如何缩聚三八节点四边形单元杆单元的内部八节点四边形单元

科学出版社职教中心旗舰店
京 东 价:
[定价:¥]
PLUS会员专享价
您购买此商品可享受专属价
增值业务:
重  量:
搭配赠品:
所 在 地:北京 海淀区
服务支持:
加载中,请稍候...
加载中,请稍候...
加载中,请稍候...
结构静力分析有限元软件设计与开发
商品介绍加载中...
扫一扫,精彩好书免费看
服务承诺:
京东平台卖家销售并发货的商品,由平台卖家提供发票和相应的售后服务。请您放心购买!
注:因厂家会在没有任何提前通知的情况下更改产品包装、产地或者一些附件,本司不能确保客户收到的货物与商城图片、产地、附件说明完全一致。只能确保为原厂正货!并且保证与当时市场上同样主流新品一致。若本商城没有及时更新,请大家谅解!
权利声明:京东上的所有商品信息、客户评价、商品咨询、网友讨论等内容,是京东重要的经营资源,未经许可,禁止非法转载使用。
注:本站商品信息均来自于合作方,其真实性、准确性和合法性由信息拥有者(合作方)负责。本站不提供任何保证,并不承担任何法律责任。
印刷版次不同,印刷时间和版次以实物为准。
价格说明:
京东价:京东价为商品的销售价,是您最终决定是否购买商品的依据。
划线价:商品展示的划横线价格为参考价,该价格可能是品牌专柜标价、商品吊牌价或由品牌供应商提供的正品零售价(如厂商指导价、建议零售价等)或该商品在京东平台上曾经展示过的销售价;由于地区、时间的差异性和市场行情波动,品牌专柜标价、商品吊牌价等可能会与您购物时展示的不一致,该价格仅供您参考。
折扣:如无特殊说明,折扣指销售商在原价、或划线价(如品牌专柜标价、商品吊牌价、厂商指导价、厂商建议零售价)等某一价格基础上计算出的优惠比例或优惠金额;如有疑问,您可在购买前联系销售商进行咨询。
异常问题:商品促销信息以商品详情页“促销”栏中的信息为准;商品的具体售价以订单结算页价格为准;如您发现活动商品售价或促销信息有异常,建议购买前先联系销售商咨询。
加载中,请稍候...
加载中,请稍候...
加载中,请稍候...
加载中,请稍候...
加载中,请稍候...
加载中,请稍候...
加载中,请稍候...
浏览了该商品的用户还浏览了
加载中,请稍候...
价 格: 到
   
iframe(src='///ns.html?id=GTM-T947SH', height='0', width='0', style='display: visibility:')您所在位置: &
&nbsp&&nbsp&nbsp&&nbsp
有限元分析中的单元性质特征与误差处理.ppt 51页
本文档一共被下载:
次 ,您可全文免费在线阅读后下载本文档。
下载提示
1.本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
2.该文档所得收入(下载+内容+预览三)归上传者、原创者。
3.登录后可充值,立即自动返金币,充值渠道很便利
需要金币:200 &&
你可能关注的文档:
··········
··········
6.6C0和C1型单元C0型单元在泛函中位移函数的最高阶导数为1,在交界面上具有0阶的连续导数,即节点上仅仅要求位移连续。杆单元、平面问题单元、空间问题单元等6.6C0和C1型单元C1型单元在泛函中位移函数的最高阶导数为2,在交界面上具有1阶的连续导数,即节点上除要求位移连续外,还要求1阶导数连续。梁单元、板单元、壳单元等6.7单元的拼片试验由于非协调单元之间的位移不能保证位移协调,可以通过拼片试验来考证是否能描述常应变和刚体位移,若能通过拼片试验,则解得收敛性就能得到保证。如图所示的单元状况,其中至少一个节点被单元所完全包围,若节点i完全被单元所包围,节点i的平衡方程为对于非协调单元,需要考察它的收敛性,即考察它是否具有常应变的能力,因此,我们设计这样一个试验(拼片试验):当对单元片中的各个节点赋予对应于常应变状态的位移和载荷值时,核对对i点平衡方程的正确性,如果能够满足,也就是单元满足常应变要求,因此当单元尺寸不断减小时,有限元解能够收敛于真正解。以平面问题为例由片面问题的平衡方程可知,当单元内的应变或应力都为常数时,则对应的体积力为零。对应于图中的i点,它的边界力也为零,因此。所以此时,通过拼片试验的前提是,当赋予各节点以上位移模式的位移时,i点的平衡方程变为即必须在节点i施加附加约束,该约束力所作的功等于单元交界面上位移不协调引起的附加应变能。仍以平面问题为例由片面问题的平衡方程可知,当单元内的应变或应力都为常数时,则对应的体积力为零。对应于图中的i点,它的边界力也为零,因此。所以i节点以外节点有以上位移模式的位移时,对于i点的平衡方程如果求解上式得到的位移值和常应变状态下的位移相一致,则认为通过拼片试验。否则认为不能通过拼片试验。6.8有限元数值解的精度与性质求解精度估计以平面问题为例,单元的位移场可以展开成以下形式如果单元尺寸为h,则上式中的Δx和Δy都是h量级,若单元的位移函数采用p阶完全多项式,即它能逼近上述泰勒级数的前p阶多项式,那么位移解u的误差将是O(hp+1)量级。3节点3角形单元(p次多项式):量级位移应变应变能误差收敛速度误差误差h/1量级:O(h2)O(h2)O(h)O(h2)h/2量级:O(h2/4)。。。。。。。。。h/3量级:O(h2/9)。。。。。。。。。h/4量级:O(h2/16)。。。。。。。。。这里讨论的都是仅仅局限于网格的离散误差,即当一个连续的求解域被离散成有限个子域,由单元的试函数来逼近整体的域的场函数所引起的误差。另外,实际误差还应该包括计算机的数值运算误差。精确解与不同网格计算结果之间的关系有限元分析的下限性质有限元是把结构无限多的自由度简化为有限多的自由度,结构的刚度被夸大了,即使是用无限多个自由度来描述,也必然使得原系统刚度增加,变得更加刚硬,即刚度矩阵的总体数值变大,由刚度方程知,计算出的位移结果偏小。由于位移函数的收敛性准则包含完备性和协调性两方面的要求,而完备性要求比较容易满足,而协调性则较难满足,因此这往往是研究的重点。位移解的下限性质是基于协调单元单调收敛的前提得到的,在有些情况下,使用非协调单元也可以得到工程上的满意解答,有时甚至更好,这是由于位移不协调引所造成的误差与其它误差相抵消的缘故。6.9单元应力计算结果的误差和平均应力结果的误差性质对于弹性问题,其三大变量对于一个具体问题,成了求δ2П关于的极值问题。它是一个误差泛函。可见,对于求近似解极值的问题从力学上看,是求位移变分引起的总势能为极小值的问题。从数学上看,是求应变差和应力差在弹性矩阵加权意义下的最小二乘问题。因此,应变和应力的近似解的性质,是在加权残值最小二乘意义上对真实应变和真实应力的逼近。高斯点上的应力性质高斯积分点上的应力和应变的近似解将具有比其它位置高得多的精度,这可以从图中看出。公共节点上的应力平均①绕节点直接平均法②绕节点加权平均法,可以按体积或面积加权平均③二单元平均法6.10控制误差和提高精度的h方法和p方法h方法:不改变各单元基函数,只通过逐步加密单元使计算结果向正确解逼近。它往往采用比较简单的单元。一般可以将误差控制在5~10%范围内。其收敛性比p方法差,但是由于不用高阶多项式位移模式,数值稳定性和可靠性都好。p方法:保持网格固定剖分不变,增加单元上基底函数的阶次,从而改善计算精度。实际证明:p方法收敛性好,由于使用高次多项式,会出现数值不稳定现象,另外,计算机容量和速度的限制,多项式的阶次不能太高,尤其在振动和稳定性问题求解高阶特征值时,这两个方法都不能得到令人满意的结果,这是多项式插值本身的局限性造成的。r方法:不改变单元类型和数目,只通过移动节点来减小误差,因而,单元的自由度数目不变。自适应方法:它利用反馈原理,利用上一部的计算结果来修正有限元模型,其计算量小,计算精度
正在加载中,请稍后...您所在位置: &
&nbsp&&nbsp&nbsp&&nbsp
06有限元中的单元性质特征与误差处理总结.ppt 51页
本文档一共被下载:
次 ,您可全文免费在线阅读后下载本文档。
下载提示
1.本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
2.该文档所得收入(下载+内容+预览三)归上传者、原创者。
3.登录后可充值,立即自动返金币,充值渠道很便利
需要金币:350 &&
你可能关注的文档:
··········
··········
6.6C0和C1型单元C0型单元在泛函中位移函数的最高阶导数为1,在交界面上具有0阶的连续导数,即节点上仅仅要求位移连续。杆单元、平面问题单元、空间问题单元等6.6C0和C1型单元C1型单元在泛函中位移函数的最高阶导数为2,在交界面上具有1阶的连续导数,即节点上除要求位移连续外,还要求1阶导数连续。梁单元、板单元、壳单元等6.7单元的拼片试验由于非协调单元之间的位移不能保证位移协调,可以通过拼片试验来考证是否能描述常应变和刚体位移,若能通过拼片试验,则解得收敛性就能得到保证。如图所示的单元状况,其中至少一个节点被单元所完全包围,若节点i完全被单元所包围,节点i的平衡方程为对于非协调单元,需要考察它的收敛性,即考察它是否具有常应变的能力,因此,我们设计这样一个试验(拼片试验):当对单元片中的各个节点赋予对应于常应变状态的位移和载荷值时,核对对i点平衡方程的正确性,如果能够满足,也就是单元满足常应变要求,因此当单元尺寸不断减小时,有限元解能够收敛于真正解。以平面问题为例由片面问题的平衡方程可知,当单元内的应变或应力都为常数时,则对应的体积力为零。对应于图中的i点,它的边界力也为零,因此。所以此时,通过拼片试验的前提是,当赋予各节点以上位移模式的位移时,i点的平衡方程变为即必须在节点i施加附加约束,该约束力所作的功等于单元交界面上位移不协调引起的附加应变能。仍以平面问题为例由片面问题的平衡方程可知,当单元内的应变或应力都为常数时,则对应的体积力为零。对应于图中的i点,它的边界力也为零,因此。所以i节点以外节点有以上位移模式的位移时,对于i点的平衡方程如果求解上式得到的位移值和常应变状态下的位移相一致,则认为通过拼片试验。否则认为不能通过拼片试验。6.8有限元数值解的精度与性质求解精度估计以平面问题为例,单元的位移场可以展开成以下形式如果单元尺寸为h,则上式中的Δx和Δy都是h量级,若单元的位移函数采用p阶完全多项式,即它能逼近上述泰勒级数的前p阶多项式,那么位移解u的误差将是O(hp+1)量级。3节点3角形单元(p次多项式):量级位移应变应变能误差收敛速度误差误差h/1量级:O(h2)O(h2)O(h)O(h2)h/2量级:O(h2/4)。。。。。。。。。h/3量级:O(h2/9)。。。。。。。。。h/4量级:O(h2/16)。。。。。。。。。这里讨论的都是仅仅局限于网格的离散误差,即当一个连续的求解域被离散成有限个子域,由单元的试函数来逼近整体的域的场函数所引起的误差。另外,实际误差还应该包括计算机的数值运算误差。精确解与不同网格计算结果之间的关系有限元分析的下限性质有限元是把结构无限多的自由度简化为有限多的自由度,结构的刚度被夸大了,即使是用无限多个自由度来描述,也必然使得原系统刚度增加,变得更加刚硬,即刚度矩阵的总体数值变大,由刚度方程知,计算出的位移结果偏小。由于位移函数的收敛性准则包含完备性和协调性两方面的要求,而完备性要求比较容易满足,而协调性则较难满足,因此这往往是研究的重点。位移解的下限性质是基于协调单元单调收敛的前提得到的,在有些情况下,使用非协调单元也可以得到工程上的满意解答,有时甚至更好,这是由于位移不协调引所造成的误差与其它误差相抵消的缘故。6.9单元应力计算结果的误差和平均应力结果的误差性质对于弹性问题,其三大变量对于一个具体问题,成了求δ2П关于的极值问题。它是一个误差泛函。可见,对于求近似解极值的问题从力学上看,是求位移变分引起的总势能为极小值的问题。从数学上看,是求应变差和应力差在弹性矩阵加权意义下的最小二乘问题。因此,应变和应力的近似解的性质,是在加权残值最小二乘意义上对真实应变和真实应力的逼近。高斯点上的应力性质高斯积分点上的应力和应变的近似解将具有比其它位置高得多的精度,这可以从图中看出。公共节点上的应力平均①绕节点直接平均法②绕节点加权平均法,可以按体积或面积加权平均③二单元平均法6.10控制误差和提高精度的h方法和p方法h方法:不改变各单元基函数,只通过逐步加密单元使计算结果向正确解逼近。它往往采用比较简单的单元。一般可以将误差控制在5~10%范围内。其收敛性比p方法差,但是由于不用高阶多项式位移模式,数值稳定性和可靠性都好。p方法:保持网格固定剖分不变,增加单元上基底函数的阶次,从而改善计算精度。实际证明:p方法收敛性好,由于使用高次多项式,会出现数值不稳定现象,另外,计算机容量和速度的限制,多项式的阶次不能太高,尤其在振动和稳定性问题求解高阶特征值时,这两个方法都不能得到令人满意的结果,这是多项式插值本身的局限性造成的。r方法:不改变单元类型和数目,只通过移动节点来减小误差,因而,单元的自由度数目不变。自适应方法:它利用反馈原理,利用上一部的计算结果来修正有限元模型,其计算量小,计算精度
正在加载中,请稍后...您的位置: &
管桁架弦杆拼接节点对比分析
优质期刊推荐君,已阅读到文档的结尾了呢~~
06有限元分析中的单元性质特征与误差处理
扫扫二维码,随身浏览文档
手机或平板扫扫即可继续访问
06有限元分析中的单元性质特征与误差处理
举报该文档为侵权文档。
举报该文档含有违规或不良信息。
反馈该文档无法正常浏览。
举报该文档为重复文档。
推荐理由:
将文档分享至:
分享完整地址
文档地址:
粘贴到BBS或博客
flash地址:
支持嵌入FLASH地址的网站使用
html代码:
&embed src='/DocinViewer--144.swf' width='100%' height='600' type=application/x-shockwave-flash ALLOWFULLSCREEN='true' ALLOWSCRIPTACCESS='always'&&/embed&
450px*300px480px*400px650px*490px
支持嵌入HTML代码的网站使用
您的内容已经提交成功
您所提交的内容需要审核后才能发布,请您等待!
3秒自动关闭窗口

我要回帖

更多关于 节点应力和单元应力 的文章

 

随机推荐