RF 是什么电子元件识别大全图,怎么判断好坏求大神帮助

如何才能检测出电子元器件的好坏
查看: 3801|
摘要: 电子元器件可分为两大类,一类是元件,一类是器件。检测好坏一般用万用表,对于元件主要依据它的自身特性来检查。比如电阻,就是依据电阻的特性,检查它的大小,一般电阻损坏都是阻值变大,等等,对于器件,就要结合 ...
可分为两大类,一类是元件,一类是器件。检测好坏一般用,对于元件主要依据它的自身特性来检查。比如电阻,就是依据电阻的特性,检查它的大小,一般电阻损坏都是阻值变大,等等,对于器件,就要结合构成器件的主要成分的特性来检查,比如的检测,就是检测PN结的正反特性。在维修过程中,根据故障情况要用万用表来检测电子元器件的好坏,如测量方法不正确就很可能导致误判断,这将给维修工作造成困难,甚至造成不必要的经济损失。测量方法分为元器件测试和线路板在路测试两种方式。在路测试:断开,在不拆动线路板元器件的条件下,测量线路板上的元器件。对于元器件击穿、短路、开路性故障,这种检测方法可以方便快捷的查找出损坏的元器件,但还应考虑线路板上所测元器件与其并联的元器件对测量结果所产生的影响,以免造成误判断错误。下面介绍电子元器件好坏的判断方法:1.普通二极管的检测用MF47型万用表测量,将红、黑表笔分别接在二极管的两端,读取读数,再将表笔对调测量。根据两次测量结果判断,通常小功率锗二极管的正向电阻值为300-500Ω,硅二极管约为1kΩ或更大些。锗管反相电阻为几十千欧,硅管反向电阻在500kΩ以上(大功率二极管的数值要小的多)。好的二极管正向电阻较低,反向电阻较大,正反向电阻差值越大越好。如果测得正、反向电阻很小均接近于零,说明二极管内部已短路;若正、反向电阻很大或趋于无穷大,则说明管子内部已断路。在这两种情况下二极管就需报废。在路测试:测试二极管PN结正反向电阻,比较容易判断出二极管是击穿短路还是断路。2.检测将数字万用表拨到二极管档,用表笔测PN结,如果正向导通,则显示的数字即为PN结的正向压降。先确定集电极和发射极;用表笔测出两个PN结的正向压降,压降大的是发射极e,压降小的是集电极c。在测试两个结时,红表笔接的是公共极,则被测三极管为NPN型,且红表笔所接为基极b;如果黑表笔接的是公共极,则被测三极管是PNP型,且此极为基极b。三极管损坏后PN结有击穿短路和开路两种情况。在路测试:在路测试三极管,实际上是通过测试PN结的正、反向电阻,来达到判断三极管是否损坏。支路电阻大于PN结正向电阻,正常时所测得正、反向电阻应有明显区别,否则PN结损坏了。支路电阻小于PN结正向电阻时,应将支路断开,否则就无法判断三极管的好坏。3.三相整流桥模块检测以SEMIKRON(西门子)整流桥模块为例。将数字万用表拨到二极管测试档,黑表笔接COM,红表笔接VΩ,用红、黑两表笔先后测3、4、5相与2、1极之间的正反向二极管特性,来检查判断整流桥是否完好。所测的正反向特性相差越大越好;如正反向为零,说明所检测的一相已被击穿短路;如正反向均为无穷大,说明所检测的一相已经断路。整流桥模块只要有一相损坏,就应更换。4.逆变器IGBT模块检测将数字万用表拨到二极管测试档,测试IGBT模块C1.E1、C2.E2之间以及栅极G与E1、E2之间正反向二极管特性,来判断IGBT模块是否完好。以德国eupec25A/1200V六相IGBT模块为例。将负载侧U、V、W相的导线拆除,使用二极管测试档,红表笔接P(集电极C1),黑表笔依次测U、V、W(发射极E1),万用表显示数值为最大;将表笔反过来,黑表笔接P,红表笔测U、V、W,万用表显示数值为400左右。再将红表笔接N(发射极E2),黑表笔测U、V、W,万用表显示数值为400左右;黑表笔接N,红表笔测U、V、W(集电极C2),万用表显示数值为最大。各相之间的正反向特性应相同,若出现差别说明IGBT模块性能变差,应予更换。IGBT模块损坏时,只有击穿短路情况出现。红、黑两表笔分别测栅极G与发射极E之间的正反向特性,万用表两次所测的数值都为最大,这时可判定IGBT模块门极正常。如果有数值显示,则门极性能变差,此模块应更换。当正反向测试结果为零时,说明所检测的一相门极已被击穿短路。门极损坏时电路板保护门极的稳压管也将击穿损坏。5.电解器的检测用MF47型万用表测量时,应针对不同容量的电解选用万用表合适的量程。根据经验,一般情况下,47μF以下的电解电容器可用R×1K档测量,大于47μF的电解电容器可用R×100档测量。将万用表红表笔接电容器负极,黑表笔接正极,在刚接触的瞬间,万用表指针即向右偏转较大幅度,接着逐渐向左回转,直到停在某一位置(返回无穷大位置)。此时的阻值便是电解电容器的正向漏电阻。此值越大,说明漏电流越小,电容器性能越好。然后,将红、黑表笔对调,万用表指针将重复上述摆动现象。(/版权所有)但此时所测阻值为电解电容器的反相漏电阻,此值略小于正向漏电阻。即反相漏电流比正向漏电流要大。实际使用经验表明,电解电容器的漏电阻一般应在几百千欧以上,否则将不能正常工作。在测试中,若正向、反相均无充电现象,即表针不动,则说明电容器容量消失或内部短路;如果所测阻值很小或为零,说明电容器漏电大或已击穿损坏,不能再使用。在路测试:在路测试电解电容器只宜检查严重漏电或击穿的故障,轻微漏电或小容量电解电容器测试的准确性很差。在路测试还应考虑其它元器件对测试的影响,否则读出的数值就不准确,会影响正常判断。电解电容器还可以用电容表来检测两端之间的电容值,以判断电解电容器的好坏。6.电感器和变压器简易测试(1)电感器的测试用MF47型万用表电阻档测试电感器阻值的大小。若被测电感器的阻值为零,说明电感器内部绕组有短路故障。注意操作时一定要将万用表调零,反复测试几次。若被测电感器阻值为无穷大,说明电感器的绕组或引出脚与绕组接点处发生了断路故障。&(2)变压器的简易测试绝缘性能测试:用万用表电阻档R×10K分别测量铁心与一次绕组、一次绕组与二次绕组、铁心与二次绕组之间的电阻值,应均为无穷大。否则说明变压器绝缘性能不良。测量绕组通断:用万用表R×1档,分别测量变压器一次、二次各个绕组间的电阻值,一般一次绕组阻值应为几十欧至几百欧,变压器功率越小电阻值越大;二次绕组电阻值一般为几欧至几百欧,如某一组的电阻值为无穷大,则该组有断路故障注意:这种测量方法只是一种比较粗略的估测,有些绕组匝间绝缘轻微短路的变压器是检测不准的。7.电阻器的阻值简易测试在路测量电阻时要切断线路板电源,要考虑电路中的其它元器件对电阻值的影响。如果电路中接有电容器,还必须将电容器放电。万用表表针应指在标度尺的中心部分,读数才准确。8.贴片式元器件(1)贴片式元器件种类变频器电子线路板现在大部分采用贴片式元器件也称为表面组装元器件,它是一种无引线或引线很短的适于表面组装的微小型电子元器件。贴片式元器件品种规格很多,按形状分可分为矩形、圆柱形和异形结构。按类型可分为片式电阻器、片式电容器、片式电感器、片式半导体器件(可分为片式二极管和片式三极管)、片式。(2)贴片式元器件的拆、焊用35W内热式电烙铁,配长寿命耐氧化尖烙铁头。将烙铁头上粘的残留物擦干净,仅剩有一层薄薄的焊锡。两端器件的贴片式元器件拆卸、焊接操作比较容易。贴片式集成电路引脚细且多、引脚间距小,周围元器件排列紧凑,拆装不易。它们的拆卸和焊接,在没有专用工具的条件下是有一定难度的,在此着重介绍贴片式集成电路的拆卸、焊接操作。(3)拆卸方法如已判断出集成电路块损坏,用裁纸刀将引脚齐根切断,取下集成电路块。注意切割时刀头不要切到线路板上。然后,用镊子夹住断脚,用尖头烙铁溶化断脚上的焊锡,将断脚逐一取下。(4)焊接方法焊接前,先用酒精将拆掉集成电路块的线路板铜萡上的多余焊锡及脏东西清理干净,将集成电路块的引脚涂上酒精松香水,并将引脚搪上一层薄锡。然后,核对好集成电路引脚位置,将集成电路块放在待焊的线路板上,轻压集成电路块,用电烙铁先焊集成电路块四个角上的引脚,将集成电路块固定好,再逐一对其它各引脚进行焊接。为了保证焊接质量,焊接时,最好使用细一些的焊锡丝,如0.6㎜焊锡丝,焊出来的效果好一些。
上一篇:下一篇:
Powered by &
这里是—这里可以学习 —这里是。
栏目导航:& & 尽管可以采用各种数字(DMM)、电压源和电流源来实现测试,但是与将所有这些功能包含在一个单元内的测试系统相比,将占用更多的机架空间、需要学习多种命令集,系统编程和维护也更复杂。最重要的是,触发时间变复杂了,且触发的不确定性增加了,而协调分立仪器的操作增加了总线的通讯流量,降低了测试效率。
& & 要解决这些问题,首先是将几个功能整合到一个仪器中。源-测量单元(SMU)将精密电压源、精密电流源、电压表、电流表整合到一个仪器中,节约了空间并简化了设备间的操作。其次是消除仪器和控制计算机之间的通讯延时。
& & 降低通讯开销
& & 随着仪器和计算机间的高速通讯成为可能,通过GPIB(IEEE-488总线)链接为测试的每个步骤提供命令和控制,使得测试系统自动化更为广泛。尽管这与以前相比有很大的进步,但还是具有明显的速度限制。首先,GPIB需要可观的通讯开销。GPIB用作实时测试的另外一个缺点是控制通常来自总线的另外一端-运行操作系统的PC,Windows在通讯响应时具有显著的延时,并且不可预测,这使得在测试环境中使用PC作为唯一的控制器时,多个仪器的同步几乎是不可能的。
图1:二极管测试时的测量设备设置。
& & 这个问题的解决办法是使用GPIB对仪器进行预配置,然后让仪器自己执行测试。许多现代仪器拥有源列表(source memory list)编程功能,允许设立和运行多达100个完整的测试序列而无须PC干预。每个测试可包含不同的仪器配置和测试条件,可包括源的配置、测量、条件跳转、数学功能和通过/失败极限测试和存储功能。某些单元可在直流或脉冲模式下,采用不同的参数和时间安排运行,使得有可能减慢较敏感的测试,或加速其它测试以优化整个测试时间进程。
& & 当仪器基本上自主运行时,GPIB的角色就是测试前下载测试程序以及测试后上传结果到PC,两者都不干涉实际测试。
& & 仪器触发
& & 为实现简单的电流-电压扫描(I-V),SMU输出一系列电压同时测量对应的电流。在每个电压级,SMU首先提供一个电压。中的电压变化将引起一个瞬态电流,因此对测试完整性而言在激励和测量之间设定一个合适的延时很关键。在不同的范围内仪器将自动调节延时来产生最佳结果。然而,给测试电路附加额外的部件,例如长电缆、开关矩阵等,这将改变电路的瞬态特性。对于高阻器件,较长的测试时间通常是必要的。在这些情况下,用户需要定义额外的延时以维持测量的完整性。
& & 二极管的测试
& & 我们的第一个例子包括测试仪器、器件传递装置(handler)和PC(图1),这里需要注意如何通过内部编程来消除大多数的GPIB通讯来加速测试。
& & 二极管的生产测试包括验证步骤确定待测二极管的极性,然后测试正向压降、反向击穿电压以及漏电流。
& & 正向压降是指在某些规定的正向电流时二极管两端的电压,通过在二极管上通过规定电流,然后在其两端测量电压来得到。反向击穿电压(VRM或VBR)是电流突然无限增加时的反向电压,这通过施加并测量二极管两端的电压来测量。读出的电压与特定的最低极限相比较以决定测试通过或失败。漏电流IR有时也称为反向饱和电流,IS是给二极管施加小于反向击穿电压的一个电压时的电流,它是通过施加一个特定的反向电压并测量产生的电流来得到的。编写程序来在源/存储器仪器的存储器位置(memory ation)中设置二极管的测试,然后通过IEEE总线传来的一个触发开始执行,仪器按照存储器中的设定编程位置执行操作,无须计算机的干预。
图2:在三极管测试中一般使用两台SMU,第一台在HBT基极和发射极之间,第二台在发射极和集电极之间。
& & RF功率三极管测试
& & 尽管有许多类型的RF三极管存在,但我们以异质结双极性三极管(HBT)为例,类似的测试可用于其它器件。由于三极管是个三端器件,通常需要使用两台SMU。图2显示两台SMU连接到器件,第一台在HBT基极和发射极之间,第二台在发射极和集电极之间。为了获取HBT的集电极曲线,基极SMU设置成输出电流并测量电压。设好第一个基极电流后,在扫描集电极电压的同事测量集电极电流。然后基极电流增加一级,再次扫描集电极电压并同时测量集电极电流。重复该过程直到获得不同基极电流情况下所有的集电极I-V曲线。
& & 仪器的同步
& & 由于希望两台仪器都被编程(避免GPIB延迟),我们希望测试设置中的所有仪器同步。开始,这并不成为问题。例如,如果几台SMU拥有同样的固件,且采用相同的测试参数对其编程,每一步的执行时间将相同。而困难来自存储器位置调用和自动距离修正(auto-ranging)步骤,这些步骤花费的时间不确定。
& & 在类似这种情况下需要使用一个外部的、专门的触发控制器,以保证多个仪器的测量同时发生。在测试系统采用了不同厂家的设备,或者即使来自同样厂家但触发方法不同时,这特别有用。
& & 过程如下所述(采用的实例参照了Keithley仪器,但类似的办法可用于其它厂家的仪器):
& & 1.触发控制器输出一个触发信号到每台仪器。
& & 2.从存储器调用源存储器位置。
& & 3.使能所有仪器的源输出。
& & 4.每台仪器按照用户定义的延时执行。
& & 5.一旦完成延时操作每台仪器给控制器输出一个触发信号。
& & 6。触发控制器等待每台仪器输出的触发信号(延时输出)。
& & 7.触发控制器给每台仪器发送一个触发信号(测量输入)。
& & 8.每台仪器开始测量操作。
& & 9.完成测量后,每台仪器给控制器发出一个触发信号。
& & 10.触发控制器等待每台仪器输出的触发信号(测量输出)。
& & 11.回到步骤1开始下一测试。
图3:a:集电极-发射极击穿电压,基极开路;b:集电极-发射极击穿电压,基极短路;c:集电极关断电流,BO,及集电极-基极击穿电压,发射极开路。
& & 特定的三极管测试
& & HBT通常有两个重要的击穿电压需要测量:第一个是集电极-发射极击穿电压,可在基极开路或短路时测,图3a显示基极开路(BVCEO或V (BR)CEO)下测量集电极-发射极击穿电压的设置,图3b显示基极短路(BVCES或V(BR)CES)情况下测量集电极-发射极击穿电压的设置。另一个击穿电压是集电极-基极击穿电压(BVCBO或V(BR)CBO),通常射极开路测量,图3c显示了该测试设置。在这些测量中,源-测量单元扫描HBT上的电压同时测量电流。在达到击穿电压之前,电流将保持非常恒定,达到击穿电压后,电流将突然增加。
& & 通常RF功率三极管要测的其他参数有集电极-发射极持续电压,BVCEO(sus)或VCE(sus),在基极-发射极之间的结上采用反向偏置时集电极-发射极的击穿电压(BVCEV或BVCEX),以及集电极开路时的发射极-基极击穿电压(BVEBO)。
& & 结漏电流
& & 描述器件关断时的漏电流也非常重要,因为在器件不工作时,漏电流将浪费功率,会缩短电池供电设备的工作时间。最常测量的漏电流参数是集电极关断电流(ICBO),在集电极和基极之间测量,发射极开路(图3c)。基极反向偏置漏电流,也称为发射极关断电流或发射极-基极关断电流(IEBO),是另一个最重要的漏电流,它是器件关断时基极的漏电流。
&&&&&往下看有更多相关资料
本网站试开通微、小企业商家广告业务;维修点推荐项目。收费实惠有效果!欢迎在QQ或邮箱联系!
试试再找找您想看的资料
资料搜索:
查看相关资料 & & &
   同意评论声明
   发表
尊重网上道德,遵守中华人民共和国的各项有关法律法规
承担一切因您的行为而直接或间接导致的民事或刑事法律责任
本站管理人员有权保留或删除其管辖留言中的任意内容
本站有权在网站内转载或引用您的评论
参与本评论即表明您已经阅读并接受上述条款
copyright & &广电电器(中国梧州) -all right reserved& 若您有什么意见或建议请mail: & &
地址: 电话:(86)774-2826670& & &&)万用表来检测电子元器件的好坏_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
万用表来检测电子元器件的好坏
阅读已结束,下载文档到电脑
想免费下载更多文档?
定制HR最喜欢的简历
你可能喜欢电子元件检测好坏方法_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
电子元件检测好坏方法
阅读已结束,下载文档到电脑
想免费下载本文?
定制HR最喜欢的简历
下载文档到电脑,方便使用
还剩2页未读,继续阅读
定制HR最喜欢的简历
你可能喜欢

我要回帖

更多关于 电子元件 的文章

 

随机推荐