一个硬盘上没有足够的空间,空间足够,可以做raid1吗,有必要吗

服务器做raid1问题集锦
字体:[ ] 类型:转载 时间:
这篇文章主要是因为最近的服务器为了安全性考虑了做了raid1,但怕硬盘出问题,特整理了这篇文章,并根据自己的经验结合了下,希望能帮到需要的朋友
问题一、假设我组RAID 1. 1.其中一个硬盘坏掉了.我如何确定是哪个硬盘有问题?! 2.确定了有问题的硬盘后,我怎么更换?直接关机拆下问题硬盘然后换上新的即可?!是不是镜像盘会自动重新同步数据?! 3.组RAID 1可以多硬盘吗。 4.组RAID 1.是否2块硬盘都必须要重新格式化才可以用。 5.主板自带的RAID芯片安全还是用阵列卡比较安全。 回答: 1:可以根据端口号确认 2:直接拆走换新的山区就行 3:不知道 4:不用,可以直接设定某一块为主盘,然后会自动镜像过第二块盘上面 5:不好说 兄弟RAID 1时故障的排除如下: A.首先RAID1需要两块同品牌同规格的硬盘, 出现的故障情况分两种:数据损坏导致和硬件损坏导致(硬盘本身已损坏的) 如果是前者的话这时硬该还是可以读到数据的,可以使用的! 后者的话有两钟可以读取和不可读取! B.最简单的方法就是将其中一只先移除后读取另一个是否OK,如OK则被移除的就是有问题的硬盘!反之则要测另一块盘了!就是用排除法找!如果是阵列盒的话就会显示那颗盘! 现在英特尔有一个工具能显示当前那个端口的硬盘健康状况,直观些!!! C,确认坏盘后,更换相同的硬盘后会自动重组修复的,所耗的时间和硬盘的容量有关系,容量越大时间就越长!! 问题2 xuefeng975网友的提问:电脑三块硬盘, 一个是系统盘, 两个2T 做的是 RAID 1 现在阵列卡掉阵列了,怎么恢复数据呢? york284给出的答案:应该是硬盘坏了,接个新盘试试,开机按快捷键进RAID管理,有个自检,选设置备用盘,建好后,就可以rebulding;也可以进入系统,启动管理程序,让程序自动rebulding,推荐让系统自己rebulding。操作时最好对着阵列卡说明书一步步操作,如果弄错了后果很严重。 悲催的,占个位置,也想学习一下。 单独接,再用 diskgenius搜索分区。 数据重要千万不要重建阵列。 问题3 raid 1数据盘坏了,但拿一块新硬盘直接挂上就可以是吗? RAID1坏了一块硬盘 将坏的取出,更换上新的,在RAID控制里面,ADD/REMOVE SPARE (添加空闲磁盘),成功后,RAID状态是rebuild,等修复好了后ok 问题4 一台电脑,用RAID卡做了RAID1,现在无法启动了,有没有办法读出硬盘上的数据? 嗯,刚才试了,果然可以!就是说,做好RAID1后,其实2块硬盘单独直接插上电脑,都是可以读取的? 问题5 raid1一块硬盘可以工作?不知道是如何做的raid卷,1块如何称是raid? 很简单 首先raid1原理是2块硬盘同步数据 简单点说是互相为镜像,那么如果1块硬盘无法工作的话 raid1 我坏掉一块盘而报废整个阵列 那就失去了raid1的意义 所以一块盘是可以工作的 而且这个我在intel的raid芯片上试过 以下是个人了解的一些简单的情况,高手莫笑,希望大家一起来补充一般raid0可以讲多个小硬盘组合成一个大空间硬盘,同时提高了读写速度,例如两个2T的硬盘做raid0就是4T了,很多大规模的下载站可能用的就是这个方法。raid1一般适用于比较注重数据安全的情况。一个2个2T的硬盘组raid1就是2T的存储空间,两个硬盘数据同步,如果一个坏了,可以参考上面的方法修复,好消息是可以将其中的一个好的硬盘查到别的电脑里面复制出来以后再操作,就更安全了。RAID 5 是一种存储性能、数据安全和存储成本兼顾的存储解决方案。 RAID 5可以理解为是RAID 0和RAID 1的折中方案。RAID 5可以为系统提供数据安全保障,但保障程度要比Mirror低而磁盘空间利用率要比Mirror高。RAID 5具有和RAID 0相近似的数据读取速度,只是多了一个奇偶校验信息,写入数据的速度比对单个磁盘进行写入操作稍慢。同时由于多个数据对应一个奇偶校验信息,RAID 5的磁盘空间利用率要比RAID 1高,存储成本相对较低。
您可能感兴趣的文章:
大家感兴趣的内容
12345678910
最近更新的内容
常用在线小工具不同RAID模式的优缺点
近来想建立一个私有云系统,涉及到安装使用一台网络存储服务器。对于服务器中硬盘的连接,选用哪种RAID模式能准确满足需求收集了资料,简单整理后记录如下:
&&&&一、RAID模式优缺点的简要介绍
目前被运用较多的RAID模式其优缺点大致是这样的:
&&&&1、RAID0模式
&&& 优点:在RAID
0状态下,存储数据被分割成两部分,分别存储在两块硬盘上,此时移动硬盘的理论存储速度是单块硬盘的2倍,实际容量等于两块硬盘中较小一块硬盘的容量的2倍。
缺点:任何一块硬盘发生故障,整个RAID上的数据将不可恢复。
备注:存储高清电影比较适合。
2、RAID1模式
优点:此模式下,两块硬盘互为镜像。当一个硬盘受损时,换上一块全新硬盘(大于或等于原硬盘容量)替代原硬盘即可自动恢复资料和继续使用,移动硬盘的实际容量等于较小一块硬盘的容量,存储速度与单块硬盘相同。RAID
1的优势在于任何一块硬盘出现故障是,所存储的数据都不会丢失。
缺点:该模式可使用的硬盘实际容量比较小,仅仅为两颗硬盘中最小硬盘的容量。
备注:非常重要的资料,如数据库,个人资料,是万无一失的存储方案。
&&& 3、RAID
0+1是磁盘分段及镜像的结合,采用2组RAID0的磁盘阵列互为镜像,它们之间又成为一个RAID1的阵列。硬盘使用率只有50%,但是提供最佳的速度及可靠度。
&&& 4、RAID
RAID3是把数据分成多个“块”,按照一定的容错算法,存放在N+1个硬盘上,实际数据占用的有效空间为N个硬盘的空间总和,而第N+1个硬盘存储的数据是校验容错信息,当这N+1个硬盘中的其中一个硬盘出现故障时,从其它N个硬盘中的数据也可以恢复原始数据。
&&& 5、RAID
RAID5不对存储的数据进行备份,而是把数据和相对应的奇偶校验信息存储到组成RAID5的各个磁盘上,并且奇偶校验信息和相对应的数据分别存储于不同的磁盘上。当RAID5的一个磁盘数据发生损坏后,利用剩下的数据和相应的奇偶校验信息去恢复被损坏的数据。
&&& 6、RAID
RAID10最少需要4块硬盘才能完成。把2块硬盘组成一个RAID1,然后两组RAID1组成一个RAID0。虽然RAID10方案造成了50%的磁盘浪费,但是它提供了200%的速度和单磁盘损坏的数据安全性。
二、另外三种硬件快速硬件设置模式简介
在收集资料时看到有的硬件设备提供快速磁盘模式设置,也很方便大家的使用,具体情况如下:
1、Clone模式
克隆模式,磁盘全部数据一样,以最小硬盘的为准。
2、Large模式
硬盘容量简单相加,将几个硬盘变成一个硬盘,容量为几个硬盘容量之和,此模式下可以获得最大的硬盘空间。
3、Normal模式
硬盘分别处于正常、独立的状态,可以分别独立的写入或读取资料,能使用的实际容量分别为4个硬盘的容量。如果其中一个硬盘受损,其他几个硬盘不会受影响。
三、RAID使用简明注意事项
★使用前请先备份硬盘的资料,一旦进行RAID设定或是变更RAID模式,将会清除硬盘里的所有资料,以及无法恢复;
★建立RAID时,建议使用相同品牌、型号和容量的硬盘,以确保性能和稳定;
★请勿随意更换或取出硬盘,如果取出了硬盘,请记下硬盘放入两个仓位的顺序不得更改,以及请勿只插入某一块硬盘使用,以避免造成资料损坏或丢失;
★如果旧硬盘曾经在RAID模式下使用,请先进清除硬盘RAID信息,让硬盘回复至出厂状态,以免RAID建立失败;
★RAID0模式下,其中一个硬盘损坏时,其它硬盘所有资料都将丢失;
★RAID1模式下,如果某一块硬盘受损,可以用一块大于或等于受损硬盘容量的新硬盘替换坏硬盘然后开机即可自动恢复和修复资料以及RAID模式。此过程需要一定时间,请耐心等待
四、细数RAID模式
&&& 1、概念
磁盘阵列(Redundant Arrays of Inexpensive
Disks,RAID),有“价格便宜且多余的磁盘阵列”之意。原理是利用数组方式来作磁盘组,配合数据分散排列的设计,提升数据的安全性。磁盘阵列是由很多便宜、容量较小、稳定性较高、速度较慢磁盘,组合成一个大型的磁盘组,利用个别磁盘提供数据所产生加成效果提升整个磁盘系统效能。同时利用这项技术,将数据切割成许多区段,分别存放在各个硬盘上。磁盘阵列还能利用同位检查(Parity
Check)的观念,在数组中任一颗硬盘故障时,仍可读出数据,在数据重构时,将数据经计算后重新置入新硬盘中。
&&& 2、规范
RAID技术主要包含RAID 0~RAID 50等数个规范,它们的侧重点各不相同,常见的规范有如下几种:
  :RAID
0连续以位或字节为单位分割数据,并行读/写于多个磁盘上,因此具有很高的数据传输率,但它没有,因此并不能算是真正的RAID结构。RAID
0只是单纯地提高性能,并没有为数据的可靠性提供保证,而且其中的一个磁盘失效将影响到所有数据。因此,RAID
0不能应用于性要求高的场合。
  :它是通过磁盘数据镜像实现数据冗余,在成对的独立磁盘上产生互为备份的数据。当原始数据繁忙时,可直接从镜像拷贝中读取数据,因此RAID
1可以提高读取性能。RAID
1是磁盘阵列中单位成本最高的,但提供了很高的数据安全性和可用性。当一个磁盘失效时,系统可以自动切换到镜像磁盘上读写,而不需要重组失效的数据。
  : 也被称为RAID 10标准,实际是将RAID 0和RAID
1标准结合的产物,在连续地以位或字节为单位分割数据并且并行读/写多个磁盘的同时,为每一块磁盘作进行冗余。它的优点是同时拥有RAID 0的超凡速度和RAID
1的数据高可靠性,但是CPU占用率同样也更高,而且磁盘的利用率比较低。
  :将数据条块化地分布于不同的硬盘上,条块单位为位或字节,并使用称为“加重平均()”的编码技术来提供错误检查及恢复。这种编码技术需要多个磁盘存放检查及恢复信息,使得RAID
2技术实施更复杂,因此在商业环境中很少使用。
  :它同RAID 2非常类似,都是将数据条块化分布于不同的硬盘上,区别在于RAID
3使用简单的奇,并用单块磁盘存放奇偶校验信息。如果一块磁盘失效,奇偶盘及其他数据盘可以重
新产生数据;如果奇偶盘失效则不影响数据使用。RAID
3对于大量的连续数据可提供很好的传输率,但对于随机数据来说,奇偶盘会成为写操作的瓶颈。
  :RAID 4同样也将数据条块化并分布于不同的磁盘上,但条块单位为块或记录。RAID
4使用一块磁盘作为盘,每次写操作都需要访问奇偶盘,这时奇偶校验盘会成为写操作的瓶颈,因此RAID
4在商业环境中也很少使用。
  :RAID
5不单独指定的奇偶盘,而是在所有磁盘上交叉地存取数据及奇偶校验信息。在RAID
5上,读/写指针可同时对阵列设备进行操作,提供了更高的数据流量。RAID 5更适合于小和随机读写的数据。RAID 3与RAID 5相比,最主要的区别在于RAID
3每进行一次数据传输就需涉及到所有的阵列盘;而对于RAID 5来说,大部分数据传输只对一块磁盘操作,并可进行并行操作。在RAID
5中有“写损失”,即每一次写操作将产生四个实际的读/写操作,其中两次读旧的数据及奇偶信息,两次写新的数据及奇偶信息。
  :与RAID 5相比,RAID
6增加了第二个独立的奇偶校验信息块。两个独立的奇偶系统使用不同的算法,数据的可靠性非常高,即使两块磁盘同时失效也不会影响数据的使用。但RAID
6需要分配给奇偶校验信息更大的磁盘空间,相对于RAID
5有更大的“写损失”,因此“写性能”非常差。较差的性能和复杂的实施方式使得RAID 6很少得到实际应用。
  :这是一种新的RAID标准,其自身带有智能化实时和用于存储管理的软件工具,可完全独立于运行,不占用主机CPU资源。RAID 7可以看作是一种存储计算机(Storage
Computer),它与其他RAID标准有明显区别。除了以上的各种标准(如表1),我们可以如RAID
0+1那样结合多种RAID规范来构筑所需的RAID阵列,例如RAID 5+3(RAID
53)就是一种应用较为广泛的阵列形式。用户一般可以通过灵活配置磁盘阵列来获得更加符合其要求的磁盘存储系统。
  RAID 5E(RAID 5 Enhencement): RAID 5E是在RAID
5级别基础上的改进,与RAID
5类似,数据的校验信息均匀分布在各硬盘上,但是,在每个硬盘上都保留了一部分未使用的空间,这部分空间没有进行条带化,最多允许两块物理硬盘出现故障。看起来,RAID
5E和RAID 5加一块热备盘好象差不多,其实由于RAID 5E是把数据分布在所有的硬盘上,性能会比RAID5
加一块热备盘要好。当一块硬盘出现故障时,有故障硬盘上的数据会被压缩到其它硬盘上未使用的空间,逻辑盘保持RAID 5级别。
  RAID 5EE: 与RAID 5E相比,RAID
5EE的数据分布更有效率,每个硬盘的一部分空间被用作分布的热备盘,它们是阵列的一部分,当阵列中一个物理硬盘出现故障时,数据重建的速度会更快。
  :RAID50是RAID5与RAID0的结合。此配置在RAID5的子磁盘组的每个磁盘上进行包括奇偶信息在内的数据的剥离。每个RAID5子磁盘组要求三个硬盘。RAID50具备更高的容错能力,因为它允许某个组内有一个磁盘出现故障,而不会造成数据丢失。而且因为奇偶位分部于RAID5子磁盘组上,故重建速度有很大提高。优势:更高的容错能力,具备更快数据读取速率的潜力。需要注意的是:磁盘故障会影响。故障后重建信息的时间比镜像配置情况下要长。
&&& 3、优点
提高传输速率。RAID通过在多个磁盘上同时存储和读取数据来大幅提高的数据(Throughput)。在RAID中,可以让很多磁盘同时传输数据,而这些磁盘驱动器在逻辑上又是一个磁盘驱动器,所以使用RAID可以达到单个磁盘驱动器几倍、几十倍甚至上百倍的速率。这也是RAID最初想要解决的问题。因为当时CPU的速度增长很快,而的无法大幅提高,所以需要有一种方案解决二者之间的矛盾。RAID最后成功了。
  通过提供容错功能。普通磁盘驱动器无法提供容错功能,如果不包括写在磁盘上的CRC(循环)码的话。RAID容错是建立在每个磁盘驱动器的硬件容错功能之上的,所以它提供更高的安全性。在很多RAID模式中都有较为完备的相互校验/恢复的措施,甚至是直接相互的,从而大大提高了RAID系统的容错度,提高了系统的稳定性。
&&& 4、实现
磁盘阵列有两种方式可以实现,那就是“软件阵列”与“硬件阵列”。
  软件阵列是指通过自身提供的功能将连接的普通SCSI卡上的多块硬盘配置成逻辑盘,组成阵列。软件阵列可以提供功能,但是磁盘子系统的性能会有所降低,有的降低幅度还比较大,达30%左右。
  硬件阵列是使用专门的来实现的。硬件阵列能够提供在线扩容、动态修改阵列级别、自动数据恢复、漫游、超高速缓冲等功能。它能提供性能、数据保护、可靠性、可用性和可管理性的解决方案。专用的处理单元来进行操作,它的性能要远远高于常规非,并且更安全更稳定。
  磁盘阵列其实也分为软阵列 (Software Raid)和硬阵列 (Hardware Raid) 两种.
软阵列即通过软件程序并由计算机的 CPU提供运行能力所成. 由于软件程式不是一个完整系统故只能提供最基本的 RAID容错功能.
其他如硬盘的设置, 远程管理等功能均一一欠奉. 硬阵列是由独立操作的硬件提供整个磁盘阵列的控制和计算功能.
不依靠系统的CPU资源.
  由于硬阵列是一个完整的系统, 所有需要的功能均可以做进去. 所以硬阵列所提供的功能和性能均比软阵列好. 而且,
如果你想把系统也做到磁盘阵列中, 硬阵列是唯一的选择. 故我们可以看市场上 RAID 5 级的磁盘阵列均为硬阵列. 软 阵列只适用于
Raid 0 和 Raid 1. 对于我们做镜像用的镜像塔, 肯定不会用 Raid 0或 Raid 1。作为高性能的,已经得到了越来越广泛的应用。RAID的级别从RAID概念的提出到现在,已经发展了六个级别,其级别分别是0、1、2、3、4、5等。但是最常用的是0、1、3、5四个级别。
五、个人用户该选那种RAID模式
首先要分析清楚,我们需要存储的文件有什么样的属性。这其中需要大量存储的和占用存储量大的文件是两回事儿。
从使用角度粗略分,个人需要存储的文件大致有文本文件、照片录像、影音文件、应用程序等。
1、文本文件:大量长期存放,阶段性更新,但其占用空间小,安全性要求个别较高,大部分一般;
2、照片录像:大量长期存放,永久性记录,占用空间大,安全性要求高,一旦损失很难弥补;
3、影音文件:一部分大量长期存放,一部分大量短期存放,阶段性更新,占用空间大,安全性要求一般,即便损失了,也可以再从网络上下载恢复;
4、应用程序:这其中包括一些软件和硬件的驱动等,对于软件,目前基本可以从网络上获得,驱动程序有时需要预先备份,安装设备时随时可用,属于量少但要长期存放的,阶段性更新,安全性要求一般。
看看自己需要对哪种类型的文件进行存储,再选择自己需要的RAID模式即可。
本人的照片和私人录影资料较多,平时喜欢收集APE等无损格式的音乐文件,对于个人来说这都是至宝,不可有所损失,再有就是一些硬件的驱动程序,相对比较重要,另外会编辑少量的个人文件,阶段性比较重要,最后是影片,看完也就删除了,不太重要。而照片录像和无损音乐占用的空间又是巨大的,安全性要求又很高,权衡后,在节约资金确保安全的前提下,准备购置五块大容量硬盘,组成NAS存储服务器,选择RAID5模式。
顺便说,购置五快硬盘的原因还有一个,就是我使用的是老机箱改造NAS服务器,市面上有3转5的硬盘笼子可以简单将原有的3个光驱位变成5块硬盘的存储位,考虑到家用存储8T的容量已经足够了,10T基本上可以无忧了,所以选择了5块硬盘,每块2T容量。当然组成RAOD5后会少于10T,那也足够了!
NAS的好处很多,这里就不在赘述,有兴趣的朋友建议深入了解。它既可以完成集中存储还可以完成诸如自动BT下载,网络打印机,苹果媒体服务器等众多私有云功能,是很好的家庭网络应用解决方案。
已投稿到:
以上网友发言只代表其个人观点,不代表新浪网的观点或立场。[求助]5块6T的硬盘是用RAID5好还是SHR好?两者的备份空间是一样的
或者用basic,分区并且没有数据保护,但是容量是完全利用,我平时是放视频歌和图片,就是一个仓库,求推荐
我自己在家是raid0+1,2块4t的硬盘,也够用了。。。
[quote][pid=29948,1]Reply[/pid] [b]Post by [uid=234143]risunshin[/uid] ( 22:07):[/b]我自己在家是raid0+1,2块4t的硬盘,也够用了。。。[/quote]raid1空间利用率也太低了吧
[quote][pid=29948,1]Reply[/pid] [b]Post by [uid=]上帝也生病[/uid] ( 22:09):[/b]raid1空间利用率也太低了吧[/quote]主要考虑安全和恢复数据简单想比家里的数据,硬盘就不值钱了,你如果想做raid5也是可以的,但肯定没有raid1方便,raid1想怎么换就怎么换。当然,出了事才能有比较,如果没问题,其实都差不多。
群晖的话shr
[quote][pid=29948,1]Reply[/pid] [b]Post by [uid=]鲜嫩口水鸡[/uid] ( 22:19):[/b]群晖的话shr[/quote]就是群晖,有个问题问下啊,正在做奇偶一致性校验,这个时候提示我更新DSM,文件也下好了,那我可以更新吗?还是等他校验完再更新?
[b]Reply to [pid=29948,1]Reply[/pid] Post by [uid=]上帝也生病[/uid] ( 22:25)[/b]你更新了要重启,重启要从头校验
用了shr之后你数据挂了谁给你恢复? 群晖表示不管
我是用的basic,重要数据比如照片视频,远程备份到另外一台群晖。
会不会很吵[s:ac:呆],好久没用机械盘了。备份全在移动盘里。机箱里就256+512两块固盘。28449人阅读
oracle转载博文未看(321)
磁盘管理、存储系统、RAID(109)
综合性能方面(数据安全以及速度方面),&&& 肯定是RAID5比较好;数据读取方面,RAID1最快;数据安全方面,RAID1最好;数据写入方面,RAID0最快。RAID5兼备这些优点。
认识磁盘阵列 RAID
1 对磁盘高速存取(提速): RAID将普通硬盘组成一个磁盘阵列,在主机写入数据,RAID控制器把主机要写入的数据分解为多个数据块,然后并行写入磁盘阵列;主机读取数据时,RAID控制器并行读取分散在磁盘阵列中各个硬盘上的数据,把它们重新组合后提供给主机。由于采用并行读写操作,从而提高了存储系统的存取系统的存取速度。
3 数据冗余
RAID可分为级别0到级别6,通常称为:RAID0,RAID1,RAID2,RAID3,RAID4,RAID5,RAID6。
RAID0:RAID0并不是真正的RAID结构,没有数据冗余,RAID0连续地分割数据并并行地读/写于多个磁盘上。因此具有很高的数据传输率,但RAID0在提高性能的同时,并没有提供数据可靠性,如果一个磁盘失效,将影响整个数据。因此RAID0不可应用于需要数据高可用性的关键应用。
RAID1:RAID1通过数据镜像实现数据冗余,在两对分离的磁盘上产生互为备份的数据。RAID1可以提高读的性能,当原始数据繁忙时,可直接从镜像中读取数据。RAID1是磁盘阵列中费用最高的,但提供了最高的数据可用率。当一个磁盘失效,系统可以自动地交换到镜像磁盘上,而不需要重组失效的数据。
RAID2:从概念上讲,RAID2同RAID3类似,两者都是将数据条块化分布于不同的硬盘上,条块单位为位或字节。然而RAID2使用称为“加重平均纠错码”的编码技术来提供错误检查及恢复。这种编码技术需要多个磁盘存放检查及恢复信息,使得RAID2技术实施更复杂。因此,在商业环境中很少使用。
RAID3:不同于RAID2,RAID3使用单块磁盘存放奇偶校验信息。如果一块磁盘失效,奇偶盘及其他数据盘可以重新产生数据。如果奇偶盘失效,则不影响数据使用。RAID3对于大量的连续数据可提供很好的传输率,但对于随机数据,奇偶盘会成为写操作的瓶颈。
RAID4:同RAID2和RAID3一样,RAID4和RAID5也同样将数据条块化并分布于不同的磁盘上,但条块单位为块或记录。RAID4使用一块磁盘作为奇偶校验盘,每次写操作都需要访问奇偶盘,成为写操作的瓶颈。在商业应用中很少使用。
RAID5:RAID5没有单独指定的奇偶盘,而是交叉地存取数据及奇偶校验信息于所有磁盘上。在RAID5上,读/写指针可同时对阵列设备进行操作,提供了更高的数据流量。RAID5更适合于小数据块,随机读写的数据。RAID3与RAID5相比,重要的区别在于RAID3每进行一次数据传输,需涉及到所有的阵列盘。而对于RAID5来说,大部分数据传输只对一块磁盘操作,可进行并行操作。在RAID5中有“写损失”,即每一次写操作,将产生四个实际的读/写操作,其中两次读旧的数据及奇偶信息,两次写新的数据及奇偶信息。
RAID6:RAID6与RAID5相比,增加了第二个独立的奇偶校验信息块。两个独立的奇偶系统使用不同的算法,数据的可靠性非常高。即使两块磁盘同时失效,也不会影响数据的使用。但需要分配给奇偶校验信息更大的磁盘空间,相对于RAID5有更大的“写损失”。RAID6的写性能非常差,较差的性能和复杂的实施使得RAID6很少使用。
三、详细介绍
RAID0是具有提速和扩容的目的
在RAID0模式中,数据被分割为一定数量的数据块(Chunk)交叉写在多个硬盘上,一般的来说在RAID0系统中数据被分割的数量同RAID阵列所使用的硬盘的数量是有关的,比如RAID0中采用了3块硬盘,那么数据将会被分为三份依次的写入三个硬盘,通俗的说这种模式其实就是利用RAID技术让系统认为三块硬盘组成一个容量更大的硬盘,因为这个过程没有数据校验所以这种RAID模式是读写速度最快的一种。
RAID0并没有从安全性角度考虑,实际上,如果RAID0当中的一块硬盘坏了,所有数据都会损坏,并且没有办法恢复。这使得RAID0的安全性能非常差,所以很多用户出于安全考虑没有使用RAID0模式。虽然如此,RAID0毕竟是所有RAID方式当中速度最快的一种模式,如果RAID0模式当中有两块硬盘的话,那么RAID0的存储读取数据的速度会是单个硬盘双倍。,如果使用6块硬盘的话,那么理论速率就是单个硬盘的6倍。如果在RAID0模式当中使用不同的硬盘会造成两方面的问题,首先,RAID0的有效硬盘容量会是最小的硬盘的容量乘上硬盘的个数,这是因为如果容量的最小的硬盘存满了之后,RAID0依然会将文件平均分配到各个硬盘当中,此时便不能完成存储任务了;其次,如果RAID0当中的硬盘速度不同,那么整体的速度会是速度最慢的硬盘的速度乘上硬盘的个数,这是因为RAID0模式是需要将上一部的存储任务完成之后才能进行下一步的进程,这样,其它的速度快的硬盘会停下来等待速度慢的硬盘完成存储或者读取任务,使得整体性能有所下降。所以,在这里建议使用RAID0模式的用户最好选择容量和速度相同的硬盘,最好是同一品牌的同种产品。
因此RAID0在严格意义上说不是“冗余独立磁盘阵列”。RAID0模式一般用于需要快速处理数据但是对于数据的安全性要求不高的场合。这种RAID模式的特点是简单,而且并不需要复杂和昂贵的控制器。采用RAID0模式至少需要2块硬盘,最终得到的存储容量也是这两块硬盘的和。
RAID0的随机读取性能:很好
RAID0的随机写入性能:很好
RAID0的持续读取性能:很好
RAID0的持续写入性能:很好
RAID0的优点:最快的读写性能,如果每块硬盘拥有独立的控制器性能将会更好。
RAID0的缺点:任何一块硬盘出现故障所有的数据都会丢失,大部分的控制器都是通过软件实现的,所以效能并不好。
RAID1模式是让组成RAID1模式的硬盘互为镜像,当你向硬盘中写入数据的时候,两个硬盘同时存储相同的数据,这样即使其中一个硬盘出现了故障,系统利用另外一个硬盘一样可以正常运行。RAID1相对于单块硬盘来说它的数据读取性能会更好一些,因为当一块硬盘处于忙的状态时,RAID控制器可以去读取另一块硬盘中同样的数据,但是写入数据性能不但没有增长而且可能会有轻微下降。当其中一块硬盘出现故障之后,新的数据可以写入仍然能够正常工作的硬盘,当使用新的硬盘替换掉原来的硬盘之后,RAID控制器会自动的把数据复制到新的硬盘上。RAID1模式的最大特点就是冗余性高,但是由于大部分的功能是利用软件来实现的,所以它会增加处理器的负担。这种RAID模式非常适合对数据的安全性有极高要求的人。
在RAID1模式当中,所使用的硬盘最好是相同的,否则会出现浪费硬盘空间的情况。由于RAID1模式是将相同的信息写入到不同的硬盘当中,所以RAID1模式的有效硬盘容量是阵列当中容量最小的硬盘的容量。举例来说,如果RAID1模式中有一块容量为20GB的硬盘和一块容量为30GB的硬盘,那么总体的RAID1的有效容量是20GB,从此那块30GB硬盘上剩下的10GB容量就会被浪费。同时,如果两块硬盘的速度不同的话,那么速度较快的那块硬盘依然会停下来等待速度较慢的那块硬盘完成任务之后再进行下一步行动。
RAID1的随机读取性能:好
RAID1的随机写入性能:好
RAID1的持续读取性能:一般
RAID1的持续写入性能:好
RAID1的优点:数据高可靠性,易于实现,设计简单。
RAID1的缺点:比RAID0相比速度较慢,特别是写入速度,另外就是我们仅仅能使用一半的硬盘容量。
RAID0+1
这种RAID模式其实是RAID0和RAID1模式的组合,至少需要4块硬盘。其中任何两块组成一个RAID0磁盘阵列,然后两个RAID0磁盘阵列可以看成两个容量更大、速度更快的硬盘,它们再组成一个RAID1磁盘阵列。这样的系统保证了较高的磁盘性能和较高的数据安全性。当然缺点也是显而易见的就是成本较高,构造比较复杂。RAID0+1在容错性能方面仅次于RAID5,一般用于文件服务器等方面。
RAID0+1的随机读取性能:很好
RAID0+1的随机写入性能:好
RAID0+1的持续读取性能:很好
RAID0+1的持续写入性能:好
RAID0+1的优点:相对于单块硬盘具有更高的读写性能,而且大大提高了数据的安全性。
RAID0+1的缺点:成本较高,至少需要4块硬盘。
RAID2模式也相当的复杂,用于存储数据的硬盘以RAID0的模式来组合,加上专门存放海明ECC校验码的硬盘,当然为了提高校验码数据的安全,校验码硬盘至少是两个组成RAID1模式。这样即使存储数据的其中一个硬盘损坏,RAID控制器可以通过海明码来恢复数据到新的硬盘上。RAID2一般针对大数据量操作和超级计算机应用等方面,但是并不适于普通用户。因为要在数据存储的过程中生成校验码,所以这种磁盘阵列的性能并不高。由于各种原因这种磁盘阵列模式并没有投入到实际的商业应用中去。因为价格不菲,当然也不会为普通用户所接受了。
RAID2的随机读取性能:一般
RAID2的随机写入性能:差,主要因为所有的操作都要经过ECC运算
RAID2的持续读取性能:很好
RAID2的持续写入性能:一般
RAID2的优点:数据安全性高,只要存放校验码的硬盘没有故障就能恢复数据。
RAID2的缺点:昂贵、需要专门的硬盘存放校验码、效率不高、没有商业应用的支持。
同RAID2模式一样,RAID3的数据也是被分成数据块依次存储到多个硬盘上的。只是RAID3把数据以bit为单位来分割并且存储到各个硬盘上。它的优点就是具有高速的读写能力,当然写入性能因为在写入过程中需要生成奇偶校验码所以速度会受到一定的影响——它也需要一个专用的硬盘来存储奇偶校验码。当其中一个存储数据的硬盘出现故障之后,系统依然能够正常运行,但是性能会受到影响,如果在更换坏硬盘之前又有一块硬盘出现故障,那么这个磁盘阵列的数据将会全部丢失,无法恢复。在这种磁盘阵列模式下,要求所有硬盘的转速要同步,这个要求在实际应用中难度不小。RAID3至少需要3块硬盘,其中一块用于存放奇偶校验码——奇偶校验码是通过异或运算得到的。
这种RAID模式如果使用软件控制器来实现将会明显的影响性能,因为这种组合比较复杂,不过同RAID0+1模式相比它最少只要3个硬盘就可以实现——所以成本有所下降,总的来说这种磁盘阵列比较适合视频处理和编辑等方面的应用。
RAID3的随机读取性能:好
RAID3的随机写入性能:很差
RAID3的持续读取性能:很好
RAID3的持续写入性能:一般
RAID3的优点:比较适合视频编辑等需要大数据量调用的场合。
RAID3的缺点:实现各个驱动器的转速同步非常困难(目前大部分的硬盘都不支持这个功能),需要复杂的控制器。
RAID4模式同RAID3几乎是一样的,数据都是分成小的数据块依次存储在多个硬盘之上,奇偶校验码存放在独立的奇偶校验盘上。唯一不同的是,在数据分割上RAID3是以bit为单位而RAID4是以Byte为单位。这样可以使得RAID4同RAID3具有一样的读取速度,当然写入性能因为需要在写入过程中产生校验码并且存储到校验盘而受到了影响。
这种模式的最大好处就是不需要各个硬盘之间在转速上保持同步,这就使得控制器不需要那么复杂。它的写入性能是所有RAID模式中最差的。同RAID3模式一样,当其中一块硬盘损坏,数据并不会丢失,如果在故障盘被替换之前,第二块硬盘也发盘故障将会导致所有的数据都丢失。相对其它的RAID模式,恢复故障硬盘中的数据的效率相当低。
这种磁盘阵列模式也是至少需要3块硬盘才能搭建而成。奇偶校验码是通过异或运算来得到的。它适于一般的应用程序,包括视频处理等应用。它的造价也不算高,因为只要一块硬盘作为校验码磁盘就可以了。
RAID4的随机读取性能:很好
RAID4的随机写入性能:一般,主要因为要向奇偶校验磁盘写入校验码
RAID4的持续读取性能:好
RAID4的持续写入性能:一般
RAID4的优点:除了RAID3的优点之外,它并不需要同步驱动器转速。
RAID4的缺点:写入性能很差,控制器的要求较高。
RAID5使用至少三块硬盘来实现阵列,它既能实现RAID0的加速功能也能实现RAID1的备份数据功能,在阵列当中有三块硬盘的时候,它将会把所需要的存储的数据按照用户定义的分割大小分割成文件碎片存储到两块硬盘当中,此时,阵列当中的第三块硬盘不接收文件碎片,它接收到的是用来校验存储在另外两块硬盘当中数据的一部分数据,这部分校验数据是通过一定的算法产生的,可以通过这部分数据来恢复存储在另外两个硬盘上的数据。另外,这三块硬盘的任务并不是一成不变的,也就是说在这次存储当中可能是1号硬盘和2号硬盘用来存储分割后的文件碎片,那么在下次存储的时候可能就是2号硬盘和3号硬盘来完成这个任务了。可以说,在每次存储操作当中,每块硬盘的任务是随机分配的,不过,肯定是两块硬盘用来存储分割后的文件碎片另一块硬盘用来存储校验信息。
这个校验信息一般是通过RAID控制器运算得出的,通常这些信息是需要一个RAID控制器上有一个单独的芯片来运算并决定将此信息发送到哪块硬盘存储。RAID5同时会实现RAID0的高速存储读取并且也会实现RAID1的数据恢复功能,也就是说在上面所说的情况下,RAID5能够利用三块硬盘同时实现RAID0的速度加倍功能也会实现RAID1的数据备份功能,并且当RAID5当中的一块硬盘损坏之后,加入一块新的硬盘同样可以实现数据的还原。
RAID5是截止到目前我们所介绍的几款RAID模式中控制器设计最复杂的一种。RAID5可以应用在大部分的领域中,比如多用户和多任务环境中。目前的很多Web服务器和其它的Internet服务器都是采用这种形式的磁盘阵列,比如最近推出的Quantum Snap服务器就采用了外置式的RAID5磁盘阵列的设计。奇偶校验一般会占据大约33%的磁盘空间的容量,所以对于一个总容量为120GB的RAID5磁盘阵列而言,可用的空间将是80GB左右。不过这种磁盘阵列模式在一般的主板进程的RAID控制器中都不提供支持,比如Abit
KR7A-RAID主板仅仅支持RAID0、RAID1、RAID0+1。当然只要采用校验码的方式,就会一定程度上影响写入性能,因此很多磁盘阵列厂商都在磁盘阵列中加入了写缓存来提高写入性能。
RAID5模式并不是一切都好,如果阵列当中某块硬盘上的信息发生了改变的话,那么就需要重新计算文件分割碎片,并且,校验信息也需要重新计算,这时,三个硬盘都需要重新调用。同样,如果要做RAID5阵列的话,最好使用相同容量相同速度的硬盘,RAID5模式的有效容量是阵列中容量最小的硬盘容量乘上阵列中硬盘的数目减去一后的数,这里硬盘数目要减去一是因为其中有一块硬盘用来存放校验信息。
RAID5的随机读取性能:非常好(当使用大数据块时)
RAID5的随机写入性能:一般,但是优于RAID3或都RAID4
RAID5的持续读取性能:好(当使用小数据块时)
RAID5的持续写入性能:一般
RAID5的优点:不需要专门的校验码磁盘,读取速度快,而且解决了写入速度相对较慢的问题。
RAID5的缺点:写入性能依然不尽如人意。
RAID6是RAID家族中的新技术,是在RAID5基础上扩展而来的。所以同RAID5一样,数据和校验码都是被分成数据块然后分别存储到磁盘阵列的各个硬盘上。RAID6加入了一个独立的校验磁盘,它把分布在各个磁盘上的校验码都备份在一起,这样RAID6磁盘阵列就允许多个磁盘同时出现故障,这对于数据安全要求很高的应用场合是非常必要的。这样搭建一个RAID6磁盘阵列最少需要4块硬盘。但是RAID6并没有改善RAID5写入性能不佳的情况,写入缓存的应用仅仅能对于这个缺点进行一定程度的弥补但是并不能从根本上解决问题。因为RAID5和RAID6都可以根据应用程序来更改数据块的大小,所以它的实际性能还会受到这个因素的影响。
在实际应用中RAID6的应用范围并没有其它的RAID模式那么广泛。如果实现这个功能一般需要设计更加复杂、造价更昂贵的RAID控制器,所以它一般也不会集成在主板上。
RAID6的随机读取性能:很好(当使用大数据块时)
RAID6的随机写入性能:差,因为不但要在每硬盘上写入校验数据而且要在专门的校验硬盘上写入数据
RAID6的持续读取性能:好(当使用小数据块时)
RAID6的持续写入性能:一般
RAID6的优点:快速的读取性能,更高的容错能力。
RAID6的缺点:很慢的写入速度,RAID控制器在设计上更加复杂,成本更高。
热交换和热冗余
在RAID系统中一般都具有热交换和热冗余能力。热交换允许在不关闭系统或电源的前提下更换故障硬盘,当然更换上的新硬盘也可以被系统动态的识别出来并且正确的配置和添加,而这些都不需要重新启动计算机。这样做的好处是勿庸置疑的,对于维护人员来说非常的简单,而对于很多应用场合,比如Web服务器等,用户并不希望服务器停机,这样造成的损失将是不可估量的。很多HP/DELL服务器产品和RAID磁盘阵列都具有热交换的能力。
热冗余一般用于不适于热交换的场合。这种设计一般是在故障出现之前就在计算机中配置了额外的硬盘,当有硬盘出现故障的时候,这块冗余的就可以自动替代故障的硬盘的位置,对于这样的系统在系统关闭之前是不能把损坏的硬盘拔下来的。热冗余虽然不如热交换方便,但是总比没有好一些。
其实磁盘阵列的种类非常多,我们今天介绍的是部分基本的应用模式,在实际应用为了达到足够的性能和稳定,可以把各种RAID模式搭配使用,当然这样对于RAID控制器的要求会更高,磁盘阵列系统的成本也就更高。
服务器所采用的RAID一般是基于SCSI的,所以这样RAID系统的成本将会更加高昂。其实这个功能对于我们个人的应用还具有一定的距离,即使你拥有了一张整合了RAID控制器的主板,也需要至少2块硬盘(一般的要求这两块硬盘在容量、品牌、转速上都是一样的),对于个人用户来说这是一笔不小的开支。当然如果你有特殊的需要,比如需要假设一个工作站或者Web服务器,但是又不想花费太多的资金,那么IDE RAID还是一个不错的选择。这里需要提醒大家的是,一般的板载IDE RAID的处理器占用率较高,并且IDE RAID在部分应用中还不如SCSI硬盘。
==========================================
3.1.2& RAID总结
对RAID 0、RAID 1、RAID 5和RAID 10做了一个分析比较,见表3-1。
表3-1& RAID 0、RAID 1、RAID 5和RAID 10分析比较
磁盘利用率
最好(因并行性而提高)
最差(完全
无安全保障)
最高(100%)
读和单个磁盘无区别,
写则要写两边
最高(提供数
据的百分之百备份)
适用于存放重要
数据,如服务器和
数据库存储等领域
读:RAID 5=RAID 0
(相近似的数据读取速度)
写:RAID 5&对单个
磁盘进行写入操作
(多了一个奇偶校验信息写入)
是一种存储性能、
数据安全和存储成本
兼顾的存储解决方案
读:RAID 10=RAID 0
写:RAID 10=RAID 1
RAID 1(50%)
集合了RAID 0、RAID
1的优点,但是空间上
由于使用镜像,而不
是类似RAID 5的“奇
偶校验信息”,磁盘
利用率一样是50%
参考:《深度挖掘:Oracle RAC数据库架构分析与实战攻略》第3章存储和网络传输
参考知识库
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
访问:2452674次
积分:24603
积分:24603
排名:第201名
原创:355篇
转载:1189篇
评论:57条
(2)(1)(12)(3)(25)(37)(9)(32)(19)(7)(5)(11)(26)(37)(29)(76)(26)(19)(41)(63)(76)(32)(33)(88)(41)(16)(25)(37)(73)(63)(92)(75)(120)(159)(55)(67)(13)(1)

我要回帖

更多关于 家用nas有必要raid吗 的文章

 

随机推荐