由于位置的不断变化可引起温度骤然变化,有时温差可高达两、三百度,严重影响许多仪器的正常工作.科学家们受蝴蝶身上的鳞片会随阳光的照射方向自动变换角度而调节体温的启发,将人造卫星的控温系统制成了叶片反两面辐射、散热能力相差很大的百叶窗样式,在每扇窗的转动位置安装有对温度敏感的金属丝,随温度变化可调节窗的开合,从而保持了人造卫星内部温度的恒定,解决了航天事业中的一大难题. 甲虫 甲虫自卫时,可喷射出具有恶臭的高温液体“炮弹”,以迷惑、刺激和惊吓敌害.科学家将其解剖后发现甲虫体内有3个小室,分别储有二元酚溶液、双氧水和生物酶.二元酚和双氧水流到第三小室与生物酶混合发生化学反应,瞬间就成为100℃的毒液,并迅速射出.这种原理目前已应用于军事技术中.二战期间,德国纳粹为了战争的需要,据此机理制造出了一种功率极大且性能安全可靠的新型发动机,安装在飞航式导弹上,使之飞行速度加快,安全稳定,命中率提高,英国伦敦在受其轰炸时损失惨重.美国军事专家受甲虫喷射原理的启发研制出了先进的二元化武器.这种武器将两种或多种能产生毒剂的化学物质分装在两个隔开的容器中,炮弹发射后隔膜破裂,两种毒剂中间体在弹体飞行的8—10秒内混合并发生反应,在到达目标的瞬间生成致命的毒剂以杀伤敌人.它们易于生产、储存、运输,安全且不易失效.萤火虫可将化学能直接转变成光能,且转化效率达100%,而普通电灯的发光效率只有6%.人们模仿萤火虫的发光原理制成的冷光源可将发光效率提高十几倍,大大节约了能量.另外,根据甲虫的视动反应机制研制成功的空对地速度计已成功地应用于航空事业中. 蜻蜓 蜻蜓通过翅膀振动可产生不同于周围大气的局部不稳定气流,并利用气流产生的涡流来使自己上升.蜻蜓能在很小的推力下翱翔,不但可向前飞行,还能向后和左右两侧飞行,其向前飞行速度可达72公里/小时.此外,蜻蜓的飞行行为简单,仅靠两对翅膀不停地拍打.科学家据此结构基础研制成功了直升飞机.飞机在高速飞行时,常会引起剧烈振动,甚至有时会折断机翼而引起飞机失事.蜻蜓依靠加重的翅膀在高速飞行时安然无恙,于是人们效仿蜻蜓在飞机的两翼加上了平衡重锤,解决了因高速飞行而引起振动这个令人棘手的问题. 为了研究滑翔飞行和碰撞的空气动力学以及其飞行的效率,一个四叶驱动,用远程水平仪控制的机动机翼(翅膀)模型被研制,并第一次在风洞内测试了各项飞行参数. 第二个模型试图安装一个以更快频率飞行的翅膀,达到每秒18次震动的速度.有特色的是,这个模型采用了可变可调节前后两对机翼之间相差的装置. 研究的中心和长远目标,是要研究使用“翅膀”驱动的飞机表现,以及与传统的螺旋推动器驱动的飞机效率的比较等等. 苍蝇 家蝇的特别之处在于它的快速的飞行技术,这使得它很难被人类抓住.即使在它的后面也很难接近它.它设想到了每一种情况,非常小心,并能快速移动.那么,它是怎么做到的呢? 昆虫学家研究发现,苍蝇的后翅退化成一对平衡棒.当它飞行时,平衡棒以一定的频率进行机械振动,可以调节翅膀的运动方向,是保持苍蝇身体平衡导航仪.科学家据此原理研制成一代新型导航仪——振动陀螺仪,大在改进了飞机的飞行性能,可使飞机自动停止危险的滚翻飞行,在机体强烈倾斜时还能自动恢复平衡,即使是飞机在最复杂的急转弯时也万无一失.苍蝇的复眼包含4000个可独立成像的单眼,能看清几乎360度范围内的物体.在蝇眼的启示下,人们制成了由1329块小透镜组成的一次可拍1329张高分辨率照片的蝇眼照像机,在军事、医学、航空、航天上被广泛应用.苍蝇的嗅觉特别灵敏并能对数十种气味进行快速分析且可立即作出反应.科学家根据苍蝇嗅觉器官的结构,把各种化学反应转变成电脉冲的方式,制成了十分灵敏的小型气体分析仪,目前已广泛应用于宇宙飞船、潜艇和矿井等场所来检测气体成分,使科研、生产的安全系数更为准确、可靠. 蜂类 蜂巢由一个个排列整齐的六棱柱形小蜂房组成,每个小蜂房的底部由3个相同的菱形组成,这些结构与近代数学家精确计算出来的——菱形钝角109○28’,锐角70○32’完全相同,是最节省材料的结构,且容量大、极坚固,令许多专家赞叹不止.人们仿其构造用各种材料制成蜂巢式夹层结构板,强度大、重量轻、不易传导声和热,是建筑及制造航天飞机、宇宙飞船、人造卫星等的理想材料.蜜蜂复眼的每个单眼中相邻地排列着对偏振光方向十分敏感的偏振片,可利用太阳准确定位.科学家据此原理研制成功了偏振光导航仪,被广泛用于航海事业中. 其它 跳马蚤的跳跃本领十分高强,航空专家对此进行大最研究,英国一飞机制造公司从其垂直起跳的方式受到启发,成功制造出了一种几乎能垂直起落的鹞式飞机.现代电视技术根据昆虫单复眼的构造特点,造出了大屏幕彩电,又可将一台台小彩电荧光屏组成一个大画面,且可在同一屏幕上任意位置框出某几个特定的小画面,既可播映相同的画面,又可播映不同的画面.科学家根据昆虫复眼的结构特点研制成功的多孔径光学系统装置,更易于搜索到目标,已在国外一些重要武器系统中应用.根据某些水生昆虫的组成复眼的单眼之间相互抑制的原理,制成的侧抑制电子模型,用于各类摄影系统,拍出的照片可增强图像边缘反差和突出轮廓,还可用来提高雷达的显示灵敏度,也可用于文字和图片识别系统的预处理工作.美国利用昆虫复眼加工信息及定向导航原理,研制了具有很大实用价值的仿昆虫复眼的末制导导引头的工程模型.日本利用昆虫形态及特性开发研制了六足机器人等工学机器和建筑物的新构造方式. 昆虫在亿万年的进化过程中,随着环境的变迁而逐渐进化,都在不同程度地发展着各自的生存本领.随着社会的发展,人们对昆虫的各种生命活动掌握得越来越多,越来越意识到昆虫对人类的重要性,再加上信息技术特别是计算机新一代生物电子技术在昆虫学上的应用,模拟昆虫的感应能力而研制的检测物质种类和浓度的生物传感器,参照昆虫神经结构开发的能够模仿大脑活动的计算机等等一系列的生物技术工程,将会由科学家的设想变为现实,并进入各个领域,昆虫将会为人类做出更大的贡献 1.由令人讨厌的苍蝇,仿制成功一种十分奇特的小型气体分析仪.已经被安装在宇宙飞船的座舱里,用来检测舱内气体的成分. 2.从萤火虫到人工冷光; 3.电鱼与伏特电池; 4.水母的顺风耳,仿照水母耳朵的结构和功能,设计了水母耳风暴预测仪,能提前15小时对风暴作出预报,对航海和渔业的安全都有重要意义. 5.人们根据蛙眼的视觉原理,已研制成功一种电子蛙眼.这种电子蛙眼能像真的蛙眼那样,准确无误地识别出特定形状的物体.把电子蛙眼装入雷达系统后,雷达抗干扰能力大大提高.这种雷达系统能快速而准确地识别出特定形状的飞机、舰船和导弹等.特别是能够区别真假导弹,防止以假乱真. 电子蛙眼还广泛应用在机场及交通要道上.在机场,它能监视飞机的起飞与降落,若发现飞机将要发生碰撞,能及时发出警报.在交通要道,它能指挥车辆的行驶,防止车辆碰撞事故的发生. 6.根据蝙蝠超声定位器的原理,人们还仿制了盲人用的“探路仪”.这种探路仪内装一个超声波发射器,盲人带着它可以发现电杆、台阶、桥上的人等.如今,有类似作用的“超声眼镜”也已制成. 7.模拟蓝藻的不完全光合器,将设计出仿生光解水的装置,从而可获得大量的氢气. 8.根据对人体骨胳肌肉系统和生物电控制的研究,已仿制了人力增强器——步行机. 9.现代起重机的挂钩起源于许多动物的爪子. 10.屋顶瓦楞模仿动物的鳞甲. 11.船桨模仿的是鱼的鳍. 12.锯子学的是螳螂臂,或锯齿草. 13.苍耳属植物获取灵感发明了尼龙搭扣. 14.嗅觉灵敏的龙虾为人们制造气味探测仪提供了思路. 15.壁虎脚趾对制造能反复使用的粘性录音带提供了令人鼓舞的前景. 16.贝用它的蛋白质生成的胶体非常牢固,这样一种胶体可应用在从外科手术的缝合到补船等一切事情上. 回答者: 露密儿 - 见习魔法师 二级
3-27 18:44蜻蜓——直升机;青蛙——蛙眼雷达;蚊子——蚊式战斗机; 苍蝇——蝇眼照相机;蝴蝶——迷彩服;海豚——潜艇 回答者: 飞羽领主 - 见习魔法师 三级
3-27 18:56.由令人讨厌的苍蝇,仿制成功一种十分奇特的小型气体分析仪.已经被安装在宇宙飞船的座舱里,用来检测舱内气体的成分. 2.从萤火虫到人工冷光; 3.电鱼与伏特电池; 4.水母的顺风耳,仿照水母耳朵的结构和功能,设计了水母耳风暴预测仪,能提前15小时对风暴作出预报,对航海和渔业的安全都有重要意义. 5.人们根据蛙眼的视觉原理,已研制成功一种电子蛙眼.这种电子蛙眼能像真的蛙眼那样,准确无误地识别出特定形状的物体.把电子蛙眼装入雷达系统后,雷达抗干扰能力大大提高.这种雷达系统能快速而准确地识别出特定形状的飞机、舰船和导弹等.特别是能够区别真假导弹,防止以假乱真. 电子蛙眼还广泛应用在机场及交通要道上.在机场,它能监视飞机的起飞与降落,若发现飞机将要发生碰撞,能及时发出警报.在交通要道,它能指挥车辆的行驶,防止车辆碰撞事故的发生. 6.根据蝙蝠超声定位器的原理,人们还仿制了盲人用的“探路仪”.这种探路仪内装一个超声波发射器,盲人带着它可以发现电杆、台阶、桥上的人等.如今,有类似作用的“超声眼镜”也已制成. 7.模拟蓝藻的不完全光合器,将设计出仿生光解水的装置,从而可获得大量的氢气. 8.根据对人体骨胳肌肉系统和生物电控制的研究,已仿制了人力增强器——步行机. 9.现代起重机的挂钩起源于许多动物的爪子. 10.屋顶瓦楞模仿动物的鳞甲. 11.船桨模仿的是鱼的鳍. 12.锯子学的是螳螂臂,或锯齿草. 13.苍耳属植物获取灵感发明了尼龙搭扣. 14.嗅觉灵敏的龙虾为人们制造气味探测仪提供了思路. 15.壁虎脚趾对制造能反复使用的粘性录音带提供了令人鼓舞的前景. 16.贝用它的蛋白质生成的胶体非常牢固,这样一种胶体可应用在从外科手术的缝合到补船等一切事情上. 17.蜻蜓——直升机 18.青蛙——蛙眼雷达 19.蚊子——蚊式战斗机 20.苍蝇——蝇眼照相机 21.蝴蝶——迷彩服 22.海豚——潜艇 回答者: uu2002006 - 魔法学徒 一级
3-30 22:16水母的顺风耳 “燕子低飞行将雨,蝉鸣雨中天放晴.”生物的行为与天气的变化有一定关系.沿海渔民都知道,生活在沿岸的鱼和水母成批地游向大海,就预示着风暴即将来临. 水母,又叫海蜇,是一种古老的腔肠动物,早在5亿年前,它就漂浮在海洋里了.这种低等动物有预测风暴的本能,每当风暴来临前,它就游向大海避难去了. 原来,在蓝色的海洋上,由空气和波浪摩擦而产生的次声波 (频率为每秒8—13次),总是风暴来临的前奏曲.这种次声波人耳无法听到,小小的水母却很敏感.仿生学家发现,水母的耳朵的共振腔里长着一个细柄,柄上有个小球,球内有块小小的听石,当风暴前的次声波冲击水母耳中的听石时,听石就剌激球壁上的神经感受器,于是水母就听到了正在来临的风暴的隆隆声. 仿生学家仿照水母耳朵的结构和功能,设计了水母耳风暴预测仪,相当精确地模拟了水母感受次声波的器官.把这种仪器安装在舰船的前甲板上,当接受到风暴的次声波时,可令旋转360°的喇叭自行停止旋转,它所指的方向,就是风暴前进的方向;指示器上的读数即可告知风暴的强度.这种预测仪能提前15小时对风暴作出预报,对航海和渔业的安全都有重要意义. 从萤火虫到人工冷光 自从人类发明了电灯,生活变得方便、丰富多了.但电灯只能将电能的很少一部分转变成可见光,其余大部分都以热能的形式浪费掉了,而且电灯的热射线有害于人眼.那么,有没有只发光不发热的光源呢? 人类又把目光投向了大自然. 在自然界中,有许多生物都能发光,如细菌、真菌、蠕虫、软体动物、甲壳动物、昆虫和鱼类等,而且这些动物发出的光都不产生热,所以又被称为“冷光”. 在众多的发光动物中,萤火虫是其中的一类.萤火虫约有1 500种,它们发出的冷光的颜色有黄绿色、橙色,光的亮度也各不相同.萤火虫发出冷光不仅具有很高的发光效率,而且发出的冷光一般都很柔和,很适合人类的眼睛,光的强度也比较高.因此,生物光是一种人类理想的光. 科学家研究发现,萤火虫的发光器位于腹部.这个发光器由发光层、透明层和反射层三部分组成.发光层拥有几千个发光细胞,它们都含有荧光素和荧光酶两种物质.在荧光酶的作用下,荧光素在细胞内水分的参与下,与氧化合便发出荧光.萤火虫的发光,实质上是把化学能转变成光能的过程. 早在40年代,人们根据对萤火虫的研究,创造了日光灯,使人类的照明光源发生了很大变化.近年来,科学家先是从萤火虫的发光器中分离出了纯荧光素,后来又分离出了荧光酶,接着,又用化学方法人工合成了荧光素.由荧光素、荧光酶、ATP(三磷酸腺苷)和水混合而成的生物光源,可在充满爆炸性瓦斯的矿井中当闪光灯.由于这种光没有电源,不会产生磁场,因而可以在生物光源的照明下,做清除磁性水雷等工作. 现在,人们已能用掺和某些化学物质的方法得到类似生物光的冷光,作为安全照明用. 回答者: 糖果小M - 初入江湖 二级
4-1 10:45仿生学举15个例子: 1.由令人讨厌的苍蝇,仿制成功一种十分奇特的小型气体分析仪.已经被安装在宇宙飞船的座舱里,用来检测舱内气体的成分. 2.从萤火虫到人工冷光; 3.电鱼与伏特电池; 4.水母的顺风耳,仿照水母耳朵的结构和功能,设计了水母耳风暴预测仪,能提前15小时对风暴作出预报,对航海和渔业的安全都有重要意义. 5.人们根据蛙眼的视觉原理,已研制成功一种电子蛙眼.这种电子蛙眼能像真的蛙眼那样,准确无误地识别出特定形状的物体.把电子蛙眼装入雷达系统后,雷达抗干扰能力大大提高.这种雷达系统能快速而准确地识别出特定形状的飞机、舰船和导弹等.特别是能够区别真假导弹,防止以假乱真. 电子蛙眼还广泛应用在机场及交通要道上.在机场,它能监视飞机的起飞与降落,若发现飞机将要发生碰撞,能及时发出警报.在交通要道,它能指挥车辆的行驶,防止车辆碰撞事故的发生. 6.根据蝙蝠超声定位器的原理,人们还仿制了盲人用的“探路仪”.这种探路仪内装一个超声波发射器,盲人带着它可以发现电杆、台阶、桥上的人等.如今,有类似作用的“超声眼镜”也已制成. 7.模拟蓝藻的不完全光合器,将设计出仿生光解水的装置,从而可获得大量的氢气. 8.根据对人体骨胳肌肉系统和生物电控制的研究,已仿制了人力增强器——步行机. 9.现代起重机的挂钩起源于许多动物的爪子. 10.屋顶瓦楞模仿动物的鳞甲. 11.船桨模仿的是鱼的鳍. 12.锯子学的是螳螂臂,或锯齿草. 13.苍耳属植物获取灵感发明了尼龙搭扣. 14.嗅觉灵敏的龙虾为人们制造气味探测仪提供了思路. 15.壁虎脚趾对制造能反复使用的粘性录音带提供了令人鼓舞的前景. 16.贝用它的蛋白质生成的胶体非常牢固,这样一种胶体可应用在从外科手术的缝合到补船等一切事情上 乌贼和鱼雷诱饵 乌贼体内的囊状物能分泌黑色液体,遇到危险时它便释放出这种黑色液体,诱骗攻击者上当.潜艇设计者们仿效乌贼的这一功能读者设计出了鱼雷诱饵.鱼雷诱醋似袖珍潜艇,可按潜艇的原航向航行,航速不变,也可模拟噪音、螺旋节拍、声信号和多普勒音调变化等.正是它这种惟妙惟肖的表演,令敌潜艇或攻击中的鱼雷真假难辩,最终使潜艇得以逃脱. 蜘蛛和装甲 生物学家发现蜘蛛丝的强度相当于同等体积的钢丝的5倍.受此启发,英国剑桥一所技术公司试制成犹如蜘蛛丝一样的高强度纤维.用这种纤维做成的复合材料可以用来做防弹衣、防弹车、坦克装甲车等结构材料. 长颈鹿和“抗荷服” 长颈鹿是目前世界上最高的动物,其大脑和心脏的距离约3米,完全是靠高达160~260毫米汞柱的血压把血液送到大脑的.按一般分析,当长颈鹿低头饮水时,大脑的位置低于心脏,大量的血液会涌入大脑,使血压更加增高,那么长颈鹿会在饮水时得脑充血或血管破烈等疾病而死.但是裹在长颈鹿身上的一层、厚皮紧紧箍住了血管,限制了血压,飞机设计师和航空生物学家依照长颈鹿皮肤原理,设计出一种新颖的“抗荷服”,从而解决了超高速歼击机驾驶员在突然加速爬升时因脑部缺血而引起的痛苦.这种“抗荷服”内有一装置,当飞机加速时可压缩空气,也能对血管产生相应的压力,这比长颈鹿的厚皮更高明了. 鲸鱼和潜艇的“鲸背效应” 当代核潜艇能长时间潜航于冰海之下,但若在冰下发射导弹,则必须破冰上浮,这就碰到了力学上的难题.潜舴专家从鲸鱼每隔10分钟必须破冰呼吸一次中得到启迪,在潜艇顶部突起的指挥台围壳和上层建筑方面,作了加强材料力度和外形仿鲸背处理,果然取得了破冰时的“鲸背效应”. 蝴蝶和卫星控温系统 遨游太空的人造卫星,当受到阳光强烈辐射时,卫星温度会高达200摄氏度;而在阴影区域,卫星温度会下降至零下200摄氏度左右,这很容易烤坏或冻坏卫星上的精密仪器仪表,它一度曾使航天科学家伤透了脑筋.后来,人们从蝴蝶身上受到启迪.原来,蝴蝶身体表面生长着一层细小的鳞片,这些鳞片有调节体温的作用.每当气温上升、阳光直射时,鳞片自动张开,以减少阳光的辐射角度,从而减少对阳光热能的吸收;当外界气温下降时,鳞片自动闭合,紧贴体表,让阳光直射鳞片,从而把体温控制在正常范围之内.科学家经过研究,为人造地球卫星设计了一种犹如蝴蝶鳞片般的控温系统. 参考资料:百度知道 回答者:
- 试用期 一级
4-2 11:39 回答者: 死神布雷克 - 初入江湖 二级
4-5 17:41蝙蝠-雷达 小鸟-飞机 青蛙-电子蛙眼 鲨鱼-潜水艇 变色龙-便衣 鲸鱼-提高轮船速度 蜻蜓-让飞机的机翼不会破碎 长颈鹿-抗荷服 海母-暴雨检查器 萤火虫-人工冷光 龙虾-气味探测仪 回答者:
- 试用期 一级
4-5 21:07苍蝇,是细菌的传播者,谁都讨厌它.可是苍蝇的楫翅(又叫平衡棒)是“天然导航仪”,人们模仿它制成了“振动陀螺仪”.这种仪器目前已经应用在火箭和高速飞机上,实现了自动驾驶.苍蝇的眼睛是一种“复眼”,由30O0多只小眼组成,人们模仿它制成了“蝇眼透镜”.“蝇眼透镜”是用几百或者几千块小透镜整齐排列组合而成的,用它作镜头可以制成“蝇眼照相机”,一次就能照出千百张相同的相片.这种照相机已经用于印刷制版和大量复制电子计算机的微小电路,大大提高了工效和质量.“蝇眼透镜”是一种新型光学元件,它的用途很多. 鱼儿在水中有自由来去的本领,人们就模仿鱼类的形体造船,以木桨仿鳍.相传早在大禹时期,我国古代劳动人民观察鱼在水中用尾巴的摇摆而游动、转弯,他们就在船尾上架置木桨.通过反复的观察、模仿和实践,逐渐改成橹和舵,增加了船的动力,掌握了使船转弯的手段.这样,即使在波涛滚滚的江河中,人们也能让船只航行自如. 四百多年前,意大利人利奥那多·达·芬奇和他的助手对鸟类进行仔细的解剖,研究鸟的身体结构并认真观察鸟类的飞行.设计和制造了一架扑翼机,这是世界上第一架人造飞行器. 在第一次世界大战时期,出于军事上的需要,为使舰艇在水下隐蔽航行而制造出潜水艇.当工程技术人员在设计原始的潜艇时,是先用石块或铅块装在潜艇上使它下沉,如果需要升至水面,就将携带的石块或铅块扔掉,使艇身回到水面来.以后经过改进,在潜艇上采用浮箱交替充水和排水的方法来改变潜艇的重量.以后又改成压载水舱,在水舱的上部设放气阀,下面设注水阀,当水舱灌满海水时,艇身重量增加使可它潜入水中.需要紧急下潜时,还有速潜水舱,待艇身潜入水中后,再把速潜水舱内的海水排出.如果一部分压载水舱充水,另一部分空着,潜水艇可处于半潜状态.潜艇要起浮时,将压缩空气通入水舱排出海水,艇内海水重量减轻后潜艇就可以上浮.如此优越的机械装置实现了潜艇的自由沉浮.但是后来发现鱼类的沉浮系统比人们的发明要简单得多,鱼的沉浮系统仅仅是充气的鱼鳔.鳔内不受肌肉的控制,而是依靠分泌氧气进入鳔内或是重新吸收鳔内一部分氧气来调节鱼鳔中气体含量,促使鱼体自由沉浮.然而鱼类如此巧妙的沉浮系统,对于潜艇设计师的启发和帮助已经为时过迟了. 声音是人们生活中不可缺少的要素.通过语言,人们交流思想和感情,优美的音乐使人们获得艺术的享受,工程技术人员还把声学系统应用在工业生产和军事技术中,成为颇为重要的信息之一.自从潜水艇问世以来,随之而来的就是水面的舰船如何发现潜艇的位置以防偷袭;而潜艇沉入水中后,也须准确测定敌船方位和距离以利攻击.因此,在第一次世界大战期间,在海洋上,水面与水中敌对双方的斗争采用了各种手段.海军工程师们也利用声学系统作为一个重要的侦察手段.首先采用的是水听器,也称噪声测向仪,通过听测敌舰航行中所发出的噪声来发现敌舰.只要周围水域中有敌舰在航行,机器与螺旋桨推进器便发出噪声,通过水听器就能听到,能及时发现敌人.但那时的水听器很不完善,一般只能收到本身舰只的噪声,要侦听敌舰,必须减慢舰只航行速度甚至完全停车才能分辨潜艇的噪音,这样很不利于战斗行动.不久,法国科学家郎之万()研究成功利用超声波反射的性质来探测水下舰艇.用一个超声波发生器,向水中发出超声波后,如果遇到目标便反射回来,由接收器收到.根据接收回波的时间间隔和方位,便可测出目标的方位和距离,这就是所谓的声纳系统.人造声纳系统的发明及在侦察敌方潜水艇方面获得的突出成果,曾使人们为之惊叹不已.岂不知远在地球上出现人类之前,蝙蝠、海豚早已对“回声定位”声纳系统应用自如了. 回答者: ぁ快乐女孩ぁ - 魔法学徒 一级
4-6 18:37乌贼和鱼雷诱饵 乌贼体内的囊状物能分泌黑色液体,遇到危险时它便释放出这种黑色液体,诱骗攻击者上当.潜艇设计者们仿效乌贼的这一功能读者设计出了鱼雷诱饵.鱼雷诱醋似袖珍潜艇,可按潜艇的原航向航行,航速不变,也可模拟噪音、螺旋节拍、声信号和多普勒音调变化等.正是它这种惟妙惟肖的表演,令敌潜艇或攻击中的鱼雷真假难辩,最终使潜艇得以逃脱. 蜘蛛和装甲 生物学家发现蜘蛛丝的强度相当于同等体积的钢丝的5倍.受此启发,英国剑桥一所技术公司试制成犹如蜘蛛丝一样的高强度纤维.用这种纤维做成的复合材料可以用来做防弹衣、防弹车、坦克装甲车等结构材料. 长颈鹿和“抗荷服” 长颈鹿是目前世界上最高的动物,其大脑和心脏的距离约3米,完全是靠高达160~260毫米汞柱的血压把血液送到大脑的.按一般分析,当长颈鹿低头饮水时,大脑的位置低于心脏,大量的血液会涌入大脑,使血压更加增高,那么长颈鹿会在饮水时得脑充血或血管破烈等疾病而死.但是裹在长颈鹿身上的一层、厚皮紧紧箍住了血管,限制了血压,飞机设计师和航空生物学家依照长颈鹿皮肤原理,设计出一种新颖的“抗荷服”,从而解决了超高速歼击机驾驶员在突然加速爬升时因脑部缺血而引起的痛苦.这种“抗荷服”内有一装置,当飞机加速时可压缩空气,也能对血管产生相应的压力,这比长颈鹿的厚皮更高明了.引自 /question/.html
扫描下载二维码称重传感器_百度百科
称重传感器
称重传感器实际上是一种将质量信号转变为可测量的电信号输出的装置。用传感器应先要考虑传感器所处的实际工作环境,这点对正确选用称重传感器至关重要,它关系到传感器能否正常工作以及它的安全和使用寿命,乃至整个的可靠性和安全性。在称重传感器主要技术指标的基本概念和评价方法上,新旧国标有质的差异。主要有S型、悬臂型、轮辐式、板环式、膜盒式、桥式、柱筒式等几种样式。
旧国标将应用对象和使用环境条件完全不同的“称重”和“测力”两种传感器合二为一来考虑,对试验和评价方法未给予区分。旧国标共有21项指标,均在常温下进行试验;并用非线性、滞后误差、重复性误差、蠕变、零点温度附加误差以及额定输出温度附加误差6项指标中的最大误差,来确定称重传感器,分别用0.02、0.03、0.05表示。
柱式称重传感器
上使用的一种力传感器。它能将作用在被测物体上的重力按一
传感器结构图
定比例转换成可计量的输出信号。考虑到不同使用地点的重力加速度和空气浮力对转换的影响,称重传感器的性能指标主要有线性误差、滞后误差、、蠕变、零点温度特性和灵敏度温度特性等。在各种衡器和质量计量系统中,通常用综合误差带来综合控制传感器,并将综合误差带与衡器误差带(图1)联系起来,以便选用对应于某一准确度衡器的称重传感器。(OIML)规定,传感器的误差带δ占衡器误差带Δ的70%,称重传感器的线性误差、滞后误差以及在规定温度范围内由于温度对灵敏度的影响所引起的误差等的总和不能超过误差带δ。这就允许制造厂对构成计量总误差的各个分量进行调整,从而获得期望的准确度[1]
称重传感器按转换方法分为光电式、液压式、电磁力式、电容式、磁极变形式、振动式、陀螺仪式、电阻应变式等8类,以电阻应变式使用最广。
包括光栅式和码盘式两种。
利用光栅形成的莫尔条纹把角位移转换成光电信号(图2)。光栅有两块,一为固定光栅,另一为装在表盘轴上的移动光栅。加在承重台上的被测物通过传力杠杆系统使表盘轴旋转,带动移动光栅转动,使莫尔条纹也随之移动。利用光电管、转换电路和显示仪表,即可计算出移过的莫尔条纹数量,测出光栅转动角的大小,从而确定和读出被测物质量。
码盘式传感器(图3)的码盘(符号板)是一块装在表盘轴上的透明玻璃,上面带有按一定编码方法编定的黑白相间的代码。加在承重台上的被测物通过传力杠杆使表盘轴旋转时,码盘也随之转过一定角度。光电池将透过码盘接受光信号并转换成电信号,然后由电路进行数字处理,最后在显示器上显示出代表被测质量的数字。曾主要用在机电结合秤上。
如图4所示,在受被测物重力P作用时,液压油的压力增大,增大的程度与P成正比。测出压力的增大值,即可确定被测物的质量。液压式传感器结构简单而牢固,测量范围大,但准确度一般不超过1/100。
它利用振荡电路的振荡频率f与极板间距d 的正比例关系工作(图6 )。极板有两块,一块固定不动,另一块可移动。在承重台加载被测物时,板簧挠曲,两极板之间的距离发生变化,电路的振荡频率也随之变化。测出频率的变化即可求出承重台上被测物的质量。耗电量少,造价低,准确度为1/200~1/500。
电阻、电感和电容是电子技术中的三大类无源元件,电容式传感器是将被测量的变化转换成电容量变化的传感器,它实质上就是一个具有可变参数的电容器。
电容式传感器具有下列优点:
(1)高阻抗,小功率,仅需很低的输入能量。
(2)可获得较大的变化量,从而具有较高的信噪比和系统稳定性。
(3)动态响应快,工作频率可达几兆赫,稠b接触测量,被测物是导体或半导体均可。
(4)结构简单.适应性强,可在高低温、强辐射等恶劣的环境下工作,应用较广。
随着电子技术及计算机技术的发展,电容式传感器所存在的易受干扰和易受分布电容影响等缺点不断得以克服,而且还开发出容栅位移传感器和集成电容式传感器:因此它在非电量测量和自动检测中得到广泛应用,可测量压力、位移、转速、加速度、A度、厚度、液位、湿度、振动、成分含量等参数。电容式传感器有着很好的发展前景。
主要缺点缺点一:输出阻抗高,负载能力差
缺点二:输出特性非线性
缺点三:寄生电容影响大
它利用承重台上的负荷与电磁力相平衡的原理工作(图5)。当承重台上放有被测物时,杠杆的一端向上倾斜;光电件检测出倾斜度信号,经放大后流入,产生电磁力,使杠杆恢复至。对产生电磁平衡力的电流进行数字转换,即可确定被测物质量。电磁力式传感器准确度高,可达1/00,但称量范围仅在几十毫克至10千克之间。
磁极变形式
如图7所示,铁磁元件在被测物重力作用下发生机械变形时,内部产生应力并引起导磁率变化,使绕在铁磁元件(磁极)两侧的次级线圈的感应电压也随之变化。测量出电压的变化量即可求出加到磁极上的力,进而确定被测物的质量。磁极变形式传感器的准确度不高,一般为1/100,适用于大吨位称量工作,称量范围为几十至几万千克。
弹性元件受力后,其固有振动频率与作用力的平方根成正比。测出固有频率的变化,即可求出被测物作用在弹性元件上的力,进而求出其质量。振动式传感器有振弦式和音叉式两种。
的弹性元件是弦丝。当承重台上加有被测物时,V形弦丝的交点被拉向下,且的拉力增大,右弦的拉力减小。两根弦的固有频率发生不同的变化。求出两根弦的频率之差,即可求出被测物的质量。振弦式传感器的准确度较高,可达1/00,称量范围为100克至几百千克,但结构复杂,加工难度大,造价高。
音叉式传感器的弹性元件是音叉。音叉端部固定有压电元件,它以音叉的固有频率振荡,并可测出振荡频率。当承重台上加有被测物时,音叉拉伸方向受力而固有频率增加,增加的程度与施加力的平方根成正比。测出固有频率的变化,即可求出重物施加于音叉上的力,进而求出重物质量。音叉式传感器耗电量小,计量准确度高达1/1000,称量范围为500g~10kg。
如图10所示,转子装在内框架中,以角速度ω绕X轴稳定旋转。内框架经轴承与外框架联接,并可绕水平轴 Y 倾斜转动。外框架经万向联轴节与机座联接,并可绕垂直轴Z 旋转。转子轴 (X轴)在未受外力作用时保持水平状态。转子轴的一端在受到外力(P/2)作用时,产生倾斜而绕垂直轴Z 转动(进动)。进动角速度ω与外力P/2成正比,通过检测频率的方法测出ω,即可求出外力大小,进而求出产生此外力的被测物的质量。
陀螺仪式传感器响应时间快(5秒),无滞后现象,温度特性好(3ppm), 振动影响小, 频率测量准确精度高,故可得到高的分辨率(1/100000)和高的计量准确度(1/300)。
电阻应变式
利用电阻变形时其电阻也随之改变的原理工作(图11)。主要由弹性元件、电阻应变片、测量电路和传输电缆4部分组成。
板环式称重传感器的结构具有明确的应力流线分布、输出灵敏度高、弹性体为一整体、结构简单、受力状态稳定、易于加工等优点。目前在传感器生产中还占着较大的比例,而对这种结构传感器的设计公式目前还不很完善。因这种弹性体的应变计算比较复杂,通常在设计时把它看作为圆环式弹性体进行估算。特别是对1t及以下量程的板环式传感器设计计算误差更大,同时往往还会出现较大的非线性误差。    板环式称重传感器用途与特点:结构紧凑、防护性能好。精度高、长期稳定性好。适用于吊钩秤、机电结合秤及其它力值的测
数字称重传感器是一种能将重力转变为电信号的力-电转换装置,它主要是指集电阻应变式称重传感器、电子放大器(英文简称AMC)、模数转换技术(英文简称ADC)、微处理器(简称MCU)于一体的新型传感器。
2.特点和应用
数字称重传感器和数字计量仪表技术的发展已逐渐成为称重技术领域的新宠,其以调试简便高效、适应现场能力强等优势正在该领域崭露头角。
S型称重传感器
S型称重传感器如图所示是传感器中最为常见的一种传感器,主要用于测固体间的拉力和压力,通用也人们也称之为拉压力传感器,因为它的外形像S形状,所以习惯上也称S型称重传感器,此传感器采用合金钢材质,胶密封防护处理,安装容易,使用方便,适用于吊秤,配料秤,机改秤等电子测力称重系统。
1、敏感元件
直接感受被测量(质量)并输出与被测量有确定关系的其他量的元件。如电阻应变式称重传感器的弹性体,是将被测物体的质量转变为形变;电容式称重传感器的弹性体将被测的质量转变为位移。
2、变换元件
又称传感元件,是将敏感元件的输出转变为便于测量的信号。如电阻应变式称重传感器的电阻应变计(或称电阻应变片),将弹性体的形变转换为电阻量的变化;电容式称重传感器的电容器,将弹性体的位移转变为电容量的变化。有时某些元件兼有敏感元件和变换元件两者的职能。如电压式称重传感器的压电材料,在外载荷的作用下,在发生变形的同时输出电量。
3、测量元件
将变换元件的输出变换为电信号,为进一步传输、处理、显示、记录或控制提供方便。如电阻应变式称重传感器中的电桥电路,压电式称重传感器的电荷前置放大器。
4、辅助电源
为传感器的电信号输出提供能量。一般称重传感器均需外链电源才能工作。因此,作为一个产品必须标明供电的要求,但不作为称重传感器的组成部分。有些传感器,如磁电式速度传感器,由于他输出的能量较大,故不需要辅助电源也能正常工作。所以并非所有传感器都要有辅助电源。
电阻应变式称重传感器是基于这样一个原理:弹性体(弹性元件,敏感梁)在外力作用下产生弹性变形,使粘贴在它表面的电阻应变片(转换元件)也随同产生变形,电阻应变片变形后,它的阻值将发生变化(增大或减小),再经相应的测量电路把这一电阻变化转换为电信号(电压或电流),从而完成了将外力变换为电信号的过程。
由此可见,电阻应变片、弹性体和检测电路是电阻应变式称重传感器中不可缺少的几个主要部分。下面就这三方面简要论述。
称重传感器
一、电阻应变片
电阻应变片是把一根电阻丝机械的分布在一块有机材料制成的基底上,即成为一片应变片。他的一个重要参数是灵敏系数K。我们来介绍一下它的意义。
设有一个金属电阻丝,其长度为L,横截面是半径为r的圆形,其面积记作S,其电阻率记作ρ,这种材料的泊松系数是μ。当这根电阻丝未受外力作用时,它的电阻值为R:
R = ρL/S(Ω) (2—1)
当他的两端受F力作用时,将会伸长,也就是说产生变形。设其伸长ΔL,其则缩小,即它的截面圆半径减少Δr。此外,还可用实验证明,此金属电阻丝在变形后,电阻率也会有所改变,记作Δρ。
对式(2--1)求全微分,即求出电阻丝伸长后,他的电阻值改变了多少。我们有:
ΔR = ΔρL/S + ΔLρ/S –ΔSρL/S2 (2—2)
用式(2--1)去除式(2--2)得到
ΔR/R = Δρ/ρ + ΔL/L – ΔS/S (2—3)
另外,我们知道导线的横截面积S = πr2,则 Δs = 2πr*Δr,所以
ΔS/S = 2Δr/r (2—4)
从材料力学我们知道
Δr/r = -μΔL/L (2—5)
其中,负号表示伸长时,半径方向是缩小的。μ是表示材料横向效应泊松系数。把式(2—4)(2—5)代入(2--3),有
ΔR/R = Δρ/ρ + ΔL/L + 2μΔL/L
=(1 + 2μ(Δρ/ρ)/(ΔL/L))*ΔL/L
= K *ΔL/L (2--6)
K = 1 + 2μ +(Δρ/ρ)/(ΔL/L) (2--7)
式(2--6))说明了电阻应变片的电阻变化率(电阻相对变化)和电阻丝伸长率(长度相对变化)之间的关系。
需要说明的是:灵敏度系数K值的大小是由制作金属电阻丝材料的性质决定的一个常数,它和应变片的形状、尺寸大小无关,不同的材料的K值一般在1.7—3.6之间;其次K值是一个无因次量,即它没有量纲。
在材料力学中ΔL/L称作为应变,记作ε,用它来表示弹性往往显得太大,很不方便
常常把它的百万分之一作为单位,记作με。这样,式(2--6)常写作:
ΔR/R = Kε (2—8)
二、弹性体
弹性体是一个有特殊形状的。它的功能有两个,首先是它承受称重传感器所受的外力,对外力产生反作用力,达到相对静平衡;其次,它要产生一个高品质的应变场(区),使粘贴在此区的电阻应变片比较理想的完成应变枣电信号的转换任务。
以称重传感器的弹性体为例,来介绍一下其中的应力分布。
设有一带有肓孔的长方体悬臂梁。
肓孔底部中心是承受纯剪应力,但其上、下部分将会出现拉伸和压缩应力。主应力方向一为拉神,一为压缩,若把应变片贴在这里,则应变片上半部将受拉伸而阻值增加,而应变片的下半部将受压缩,阻值减少。下面列出肓孔底部中心点的应变表达式,而不再推导。
ε = (3Q(1+μ)/2Eb)*(B(H2-h2)+bh2)/ (B(H3-h3)+bh3) (2--9)
其中:Q--截面上的剪力;E--扬氏模量:μ—泊松系数;B、b、H、h—为梁的几何尺寸。
需要说明的是,上面分析的应力状态均是“局部”情况,而应变片实际感受的是“平均”状态。
三、检测电路
检测电路的功能是把电阻应变片的电阻变化转变为电压输出。因为惠斯登电桥具有很多优点,如可以抑制温度变化的影响,可以抑制侧向力干扰,可以比较方便的解决称重传感器的补偿问题等,所以惠斯登电桥在称重传感器中得到了广泛的应用。
因为全桥式等臂电桥的灵敏度最高,各臂参数一致,各种干扰的影响容易相互抵销,所以称重传感器均采用全桥式等臂电桥。
称重传感器性能的好坏很大程度上取决于制造材料的选择。称重传感器材料包括以下几个部分:应变片材料、弹性体材料、贴片黏合剂材料、密封胶材料、引线密封材料和引线材料。  应变片和电阻元件材料  应变片是称重传感器的感应部分,它将外力的大小转化为电学量输出,是传感器最重要的组成部分,常用的应变片基材采用高分子薄膜材料,应变材质通常为高纯度康铜 。应变片的性能不仅仅与基材和康铜纯度有关,还与制造工艺有关。提高工艺技术水平也是改善传感器性能一个很重要的方面。  弹性体材料  称重传感器弹性体的作用是传递外力,它必须具有在受到相同力大小的时候,产生形变一样,因为应变片就粘贴在弹性体上面,弹性体的形变就是应变片的形变;同时它还须具有复位性,在外力消失的时候,可以自动复位。弹性体材料通常选择各样金属,主要有铝合金、不锈钢和合金钢等等。  贴片黏合剂材料  贴片黏合剂是把应变片和弹性体牢牢固定在一起,使它们产生的形变永远一致。由此可见,贴片黏合剂也是一个重要部件。21世纪初,使用叫多的贴片黏合剂是双组分高分子环氧系列黏合剂。21世纪初,它的性能与它自身的纯度、混合方式、储存时间、固化方式、固化时间等关系很大,在使用之前按要仔细看它的详细介绍。  密封胶材料  早期的称重传感器密封都采用密封胶,后来由于制造技术的发展,用焊接技术可以提高极大传感器的稳定性和使用寿命。虽然21世纪初很多采用了焊接技术,但是某些重要部位还需涂抹一些密封胶。密封胶一般都采用硅胶,硅胶具有稳定性好的优点,可以防潮、防腐蚀,绝缘性能也非常好。  引线密封和引线材料  传感器输出引线如果不固定的话,会发生损坏或松动,导致信号不稳定或没有输出。21世纪初传感器输出都采用连接器的方式,连接器的材质和紧固力度也会给输出带来影响。最好采用连接器跟密封胶配合使用。内部引线也需要固定,防止其到处移动。引线的质量也很重要,其材质性能从高到低的排列顺序依次为镀银、铜线和铝线。如果周围高频信号、无线电波干扰严重的话,还需采用屏蔽电缆;在腐蚀性环境和易燃易爆场合则需要采用防腐防阻燃和防爆电缆,外加套管进行保护。[2]
安装注意事项
1、称重传感器要轻拿轻放,尤其对于用合金铝材料作为弹性体的小容量传感器,任何振动造成的冲击或者跌落,都很有可能造成很大的输出误差。
2、设计加载装置及安装时应保证加载力的作用称重传感器受力轴线重合,使倾斜负荷和偏心负荷的影响减至最小。
3、在水平调整方面。如果使用的是称重传感器的话,其底座的安装平面要使用水平仪调整直到水平;如果是多个传感器同时测量的情况,那么它们底座的安装面要尽量保持在一个水平面上,这样做的目的主要是为了保证每个传感器所承受的力量基本一致。
4、按照其说明中称重传感器的量程选定来确定所用传感器的额定载荷。
5、为防止化学腐蚀.安装时宜用凡士林涂称重传感器外表面。应避免阳光直晒和环境温度剧变的场台使用。
6、在称重传感器加载装置两端加接铜编织线做的旁路器。
7、电缆线不宜自行加长,在确实需加长时应在接头处锡焊,并加防潮密封胶。
8、在称重传感器周围最好采用一些挡板把传感器罩起来。这样做的目的可防止杂物掉进传感器的运动部分,影响其测量精度。
9、传感器的电缆线应远离强动力电源线或有脉冲波的场所,无法避竞时应把称重传感器的电缆线单独穿入铁管内,并尽量缩短连接距离。
10、按其说明中的称重传感器量程选定来确定所用传感器的额定载荷,称重传感器虽然本身具备一定的过载能力,但在安装和使用过程中应尽量避免此种情况。有时短时间的超载,也可能会造成传感器永久损坏。
11、在高度精度使用场合,应使/称重传感器和仪表在预热30分钟后使用。
在高速公路的入口处建造载重检测支路,当载重卡车驶过动态称重桥时,称重传感器和电子称即自行检查判断,同时给出信号控制交通信号灯。这样我们就能很好的知道车辆有没有超重,从而考虑要不要此车辆通行。这种应用在高速路上的称重传感器要求量程大,精度要求不是特别高,但是长期稳定性必须好,随着传感器和其它电子设备的发展,将会越来越智能化,从而实现无人控制就能阻止超重车辆通过,还能能车辆按重量收费。[3]
称重传感器的出线方式有4线和6线两种,模块或称重变送器的接线也有4线和6线两种,要接4线还是6线首先要看你的硬件要求是怎样的,原则是:传感器能接6线的不接4线,必须接4线的就要进行短接。  一般的称重传感器都是六线制的,当接成四线制时,电源线(EXC-,EXC+)与反馈线(SEN-,SEN+)就分别短接了。SEN+和SEN-是补偿线路电阻用的。SEN+和EXC+是通路的,SEN-和EXC-是通路的。  EXC+和EXC-是给称重传感器供电的,但是由于称重模块和传感器之间的线路损耗,实际上传感器接收到的电压会小于供电电压。每个称重传感器都有一个mV/V的特性,它输出的mV信号与接收到的电压密切相关,SENS+和SENS-实际上是称重传感器内的一个高阻抗回路,可以将称重模块实际接收到的电压反馈给称重模块。假设EXC+和EXC-为10V,线路损耗,传感器2mV/V,实际上传感器输出最大信号为()*2=19mV,而不是20mV。此时称重传感器内部就会把19mV作为最大量程,前提是传感器必须通过反馈回路把实际电压反馈给称重模块。在称重传感器上将EXC+与 SENS+短接,EXC-与SENS-短接,仅限于传感器与称重模块距离较近,电压损耗非常小的场合,否则测量存在误差。
在测量过程中,重量加载到称重传感器的弹性体上会引起塑性变形。
电阻应变式称重传感器的工作过程
应变 (正向和负向) 通过安装在弹性体上的应变片转换为电子信号。
也叫称重显示控制仪表,是将称重传感器信号(或再通过重量)转换为重量数字显示,并可对重量数据进行储存、统计、打印的电子设备,常用于工农业生产中的自动化配料,称重,以提高生产效率。
在工企业中应用的称重仪表性能指标通常用精确度(又称精度)、变差、敏锐度来形貌。仪表工表通常也是调校精确度,变差和敏锐度三项。
1.变差是指称重仪表被测变量(可明白为输入信号)多次从差异偏向到达同一数值时,仪表指示值之间的最大差值,大概说是仪表在外界条件稳固的环境下,被测参数由小到大变革(正向特性)和被测参数由大到小变革(反向特性)不划一的程度,两者之差即为仪表变差。可靠性 称重可靠性是化工企业仪表工所寻求的另一紧张性能指标。可靠性和仪表维护量是相反相成的,仪表可靠性高阐明仪表维护量小,反之仪表可靠性差,仪表维护量就大。对付化工企业检测与进程控制仪表,大部门安置在工艺管道、种种塔、釜、罐、器上.
2.称重仪表在称重传感器中的稳固性 在划定事情条件内,称重仪表某些性能随时间连结稳固的本领称为稳固性(度)。仪表稳固性是化工企业仪表工非常体贴的一天性能指标。由于化工企业利用仪表的环境相比拟力恶劣,被测量的介质温度、压力变革也相比拟力大,在这种环境中投入仪表利用,仪表的某些部件随时间连结稳固的本领会低沉,仪表的稳固性会降落。徇或表征仪表稳固性尚未有定量值,化工企业通常用仪表零漂移来衡量仪表的稳固性。称重仪表稳固性的优劣直接干系到仪表的利用范畴,偶然直接影响化工生产,稳固性不好造成的影响每每双仪表精度降落对化工生产的影响还要大。稳固性不好仪表维护量也大,是仪表工最不盼望出现的事情。
3.称重仪表的 敏锐度偶然也称"放大比",也是仪表静特性贴切线上各点的斜率。增长放大倍数可以提高仪表敏锐度,单纯加大敏锐度并不变化仪表的基天性能,即称重仪表精度并没有提高,相反偶然会出现振荡征象,造成输出不稳固。仪表敏锐度应连结恰当的量。
对于大部分客户来讲,仪表精度虽然是一个紧张指标,但在实际利用中,每每更强调仪表的稳固性和可靠性,因为化工企业检测与进程控制仪表用于计量的为数不多,而大量的是用于检测。别的,利用在进程控制体系中的表其稳固性、可靠性比精度更为紧张。
随着仪表更新换代,特别是微电子技能引入称重仪表制造行业,使仪表可告性大大提高。仪表生产厂商对这天性能指标也越来越珍视,通常用平均无妨碍时间MTBF来形貌仪表的可靠性。一台全智能的MTBF比一样平常非如电动Ⅲ变送器要高10倍左右。称重仪表在使用前要与称重传感器配套进行数字标定。标定实际上就是用标准砝码对进行校准。标定后的仪表内部保存有相对于这一组传感器的标定系数。有了这个系数后,仪表才可以把称重传感器的模拟信号转变为重量数字显示。
TJH-2A平行梁传感器
传感器市场报告显示,2008年全球传感器市场容量为506亿美元,预计2010年全球传感器市场可达600亿美元以上。调查显示,东欧、亚太区和加拿大成为传感器市场增长最快的地区,而美国、德国、日本依旧是传感器市场分布最大的地区。就世界范围而言,传感器市场上增长最快的依旧是汽车市场,占第二位的是过程控制市场,看好通讯市场前景。
一些传感器市场比如压力传感器、温度传感器、流量传感器、水平传感器已表现出的特征。流量传感器、压力传感器、温度传感器的市场规模最大,分别占到整个传感器市场的21%、19%和14%。传感器市场的主要增长来自于无线传感器、MEMS(Micro-Electro-MechanicalSystems,微机电系统)传感器、生物传感器等新兴传感器。其中,无线传感器在年预计会超过25%。
全球的传感器市场在不断变化的创新之中呈现出快速增长的趋势。有关专家指出,传感器领域的主要技术将在现有基础上予以延伸和提高,各国将竞相加速新一代传感器的开发和产业化,竞争也将日益激烈。新技术的发展将重新定义未来的传感器市场,比如无线传感器、传感器、智能传感器和金属氧化传感器等新型传感器的出现与市场份额的扩大。
另外,称重传感器的灵敏度、最大分度数、最小等也是传感器选用中必须考虑的指标。
传感器的数量和量程
传感器数量的选择是根据电子衡器的用途、秤体需要支撑的点数(支撑点数应根据秤体几何重心和实际重心重合的原则而确定)而定。一般来说秤体有几个支撑点就选用几只传感器。
传感器的量程选择可依据秤的最大称量值、选用传感器的个数、秤体自重、可产生的最大偏载及动载因素综合评价来决定。下面给出一个经过大量实验验证的。
公式如下:
C=K0×K1×K2×K3(Wmax+W)/N
式中 C一单个传感器的额定量程
W一秤体自重
Wmax一被称物体净重的最大值
N一秤体所采用支撑点的数量
K0一保险系数,一般取1.2~1.3之间
K1一冲击系数
K2一秤体的重心偏移系数
K3一风压系数
称重传感器实际上是一种将质量信号转换成可测量的电信号输出装置。用传感器首先要考虑传感器所处的实际工作环境,这点对于正确选用传感器至关重要,它关系到传感器能否正常工作以及它的安全和使用寿命,乃至整个衡器的可靠性和安全性。一般情况下,高温环境对传感器造成涂覆材料融化、焊点、弹性体内应力发生结构变化等问题;粉尘、潮湿对传感器造成短路的影响;在腐蚀性较高的环境下会造成传感器弹性体受损或产生短路现象;电磁场对传感器输出会产生干扰。相应的环境因素下我们必须选择对应的称重传感器才能满足必要的称重要求。
准确度等级选择
称重传感器的准确度等级包括传感器的非线性、蠕变、重复性、滞后、灵敏度等技术指标。
应用范围及用途
譬如铝合金悬臂梁传感器适合于、平台秤、等;钢式悬臂梁传感器适用于、分选秤等;钢质桥式传感器适用于轨道衡、等;柱式传感器适用于汽车衡、、大吨位料斗秤等。称重传感器主要应用在各种电子衡器、工业控制领域、在线控制、安全过载报警、材料试验机等领域。如电子汽车衡、电子台秤、电子叉车、动态轴重秤、电子吊钩秤、电子计价秤、电子钢材秤、电子轨道衡、料斗秤、配料秤、罐装秤等。
计重收费是车辆通过设置在收费站收费车道前端的动态称重装置、车辆分离装置、车型识别装置时,数据采集处理装置将采集到的相关信息传送至车道收费计算机,对通行车辆按轴重或总重的超限情况确定适当收费标准的通行费征收方式。该系统应用到称重传感器,由于称重传感器的精准感知使得计重收费变得更加合理。  车辆驶入收费车道,其轮轴依次压过铺设在车道路面中的高精度动态轴重仪、轮轴识别器,控制模块将信号传输至数据采集处理器,经过预设的综合动态数据处理程序,称重数据处理器将计算出每轴轴重、总轴重、总车重、轴型(单轴、联轴)、轮胎类型(单双胎)等信息。安装在路侧的红外线车辆分离变频传感器可准确判别车辆是否完全通过。当车辆完全离开红外线光幕后,称重数据处理器将称重结果、车型判别结果等信息传输到车道收费计算机。车道收费计算机依据计重收费费率对车辆实行计重收费,并将车辆的载重信息和应交纳的金额显示在计重显示屏上。
人们为了从外界获取信息,必须借助于感觉器官,而单靠人们自身的感觉器官,在研究自然现象和规律以及生产活动中它们的功能就远远不够了,为适应这种情况,就需要传感器,因此可以说,传感器是人类五官的延长,又称之为电五官。
缺点一:输出阻抗高,负载能力差
电容式称重传感器的容量受其电极的几何尺寸等限制不易做得很大,一般为几十到几百微法,甚至只有几个微法。因此,电容式称重传感器的输出阻抗高,因而负载能力差,易受外界干扰影响产生不稳定现象,严重时甚至无法工作。必须采取妥善的屏蔽措施,从而给设计和使用带来不便。容抗大还要求传感器绝缘部分的电阻值极高,否则绝缘部分将作为旁路电阻而影响仪器的性能,为此还要特别注意周围的环境如温度、清洁度等。若采用高频供电,可降低电容式称重传感器的输出抗阻,但高频放大、传感器远比低频的复杂,且寄生电容影响大,不易保证工作的稳定性。
缺点二:输出特性非线性
电容式称重传感器的输出特性是非线性的,虽采用差分型来改善,但不可能完全消除。其他类型的电容传感器只有忽略了电场的边缘效应时,输出特性才呈线性。否则边缘效应所产生的附加电容量将于传感器电容器直接叠加,使输出特性非线性。
缺点三:寄生电容影响大
电容式称重传感器的初始电容量小,而连接传感器和电子线路的引线电容、电子线路的杂散电容以及传感器内板极与周围导体构成的电容等所谓寄生电容缺较大,不仅降低了传感器的灵敏度,而且这些电容常常是随机变化的,将使仪器工作很不稳定,影响测量精度。因此对电缆的选择、安装、接法都有严格的要求。例如,采用屏蔽性好、自身分布电容小的高频电线作为引线,引线粗而短,要保证仪器的杂散电容小而稳定等等,否则不能保证高的测量精度。
应该指出,随着材料、工艺、电子技术,特别是集成技术的高速发展,使电容式称重传感器的优点得到发扬而缺点不断在克服。电容传感器正逐渐成为一种高灵敏度、高精度,在动态、低压及一些特殊测量方面大有发展前途的传感器。
1、特性误差。是由设备本身引起的,包括DC漂移值、斜面的不正确或斜面的非线形。毕竟设备理想的转移功能特性和真实特性之间会存在差距。
2、称重传感器应用误差。也就是由操作而产生的误差,包括探针放置错误、探针与测量地点之间不正确的绝缘、空气或其他气体的净化过程中的错误、变送器的错误放置等多种操作错误引发的误差。
3、动态误差。适用于静态条件的传感器会具有较强的阻尼,因此对输入参数的改变响应较慢,甚至要数秒才能响应温度的阶跃改变。一些具有延迟特性的称重传感器会在对快速改变响应时产生动态误差。响应时间、振幅失真和相位失真都会导致动态误差。
4、插入误差。是由于系统中插入一个传感器时,改变了测量参数而产生的误差。使用了一个对系统过于大的变送器、系统的动态特性过于迟缓、系统中自加热加载了过多的热能等,都会导致插入误差。
5、环境误差。称重传感器使用也会受温度、摆动、震动、海拔、化学物质挥发等环境影响,这些因素都极易引发环境误差。
1、称重传感器运用差错是操作人员发生的,这也意味着发生的缘由许多,例如,温度不同时发生的差错,包罗探针放置过错或探针与测量地址之间不正确的绝缘,别的一些应用差错包罗空气或其他气体的净化过程中发生的过错,运用差错也触及变送器的过错放置,因而正或负的压力将对正确的读数形成影响。
2、特性差错为设备自身固有的,它是设备的、公认的搬运功用特性和实在特性之间的差,这种差错包罗DC漂移值、斜面的不正确或斜面的非线形。
3、动态差错许多传感器的特性和校准都是适用静态条件下的,这意味着运用的输入参数是静态或类似于静态的,许多传感器具有较强阻尼,因而它们不会对输入参数的改动进行疾速呼应,如,热敏电阻需求数秒才干呼应温度的阶跃改动。
4、热敏电阻不会当即跳跃至新的阻抗,或发生骤变,相反,它是慢慢地改动为新的值,然后,若是具有推迟特性的称重传感器对温度的疾速改动进行呼应,输出的波形将失真,由于其间包含了动态差错。发生动态差错的要素有呼应工夫、振幅失真和相位失真。
5、插入差错是当体系中刺进一个传感器时,由于改动了测量参数而发生的差错,普通是在进行电子丈量时会呈现这样的问题,但是在其他方法的测量中也会呈现类似问题,例如一个伏特计在回路中测量电压,它肯定会有一个固有阻抗,比回路阻抗要大许多,或许呈现回路负荷,这时,读数就会有很大的差错,这种类型的差错发生的缘由是运用了一个对体系(如,压力体系)而言过于大的变送器;或许是体系的动态特性过于缓慢,或许是体系中自加热加载了过多的热能。
6、环境差错来源于传感器运用的环境,称重传感器要素包罗温度,或是摇摆、轰动、海拔、化学物质蒸发或其他要素,这些常常影响传感器的特性,所以在实践运用中,这些要素总是被分类会集在一起的。
负荷传感器是称重传感器、测力传感器的统称,用单项参数评价它的。
电阻应变式称重传感器主要由弹性元件、电阻应变片、测量电路和传输电缆4部分组成。电阻应变片贴在弹性元件上,弹性元件受力变形时,其上的应变片随之变形,并导致电阻改变。测量电路测出应变片电阻的变化并变换为与外力大小成比例的电信号输出。电信号经处理后以数字形式显示出被测物的质量。电阻应变式称重传感器的称量范围为几十克至数百吨,计量准确度达1/00,结构较简单,可靠性较好。大部分电子衡器都使用这种传感器。电阻应变式称重传感器是基于这样一个原理:弹性体弹性元件,敏感梁在外力作用下产生弹性变形,使粘贴在他表面的电阻应变片转换元件也随同产生变形,电阻应变片变形后,它的阻值将发生变化增大或减小,再经相应的测量电路把这一电阻变化转换为电信号电压或电流,从而完成了将外力变换为电信号的过程。在测量过程中,重量加载到称重传感器的弹性体上会引起塑性变形。电阻应变式称重传感器的工作过程应变正向和负向通过安装在弹性体上的应变片转换为电子信号。最简单的弯曲梁称重传感器只有一个应变片。通常,弹性体和应变片通过多种方式来结合,类似外壳密封部件等来保护应变片。
称重传感器在选用时要考虑到很多因素,实际的使用当中我们主要从下列几个因素考虑。称重传感器的量程根据你的用途,称重传感器的量程选择可依据秤的最大称量值、选用传感器的个数、秤体自重、可产生的最大偏载及动载因素综合评价来决定。一般来讲,传感器的量程越接近分配到每个传感器的载荷,其称量的准确度就越高。但是在实际的使用当中,由于加在传感器上的载荷除被称物体外,还存在秤体自重、皮重、偏载及振动冲击等载荷,因此选用传感器时,要考虑诸多方面的因素,保证传感器的安全和寿命。其次称重传感器的准确度等级包括传感器的非线性、蠕变、重复性、滞后、灵敏度等技术指标。在选用的时候不应该盲目追求高等级的传感器,应该考虑电子衡的准确度等级和成本。一般情况下,选用传感器的总精度为非线性、不重复性和滞后三项指标的之和的均方根值略高于秤的精度。称重传感器形式的选择主要取决于称重的类型和安装空间,保证安装合适,称重安全可靠;另一方面要考虑厂家的建议。对于传感器制造厂家来讲,它一般规定了传感器的受力情况、性能指标、安装形式、结构形式、弹性体的材质等。
称重传感器基本知识
1、什么是称重传感器?
称重传感器是用来将重量信号或压力信号转换成电量信号的转换装置。
2、称重传感器的测量原理是什么?
称重传感器采用金属电阻应变片组成测量桥路,利用金属电阻丝在张力作用下伸长变细,电阻增加的原理,即金属电阻随所受应变而变化的效应而制成的(应变,就是尺寸的变化)。
3、称重传感器的构造原理?
金属电阻具有阻碍电流流动的性质,即具有电阻(Ω),其阻值依金属的种类而异。同一种金属丝,一般来讲,越是细长,其电阻值就越大。当金属电阻丝受外力作用而伸缩时,其电阻值就会在某一范围内增减。因此,将金属丝(或膜)紧贴在被测物体上,而且这种丝或膜又很细或很薄,粘贴又十分完善,那麽,当被测物体受外力而伸缩时,金属电阻丝(膜)也会按比例伸缩,其阻值也会相应变化。称重传感器就是将金属电阻应变片粘贴在金属称重梁上进行测量重量信号的。
4、称重传感器的外形构造与测重形式?
称重传感器的外形构造随被测对象的不同,其外形构造也会不同。
A、比较常见的称重传感器的外形构造:
圆柱形(杯柱形);S形;长方形等。
B、测重形式:
压缩式;伸张式。
圆柱形(杯柱形)一般均为压缩式测重形式。
S形,长方形均为压缩式,伸张式两用测重形式。
C、内部金属称重梁形式:
一般分为单孔或双孔形式。
D、鹤林公司使用的称重传感器的外形构造与测重形式:
圆柱形——称重仓(压缩式),原料粉煤灰秤(压缩式)。
S形——皮带秤(压缩式),包装机袋重秤(伸张式)。
长方形——汽车衡(压缩式),轨道衡(压缩式),煤粉天平秤(伸张式),固体流量计(压缩式)。
5、称重传感器的电路组成?
称重传感器进行测量时,我们需要知道的是应变片受应变时的电阻变化。通常总是采用应变片组成桥式电路(惠斯登电桥),将应变片引起的电阻变化转换成电压变化来进行测量的。
设:电桥的输入激励电压为Ei, ①
则电桥的输出电压△E0为:
△E0=Ei×[(R1R3-R2R4)/(R1+R2)(R3+R4)]
输入激励电压 ③ 输出电压
令电桥的初始条件为
R1=R2=R3=R4, ④
则△E0=0。
设电阻值R1的应变片受应变作用 R3 R4
后的电阻变化为R+△R,则电桥的输 ②
出电压△E0为:
△E0=Ei[△R/(4R+2△R)]≌(△R/4R)Ei (R&&△R)
由于△R=R×K0×ε,所以
△E0=(Ei×K0×ε)/4
例如,设K0=2,ε=001, Ei=1V
则: △E0=(1×2×001)/4=0.5mV
式中 K0=系数(一般为2)
ε=应变系数(一般为500×0.0×0.000001;相当于10~40Kgf/mm2。)
Ei=输入的激励电压
为了增加电桥的视在输出,大多都将电桥设计成4枚应变片都受力作用的形式(4个工作片)。
此时 △E0=0.5mV×4=2 mV
6、传感器的输出灵敏度的表示方法?
电桥的输出电压通常用输入激励电压为1V时的输出电压(mV/V)来表示。通常称传感器的输出灵敏度。
7、为什么传感器内部要加补偿电路?
称重传感器在制造过程中,为了改善它的性能,特别是改善温度特性,一般要在应变片电路中附加对零点和灵敏度的温度补偿。即除了应变片外,其中还增加了各种补偿电阻。
零点补偿的目的是尽量减小电桥零点随温度的变化,因此,出应变片本身的温度自补偿外,又加入了电阻温度系数和电桥中应变片的温度系数不同的电阻元件(如铜电阻或镍电阻等),以加强补偿作用。
灵敏度补偿的目的是减小输出电压随温度的变化,即补偿弹性体的弹性系数和应变片的灵敏度系数随温度的变化。因此,对电桥中串接了两个与电桥温度补偿作用相同的电阻。同时电路中的其它电阻用于将电桥的初始平衡,额定输出和输入电阻等参数调整到规定的数值。
8、称重传感器的参数指标(中英文对照)
Model: STC-100Kg (型号规格)
Cap: 100Kg (量程范围)
(生产日期)
S/N: X02274 (出厂编号)
FSO: 2.9981 mV/V (灵敏度)
Recommended Excitation: 10V AC/DC (推荐激励电压)
Maximum Excitation: 15V AC/DC (最大激励电压)
Output at Rated Load: 2.9981 mV/V (额定负荷输出)
Non Linearity: &0.020% (非线性)
Hysteresis: &0.020% (滞后)
Creep(30 minutes): 0.029% (30分钟蠕动)
Non Repeatability: &0.01% (非重复性)
Zero Retum(30 minutes): 0.030% (30分钟零点漂移)
Temp. Effect/℃ on Span: &0.0015% (温度变化1℃对量程的影响)
Temp. Effect/℃ on Zero: &0.0026% (温度变化1℃对零点的影响)
Compensated Temp.Range: -10 to 40℃ (温度补偿范围)
Operating Temp.Range: -20 to 60℃ (工作温度范围)
Zero Balance: ±1% (零点平衡)
Input Resistance: 380±5Ω (输入阻抗)
Output Resistance: 350±3Ω (输出阻抗)
Insulation Resistance(50VDC): &5000MΩ (绝缘电阻)
Deflecion at Rated Load: Nil (零) (额定负荷下的倾斜度)
Safe Overload: 150% (允许超载)
Ultimate Overload: 300% (最终超载)
9、称重传感器引线功能的具体判断方法
由于不同生产厂家的传感器引线的颜色不同,所以不能以具体颜色来判断引线功能。
发展趋势与挑战
新技术革命的到来,世界开始进入信息时代。在利用信息的过程中,首先要解决的就是要获取准确可靠的信息,而传感器是获取自然和生产领域中信息的主要途径与手段,在现代工业生产尤其是自动化生产过程中,要用各种称重传感器来监视和控制生产过程中的各个参数,使设备工作在正常状态或最佳状态,并使产品达到最好的质量。因此可以说,没有众多的优良的传感器,现代化生产也就失去了基础。
在基础学科研究中,传感器更具有突出的地位,现代科学技术的发展,进入了许多新领域:例如在宏观上要观察上千光年的茫茫宇宙,微观上要观察小到 cm的粒子世界,纵向上要观察长达数十万年的天体演化,短到 s的瞬间反应,此外,还出现了对深化物质认识、开拓新能源、新材料等具有重要作用的各种极端技术研究,如超高温、超低温、超高压、超高真空、超强磁场、超弱磁砀等等。
显然,要获取大量人类感官无法直接获取的信息,没有相适应的称重传感器是不可能的,许多基础科学研究的障碍,首先就在于对象信息的获取存在困难,而一些新机理和高灵敏度的检测传感器的出现,往往会导致该领域内的突破,一些传感器的发展,往往是一些边缘学科开发的先驱。
称重传感器早已渗透到诸如工业生产、宇宙开发、海洋探测、环境保护、资源调查、医学诊断、生物工程、甚至文物保护等等极其之泛的领域,可以毫不夸张地说,从茫茫的太空,到浩瀚的海洋,以至各种复杂的工程系统,几乎每一个现代化项目,都离不开各种各样的传感器。
中国传感器产业正处于由传统型向新型传感器发展的关键阶段,它体现了新型传感器向微型化、多功能化、数字化、智能化、系统化和网络化发展的总趋势。传感器技术历经了多年的发展,其技术的发展大体可分三代:
第一代是结构型传感器,它利用结构参量变化来感受和转化信号。
第二代是上70年代发展起来的固体型传感器,这种传感器由半导体、电介质、磁性材料等固体元件构成,是利用材料某些特性制成。如:利用热电效应、霍尔效应、光敏效应,分别制成热电偶传感器、霍尔传感器、光敏传感器。
第三代传感器是以后刚刚发展起来的智能型传感器,是微型计算机技术与检测技术相结合的产物,使传感器具有一定的人工智能。
资料显示,目前我国传感器产品约6000种左右,而国外已达20000多个,远远满足不了国内市场需求。中高端传感器进口占比达80%,传感器芯片进口更 是达90%,国产化缺口巨大。其中数字化、智能化、微型化等高新技术产品严重短缺。国家重大装备所需高端产品主要依赖进口。而涉及国家安全和重大工程所需 的传感器及智能化仪器仪表,国外对我国往往采取限制。  传感器技术产业渗透性强,其发展滞后局 面已经对我国新兴产业的推进形成制约。由于我国传感器技术总体实力仍处于弱势,短时间内寻求全面突破恐不现实。因此,发展传感器技术应首先争取在局部形成 突破,掌握一批具有自主知识产权的核心技术,通过这些关键性领域突破的辐射带动推动产业进步。 事实上,我国传感器产业在某些领域已形成优势。先施科技、远望谷等企业在超高射频RFID产品领域占据国内90%的市场份额。根据湘财证券研究报告,汉威电子气体传感器国内市场占有率也高达60%,气体检测仪器仪表市场占有率达9%。
在众多应用领域,传感器虽然是不可或缺的关键器件,但它只能依附于大的产业系统而存在,在很多领域往往还需要量身定做,不少单个领域市场规模并不大,因此企业不应一味追求规模。
随着市场的扩大,称重传感器的厂家也慢慢变得多了起来,如何在市场上能做的更好,不难分析得出,只有在不断的提高传感器的技术和服务才能走在市场顶端。随着新技术革命的来到,中国乃至全球都开始进入一个全新的信息时代。在利用信息的过程中,首先要解决的就是要获取准确可靠的信息,而传感器才是获取自然和生产领域中信息的最主要途径与手段。
在现代化工业生产以及自动化生产过程中,需要用到各种称重传感器来监视和控制生产过程中的各个参数,称重传感器的功能是使设备工作在正常状态或最佳状态,并使生产出来的产品达到最好的质量。可以说,没有众多的优良的称重传感器,现代化生产也就失去了基础。如此看来,称重传感器将在这个智能化生产产业中是会有美好的发展前途。
.发烧友[引用日期]
.传感器之家.[引用日期]
.中国移动物联网[引用日期]

我要回帖

更多关于 机械键盘输入混乱 的文章

 

随机推荐