请问老师电容上面的我都知道,一点家长不理解老师的专业,450V和频率在电容上是什么意思,电容自身会有电和频率吗?

查看: 803|回复: 45
lc震荡电路是电容与电感在相互做能量交换这样理解对吗?
lc震荡是电容与电感在相互做能量交换这样理解对吗?
可以这样理解,总能量是不变的。
是的,但在转换过程中会损耗能量。
这种说法是对的。
可以这样理解,总能量是不变的。
那电容容量那么小能维持震荡吗?感觉电感蓄的能很大但电容只有MF或NF级别能与电感产生共振吗?这样小的电容储存的能应该很小吧?电容与电感是不是要匹配才能震动。
是的,但在转换过程中会损耗能量。
但是电容与电感的比例太大了,电容小的几乎可以忽视,这样的电容能存储能吗?
这种说法是对的。
那电容容量那么小能维持震荡吗?感觉电感蓄的能很大但电容只有MF或NF级别能与电感产生共振吗?这样小的电容储存的能应该很小吧?电容与电感是不是要匹配才能震动?
电容和电感的大小只会改变谐振的频率,只要没有阻尼就会一直震动下去。
蚊子再小也是肉,能存储,但对振荡不利,衰减严重。
电容和电感的大小只会改变谐振的频率,只要没有阻尼就会一直震动下去。
不是电容与电感都是在相同频率下共震的吗?我也不知道该怎么说,比如电感14UH电容就要2.2MF,只能工作在900HZ的频率,问题来了,电感14UH可以存储很大的能,而电感只有2.2这么小的容量能存储能吗?更别说共震。
是电容2.2。
不是电容与电感都是在相同频率下共震的吗?我也不知道该怎么说,比如电感14UH电容就要2.2MF,只能工作在9 ...
你是说有激励的情况?
蚊子再小也是肉,能存储,但对振荡不利,衰减严重。
我也知道只要是电容就能存储能只是大小而已,但MF与NF级别的,它存储的能是非常非常小的,用万能表都测量不到,而电感却是很大的能,按理电容是存储不了这么大能的,这么说吧!电感存储的能可以释放A级别的电流,电容恐怕连UA也做不到,差距如此之大,怎么共振?
这种说法是对的。
电容容量那么小能维持震荡吗?感觉电感蓄的能很大但电容只有MF或NF级别能与电感产生共振吗?这样小的电容储存的能应该很小吧?电容与电感是不是要匹配才能震动?
你是说有激励的情况?
不管什么情况下,才2.2MF存储的能非常小,小的几乎可以忽视,在怎么也得几百上千UF吧!与电感的能不成比例。
振幅平衡,有正反馈,就能起振,电容大小与振荡频率有关。
容量太小是不能维持振荡的。
只要电压够大,小电容的储能也可以很大的。
容量太小是不能维持振荡的。
是啊!我也是这样认为的,但是计算出来是该用这么小的电容啊?我就是不知道如此小的电容是如何维持震荡的。
只要电压够大,小电容的储能也可以很大的。
据我所知,电容存储能小于220UF以下的存储能是很小的,用万能表都测量不到,更别说MF或NF级别的,而电感就不同了,存储的能是这个电容的几十上百倍,这比例也太大了吧?这么小的电容按理是不可能存储这么大的能。
理论上可以但实际上电路中有电阻就振不起来。
我刚才说的是理论情况,实际中电容被击穿的可能性很大。
我刚才说的是理论情况,实际中电容被击穿的可能性很大。
在lc电路中,这种电容应该没那么容易击穿,这些耐压很高的,而且温度也没有电解电容高。
振幅平衡,有正反馈,就能起振,电容大小与振荡频率有关。
好像是电容与电感频率3个要匹配,我只是觉得那么小的电容如何维持震荡的,我测试过这么小的容量几乎不能存储能的,最简单的比如14UH可以释放安级别的电流,这么小的电容应该在微安级别,差距之大还能维持震动吗?
理论上可以但实际上电路中有电阻就振不起来。
没有电阻啊!
14UF很大了,10多皮法就能起振。
14UF很大了,10多皮法就能起振。
14是电感的容量,这个容量只能匹配NF或MF的电容。
小电容振荡时充电快,放电也快,不用考虑能不能振。
能量守恒定律,可以这样理解。但实质也要看情况。
要有激励,才能振荡吧。不然怎么起振?
小电容振荡时充电快,放电也快,不用考虑能不能振。
假如这个震荡可以维持,那么电容释放的电流很大,电容释放的电流几乎没有,这样理解对吗
是电感释放大电容释放小
那这样的话储能也可以达到很高。
那这样的话储能也可以达到很高。
但是我测试了电容无法点亮led,功率很小的,这是怎么回事?
是不是因为电容的电导比较大。
是不是因为电容的电导比较大。
怎么可能啊?是直流电的。
直流电也可能会通过电容啊。
直流电也可能会通过电容啊。
你是说漏电流吧!我测试了没有通过电容。
电压很高的时候呢?
小电容振荡时充电快,放电也快,不用考虑能不能振。
假如这个震荡可以维持,那么电容释放的电流很大,电容释放的电流几乎没有,这样理解对吗
是电感释放大电容释放小
释放电流很大,但释放时间很短,可以想象为毫秒,微秒,甚至纳秒级,而不能说几乎没有。
电压很高的时候呢?
没有测试高压,危险,都是在相同电压电流条件测试的。
是不是我们都进入了误区,电容小但可以维持震荡,但电容与电感的存储能量本来就不匹配,本来就是一个很大一个很小啊,是不是维持震荡与存储大小是两个概念,而维持震荡在断开电源的时候这个震荡只能维持一次或两次。
没有测试高压,危险,都是在相同电压电流条件测试的。
是不是我们都进入了误区,电容小但可以维持震荡, ...
嗯,可能是的。
释放电流很大,但释放时间很短,可以想象为毫秒,微秒,甚至纳秒级,而不能说几乎没有。 ...
我分别测试了电感可以驱动一个led,但电容MF级别的不能点亮led这是怎么回事?这种极快的浪涌脉冲用万能表是检测不到的,只有用led检测。
是不是我们都进入了误区,电容小但可以维持震荡,但电容与电感的存储能量本来就不匹配,本来就是一个很大一个很小啊,是不是维持震荡与存储大小是两个概念,而维持震荡在断开电源的时候这个震荡只能维持一次或两次。
你想啊!如果两个存储的能量相同,那不是就可以不用电源就可以维持震荡交换能量了吗?或维持很长时间,很可能是两种不同的概念。
可能是震荡是震荡存储能是存储能,存储能与电感电容的容量大小有关但是与频率震荡无关,就算没有震荡他们也能储存能量,很可能是两种概念。
要有激励,才能振荡吧。不然怎么起振?
我分别测试了电感可以驱动一个led,但电容MF级别的不能点亮led这是怎么回事?这种极快的浪涌脉冲用万能表是检测不到的,只有用led检测。
是不是我们都进入了误区,电容小但可以维持震荡,但电容与电感的存储能量本来就不匹配,本来就是一个很大一个很小啊,是不是维持震荡与存储大小是两个概念,而维持震荡在断开电源的时候这个震荡只能维持一次或两次。
你想啊!如果两个存储的能量相同,那不是就可以不用电源就可以维持震荡交换能量了吗?或维持很长时间,很可能是两种不同的概念。
可能是震荡是震荡存储能是存储能,存储能与电感电容的容量大小有关但是与频率震荡无关,就算没有震荡他们也能储存能量,很可能是两种概念。
嗯,可能是的。
你想啊!如果两个存储的能量相同,那不是就可以不用电源就可以维持震荡了吗?或维持很长时间,很可能是两种不同的概念。
可能是震荡是震荡存储能是存储能,存储能与电感电容的容量大小有关但是与频率震荡无关,就算没有震荡他们也能储存能量,很可能是两种概念。
嗯,有可能。
嗯,有可能。
我估计能量衰减主要是电容,因为电容存储量很小,不能给电感持续维持的能量,如果电容能给电感足够的能量那么他们的衰减将会很慢,也许他们的共振只能维持一两次或几次,这个一般很难理解,也许是这样,可能性很大。
站长推荐 /1
《磁性元件与电源》是大比特资讯所出版的杂志,其内容包括对磁性元件与电源行业的市场解读、行业要闻、产业观察、活动报道、论坛知道、技术文献,以及厂商索引。
Weibo Weixin电话:86-5&&&&安徽铜峰电子集团有限公司的前身是个服装小厂,经过三十多年的艰苦创业,现已发展成为国家大型工业制造企业,国家重点高新技术企业,国家火炬计划——铜陵电子材料产业化基地内重点骨干企业,中国电子元器件百强企业之一,全国质量管理先进企业,全国重合同守信用先进企业,其中控股的安徽铜峰电子股份有限公司于2000年6月在上交所挂牌上市,成为全国同类产品企业的首家上市公司。
  铜峰公司重点发展电子材料、新型电子元器件和电力节能装备,现已形成两大产品发展链:电容器用薄膜——金属化薄膜——薄膜电容器产品发展链,石英晶体材料及延伸产品发展链。公司主导产品生产能力分别为:其中:电容器聚丙烯光膜年生产能力为10600吨;金属化膜年生产能力为3500吨;交流电容器年产6.5亿微法,居国内同行之首;各类直流电容器年产4亿只,石英晶体频率片年产3.3亿片,石英谐振器年产1.2亿只。公司在全国同行业中首批通过了ISO9002国际质量体系认证,主导产品相继通过了国家CQC、美国UL、欧洲VDE、CB等多项认证。
  公司还坚持走国际化发展道路,先后与两个世界500强企业――韩国SK集团子公司SKC公司和德国拜耳子公司朗盛德国公司建立了合资合作关系。
  2007年,铜峰公司被浙江铁牛集团有限公司成功重组,这为公司带来了崭新的理念和先进的思想,注入了新的活力。面向未来,重组后的铜峰电子集团有限公司将借助资本市场,不断扩大实力和规模,提升技术水平和管理水平,加强经济与技术交流与合作,向着"建成世界一流的电子材料及元器件的生产、研究、开发基地"的目标大步迈进,为振兴中国电子信息工业创造更大的辉煌!
主要客户main
customers&
|&&&BT/BCP
庞巴迪公司
Teg/株洲电力机车研究所
Zhengyuan武汉正远
|&& Heifei Sun
Power合肥阳光
Xuji许继电气
|&& Tianjin
Tsinghua上海思源
|&& Shanghai
Electric上海电气
Yonge永济新时速
power三得普华
|&& Shandong
taikai山东泰开
|&& Anshan
rongxin鞍山荣信
|&& Suzhou
skoda苏州斯柯达
|&& Dalian
locomotive大连机车
|&& Toshiba
dalian 大连东芝
|&& Jiangsu
daquan 江苏大全
Electric Power Research Institute中国电力科学院
|&& Trainelec
Spain西班牙卡佛公司
|&& Dalian
Toshiba大连东芝
Alstom上海阿尔斯通
这一天,小孙从仓库里领出了一台变频器,打算配用到鼓风机上。按照规定,先通电测试一下。谁知一通电,就发现冒烟,立刻切断了电源。把盖打开后,发现有一个电阻很烫。小孙想,在开盖情况下再通电观察一次。这一回,电阻倒是不冒烟了,但不一会儿,变频器便因“欠压”而跳闸了。用万用表一量,那个电阻已经烧断了。
经人介绍,小孙找到了一位退休老高工张老师。
“你们那台变频器在仓库里存放了多长时间?”听完了小孙的情况介绍后,张老师问。
“大约一年多一点。”
“我知道了。”张老师胸有成竹地说。“在分析电阻冒烟的原因之前,先要弄清楚变频器里整流滤波电路的特点。”
“老师,我不大明白,变频器的中间为什么要加进一个直流电路呢?”
“好吧,那我们就先从交-直-交变频器的基本结构讲起。”张老师拿了一张纸,不紧不慢地画出了交-直-交变频器的框图,如图1-1
交-直变换电路
&&& HP4274A
LCR电桥是美国惠普公司的产品。该仪表能快速测量电感L、电容C、电阻R、损耗因素D、品质因素Q、电导G、电纳B、电抗X和矢量阻抗|Z|及相位角θ,其频率范围从100Hz到100kHz共13个可选频率测试点。测试电压范围为1mV~5Vrms,
适应于电路设计、产品实验、质量检查多方面测量要求。这种可变的测试信号为测量非线性阻抗元件,如电感和半导体器件带来很大方便。
该仪表测量值用两部分4½数字单元显示,并可以把每10次测量值进行平均后以5½数字显示。另外,它还提供测试元件时的信号电压和施加电流3位数显示,以便监视测试时的电压、电流情况。
该仪表的电容测试范围为0.01fF~1999.0mF(1毫微微法拉=10-15法法法拉),电感为0.001nH~1999.9H,
电阻和阻抗为0.001mΩ~19.999MΩ。所有测量精度为0.1%~10%,
这主要取决于测试信号的电压和频率。测量电路既可以用并联等效电路形式,也可以是串联等效电路形式。该仪表自动校准后,能使杂散电容减小到20pF,寄生电感减小到2000nH,电阻减小到0.5Ω,电导减小到5μs。
二、选择测试电路方式
我们知道,阻抗元件能由其电阻性和电抗性以简单的串联或并联等效电路表示。4274A可由“CIRCUIT
MODE”控制选择测量等效电路,也能自动根据测量范围和功能设置选择合理的并联或串联方式。并联和串联方式等效电路元件的测量参数值是彼此不相同的,其差别取决于被采样测量的损耗因数。如果没有串联电阻或并联电导存在,这两个等效电路是同等的。并联测量电路的采样值可通过公式(考虑损耗因数效果)转换成串联电路,见表1。通过推导证明,对于不同的损耗因数(D)值,用串联方式测出的值与用并联测得的有差别。但当值小于0.03时,串联与并联测得的值相等。
使用该仪表采样测量元件值时应注意,测量电路是近似活动的等效电路,因此对于普通元件,选择适当的方式不是合理的标准判据。一般对测量低阻抗元件值,采用串联测量电路,而高阻抗值采用并联测量电路。例如低电容的陶瓷电容器,其并联电导是主要的损耗;高电容值的电介电容器,等效串联电阻形成泄漏电阻(电极电阻、
介电损耗等)是元件损耗的主要因素。对中等范围阻抗,这个因素仍可应用,但效果不明显。串联电容的损耗因数随测试频率的增高而增大,并联损耗则呈现相反的趋势。对于电感器,可由类似的原理推出等效电路。因此可通过比较损耗因数值来确定测量电路方式。
&&&&&&&&&&&&&
&表1& 并联电路与串联电路的转换公式
&&&&&&&&&&
&注: 当表中等效条件满足时,并联和串联电路有相等的阻抗(特殊的频率点),
两等效电路的损耗因数是相同的。
&三、电桥的测量端口
为了提高测量精度,4274A端口采用四端对结构。这个测试端由四个连接器组成:高电流端(HCUR)、高电位端(HPOT)、低电位端(LPOT)和低电流端(LCUR)。电流端可使测量信号电流通过采样端;电位端用于检测流过采样端的电压降。高边预示着以测试信号源内部作为驱动电位。为了在四端结构中形成测量环路,HCUR和HPOT、LCUR和LPOT端必须分别彼此连接。另外,所有连接器的屏蔽必须相互连接,图1为四端结构测量原理图。四端方法具有低阻测量、高阻屏蔽的优点,其结构特点是外边的导体可作为测量信号电流的回路。当同一电流流过中心导体和外屏蔽导体(相对方向)时,在导体周围没有外端磁场发生(里边与外边的电流磁场完全抵消)。由于测量电流不产生磁场,测试负载就不会因自身或耦合电感而产生附加测量误差。因此,四端对方法能使寄生电容和残余电感在测量负载或测试固定器时减少到最小,以保证最好的精度。
四端对测量原理&&&&
四、实际的测量电路
实际中,连接测试采样端的测量电路变成了仪表测量采样的一部分。在被测量器件和测量终端之间的测量电路中存在不同的特性阻抗,这将影响测量结果。这些不希望有的特性阻抗以电阻和电抗因数并联或串联在测试元件上,如图2所示。
&&&&&&&&&&&&&&&&&&&&&&&&&&&&
图2& 等效测量电路
&&当频率较高时,残余阻抗、电抗因数对测量有较大的影响。HP4274A使用四端对结构测量,在测量电路中提供了最小的残余阻抗。在采样测试固定夹的被测元件时,这个测试电路会出现寄生电容(如图3所示),即在元件导线周围存在寄生电容。这些L0和C0是元件在测量中特有的,他们数值的大小取决于采样点与测试固定器之间的距离长度。其测量结果包括了被测件和这些特性阻抗实质性的采样值。
&&&&&&&&&&&&&
图3& 被测件周围的特性阻抗
五、测量值和元件特性
由于一定的电效应能引起测量变化很宽,如我们知道的导体的趋附效应、电感线圈的铁磁特性、电容器的介电材料的变化因素等,所以,测量元件参数的阻抗和电抗不总是符合他们各自的标称值。这里仅讨论一种元件电抗参数互相作用引起的效应。
元件的阻抗能以复数表示成矢量,如图4所示。这里电阻效果和电抗效果对应于阻抗矢量的投影,即分别是实轴(R)和虚轴(jX)。从图4中可看出,当相位角θ变化时,Re和Xe也随其变化。对L、C、R、D的测量,也可表示成与阻抗矢量相关的元件,相位角θ控制他们的值。
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
图4& 阻抗矢量图
例如电感和感性元件,其自谐振频率的损耗如图5所示。图5(a)为电感器等效电路,电感Lx同分布电容C0
在频率f0处谐振。从图5(b)看出,当工作频率与谐振频率重合时,阻抗矢量的相位角θ为0度(矢量接近R轴)。图中还反映出随着电阻损耗的增加,电抗量在减小。在谐振点f0处,这个元件是纯阻的,因此,在谐振点区域损耗因数变化很灵敏。
&&&&&&&&&&&&&&&&&&&&
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
&&&&&&&&&&&&&&&&&&&&&
&&&&&&&&&&&&&&&&&&&&&
图5& 典型电感阻抗轨迹
&&& 六、其他
HP4274A电桥配有各种类型结构元件的固定夹具,能显示存贮值与测量值的偏差和相对误差,并能测量二极管的结电容和三极管的集电极输出电容(不加直流偏置或加直流偏置)。该电桥还有一种特殊的偏置电路用于外加偏置电压或电流,以满足电容或电感的测量,也能测量电池的电阻值,具有各种测试错误信息显示功能。
电容器主要特性参数
1、标称电容量和允许偏差
标称电容量是标志在电容器上的电容量。
电容器实际电容量与标称电容量的偏差称误差,在允许的偏差范围称精度。
精度等级与允许误差对应关系:00(01)-±1%、0(02)-±2%、Ⅰ-±5%、Ⅱ-±10%、Ⅲ-±20%、
Ⅳ-(+20%-10%)、Ⅴ-(+50%-20%)、Ⅵ-(+50%-30%)
一般电容器常用Ⅰ、Ⅱ、Ⅲ级,电解电容器用Ⅳ、Ⅴ、Ⅵ级,根据用途选取。
2、绝缘电阻
直流电压加在电容上,并产生漏电电流,两者之比称为绝缘电阻.
当电容较小时,主要取决于电容的表面状态,容量〉0.1uf时,主要取决于介质的性能,绝缘电阻越小越好。
电容的时间常数:为恰当的评价大容量电容的绝缘情况而引入了时间常数,他等于电容的绝缘电阻与容量的乘积。
3、额定电压
在最低环境温度和额定环境温度下可连续加在电容器的最高直流电压有效值,一般直接标注在电容器外壳上,如果工作电压超过电容器的耐压,电容器击穿,造成不可修复的永久损坏。
4、频率特性
随着频率的上升,一般电容器的电容量呈现下降的规律。
电容在电场作用下,在单位时间内因发热所消耗的能量叫做损耗。各类电容都规定了其在某频率范围内的损耗允许值,电容的损耗主要由介质损耗,电导损耗和电容所有金属部分的电阻所引起的。 
在直流电场的作用下,电容器的损耗以漏导损耗的形式存在,一般较小,在交变电场的作用下,电容的损耗不仅与漏导有关,而且与周期性的极化建立过程有关。
无感电容分解;
电容是电子设备中大量使用的电子元件之一,广泛应用于隔直,耦合, 旁路,滤波,调谐回路, 能量转换,控制电路等方面。
  电容的频率特性:随着频率的上升,一般电容器的电容量呈现下降的规律。
  电容的型号命名方法:(依据GB2470-81)
  第一部分:用字母表示产品的名称 C
  第二部分:用字母表示产品的介质材料:
  A钽电解 B聚丙乙烯等非极性薄膜 C高频陶瓷 D铝电解 E其他材料电解 G合金电解 H纸膜复合 I玻璃铀 J金属化纸介
L聚酯等极性有机薄膜 N铌电解 O玻璃膜 Q漆膜 S,T低频陶瓷 V,X云母纸 Y云母 Z 纸。注:用B表示除聚苯乙烯外其他电容时,在
B后再加一字母以分别具体材料。用L表示聚酯以外其他薄膜电容时, 方法同。
电容的时间常数:为恰当的评价大容量电容的绝缘情况而引入了时间常数,他等于电容的绝缘电阻与容量的乘积。 
电容器的绝缘电阻:直流电压加在电容上,并产生漏导电流,两者之比称为绝缘电阻.
当电容较小时,主要取决于电容的表面状态,容量〉0.1uf时,主要取决于介质的性能。
 电容的损耗因素:电容在电场作用下因发热所消耗的能量叫做损耗。各类电容都规定了其在某频率范围内的损耗允许值,电容的损耗主要由介质损耗,电导损耗和电容所有金属部分的电阻所引起的。
  在直流电场的作用下,电容器的损耗以漏导损耗的形式存在,一般较小,在交变电场的作用下,电容的损耗不仅与漏导有关,而且与周期性的极化建立过程有关。
  薄膜电容
  目前大量生产的塑料薄膜电容器有聚苯乙烯,聚乙烯,聚丙烯,聚四氟乙烯,聚酯(涤纶),聚碳酸酯,复合膜等。
CL21/CBB21金属化膜电容器(CL21-B/CBB21-B金属化膜盒式),使用金属化聚酯/聚丙烯薄膜为介质/电极采用无感卷绕方式,环氧树脂包封而成,具有电性能优良、可靠性好、耐高温、容量范围宽,体积小,自愈性好,寿命长的特点,主要应用于电视机、电脑显示器、节能灯、镇流器、通讯设备、电脑网络设备、电子玩具等直流和VHF级信号隔直流、旁路和耦合/高频、交流、脉冲、耦合电路中起滤波、调频、隔直流及时间控制等作用。
 & 2. CL20
(MKT83)金属化聚酯膜扁轴向电容器(金属化涤纶电容)。特点:以金属化聚酯膜作介质和电极,用阻燃胶带外包和环氧树脂密封,具有电性能优良、可靠性好、耐高温、体积小、容量大及良好的自愈性能。用途:本产品适用于仪器、仪表及家用电器的交直流电路。广泛用于音响系统分频电路中。
  3. CBB22(MKP91)
金属化聚丙烯膜直流电容器。以金属化聚丙烯膜作介质和电极,用阻燃绝缘材料包封单向引出,具有电性能优良、可靠性好、损耗小及良好的自愈性能。用途:本产品广泛使用于仪器、仪表、电视机、收音机及家用电器线路中作直流脉动、脉冲和交流将压用,特别适用于各种类型的节能灯和电子整流器。
型金属化聚丙烯电容器特点与用途:绝缘带外包裹,环氧树脂灌封,轴向引出。具有高绝缘、低损耗,频率特性好,等效串联电阻低等特点。适用于音响的分频器、功率放大器,及后置补偿电路中,也适用于电子设备的直流交流和脉冲电路中。
CL20/CBB20轴向金属化膜电容器非感应式结构,具有电性能优良、可靠性好、耐高温、体积小、容量大,高频损耗小,过电流能力强,适用于大电流,绝缘电阻高,自愈性好,寿命长,温度特性稳定,广泛用于仪器、仪表及家用电器交直流线路,变频、分频等交流、大脉冲电路,尤其是高保真要求的音响分频器电路。
  5. CBBX2(MPX MKP41)
金属化聚丙烯膜抗干扰电容器。采用金属化锌铝聚丙烯膜作介质和电极,用耐高温阻燃塑壳、环氧树脂封装,单向引出结构,该产品有较高抗外电干扰性能,可靠性高、损耗小及良好的自愈特性,有较好的安全防护作用。本产品广泛使用于彩电、电动工具、无线连接器、跨电源线路、电磁干扰滤波器、电源开关和大功率的电子整流器。
CL19(MKT82)
金属化聚酯膜圆轴向电容器。特点:以金属化聚酯膜作介质和电极,用阻燃胶带外包和环氧树脂密封,具有电性能优良、可靠性好、耐高温、体积小、容量大及良好的自愈性能。用途:本产品适用于仪器、仪表及家用电器的交直流电路。广泛用于音响系统分频电路中。
CL233X超小型电容器(校正电容)使用进口超小型金属化聚酯膜为介质/电极采用采用无感卷绕方式,主要适用于电视机、电脑显示器、节能灯、镇流器、程控交换机、电脑网络设备、VCD/DVD、精密电子仪器仪表等直流和VHF级信号电路、旁路电路中起隔直流、耦合、滤波等作用。耐压:
50/63V系列, 100V系列。容量: 103-105。
  CL21S超小型金属化聚酯膜校正电容器使用进口超小型金属化聚酯膜为介质/电极采用采用无感卷绕方式,CP线焊接引出,粉末环氧树脂包封而成,具有体积小、重量轻、容量范围宽、精度好、比容大及良好的自愈性,使用寿命长的特点,主要适用于电视机、电脑显示器、节能灯、镇流器、程控交换机、电脑网络设备、VCD/DVD、精密
 8. CBB13型无感电容器。适用: 节能灯、镇流器、彩电及电子整机、电子仪器高频、直流、交流和大电流脉动电路。
&电容:电容的容量,即储存电荷的容量。容量的基本单位为法拉(F),不过在主板上我们常见的是微法(μF)、皮法(pF)等单位(换算关系为1法拉=1000000微法,1微法=1000纳法=1000000皮法)。容量都是直接标出的,如GSC4700μF,一般来说该指标是越大越好。
耐温值:耐温值表示电容所能承受的最高工作温度。一般的电容耐温值为85℃或105℃,而CPU供电电路旁边的电容耐温值多为105℃。
耐压值:它是指在额定温度范围内电容能长时间可靠工作的最大直流电压或最大交流电压的有效值,不同电容有着不同的耐压值,大都6.3V~16V之间。
其他指标:有的电容上还有一条金色的带状线,上面印有一个大大的空心"I"字母,它表示该电容属于LOWESR低损耗电容。有的电容还会标出ESR(等效电阻)值,ESR越低,损耗越小,输出电流就越大,低ESR的电容品质都不错。
看电容应该注意的两点
1、看容量和耐温值:
主板电容的容量一般都是直接标注的,Intel要求CPU供电电路的滤波电容单个容量至少在1000μF以上,而现在的电容容量多在2000μF~4000μF之间,部分主板采用了容量为5000μF的电容,内存槽附近的电容容量多在1000μF~1500μF之间,容量较小的电容很难提供给CPU、内存以充足的纯净电流,有些老式主板升级CPU后出现的不兼容问题实际也源于此。
耐温值在另一方面也说明了电容的品质,主板上的电容耐温值多为105℃,而如果你的主板电容耐温值为85℃,那多半是厂商过于节约材料的结果,低耐压值的电容在使用上没问题,不过当CPU处在超频状态时发生"爆浆"的几率会比较大。
2、看品牌:
主板电容主要分为台系和日系两种,日系品牌有:NICHICON,RUBICON,RUBYCON(红宝石)、KZG、SANYO(三洋)、PANASONIC(松下)、NIPPON、FUJITSU(富士通)等;台系品牌有:TAICON、G-LUXCON、TEAPO、CAPXON、OST、GSC、RLS等。
一般说来日系电容性能比较好,在耐压、耐温、使用寿命等方面都比台系电容优秀,早期的电容"爆浆"事件,也没有发生在日系电容上,因此如果你要选择一块超频性、稳定性兼备的主板,不妨看看主板上的电容。台系电容虽然性能相对稍差,不过如果主板的PCB设计、铜箔走线都较为规范,那么在使用中一般也不会出现什么问题,况且采用台系电容的主板超频性也不一定差。
关于电容的误区:
1、电容容量越大越好:
一般说来电容容量越大越好,不过这也不是绝对的,大容量的电容不易过滤出高频干扰信号,而多个小容量电容并联却比单个大容量电容更有效、更稳定。
再者这和主板的走线、电源|稳压器设计也有一定的关系,但是如果你的主板上到处都是100μF左右的小电容,那主板质量也好不到哪里去。
2、用优质电容的主板就一定好:
不一定,正如本文开头所讲的,好主板肯定会采用好电容,但有好电容的主板不一定是好主板。一块好的主板不仅要看电容的优劣,还得看该主板的设计水平,像华硕、微星这样的大厂也不常用RUBYCON、NICHICON这样的电容,但是他们的产品的走线、PCB设计都是一流的,所以这也保证了其产品的稳定性;相反一些小厂为了吸引买家,往往会采用一些不错的电容,但是其走线、供电设计、MOSFET的质量却很一般,这样的主板往往看起来不错,但是用久了就不好说了。
3、日系电容一定适合超频:
很多朋友以为采用日系电容的主板超频性一定好。其实超频不仅和电容有关,还和主板电路设计、时钟芯片、电源、BIOS设计等都有关系,不是单靠电容就能决定的,某些采用台系GSC电容的主板超频性同样很好。但是日系电容对主板稳定性还是有所帮助的。
从上面这些介绍中,我想大家对主板的电容了一些初步的认识了。对于一些由于用料品质较差而对系统的稳定性、兼容性造成不良影响的情况,也已经是略有了解了。如此看来,我们也就不难理解,为什么有些大厂的产品卖的价格会贵一些,而一些使用同样芯片组的小厂产品往往价格很诱人了。以电容为例,高品质的产品同一些劣质产品间的差价就有将近20%~40%之多。一般来说,名牌大厂的产品,会拥有一套完善的严格检验、评审措施,成本因此上升不少,因此在价格上与杂牌产品有明显差距也就不足为奇了。
简单说CPU的选择适当与否,是决定一台电脑的先天素质,而一块好的主板就是发挥CPU先天素质的后天环境。所以大家在选择主板的时候,不仅仅是关注价格,对于稳定、品牌、服务也要仔细关注,这样才能综合考虑选购到一块最适合的主板。
在确认使用及安装环境时,作为按产品样本设计说明书所规定的额定性能范围内使用的电容器,应当避免在下述情况下使用:
a、高温(温度超过最高使用温度);
b、使用于反复多次急剧充放电的电路中,如快速充电用途,其使用寿命可能会因为容量下降,温度急剧上升等而缩减;
c、施加反向电压或交流电压,当直流铝电解电容器按反极性接入电路时,电容器会导致电子线路短路,由此产生的电流会引致电容器损坏。若电路中有可能在负引线施加正极电压,选用无极性电容器;
b、过流(电流超过额定纹波电流),施加纹波电流超过额定值后,会导致电容器体过热,容量下降,寿命缩短;
e、过压(电压超过额定电压),当电容器上所施加电压高于额定工作电压时,电容器的漏电流将上升,其电氧物性将在短期内劣化直至损坏;
f、在直接与水、盐水、油类相接触或结露的环境、充满有害气体的环境(硫化物、氨水等)、直接日光照射、臭氧、紫外线及有放射性物质的环境、振动及冲击条件超过了样本及说明书规定范围的恶劣环境下,禁止使用电容器;
g、电容器安装时,电容器防爆阀上方留有空间、爆阀上方避免配线及安装其他元件、电容器四周及电路板避免安装发热元件。
电容安装的注意事项
a、用过的电容器不能再使用,但作为周期检查可卸下来测试电性能;
b、如果电容器在超过35℃,湿度大于70%的条件下存放,其漏电流可能上升,使用前可通过一个约1kΩ的电阻施加额定电压处理;
c、如果电容器已充电,使用前要用一个约1kΩ的电阻放电;
d、掉在地面的电容器不要使用;
e、安装前要确认电容器的额定容量、电压和极性;
f、变形的电容器不要使用;
g、电容器的正负引线间距应与PCB板焊孔的位置相吻合。若将电容器强行插入孔距不配套的电路板,会有应力作用于引出线,会导致电容器短路或漏电流上升;
h、安装时把电容器引脚或焊针插入PCB板,直到电容器底部贴到PCB板表面;
i、不要施加超过规定的机械压力。当拉力施加到电容器引出线,该拉力将作用于电容器内部,会导致电容器内部短路,开路或漏电流上升。在电容器焊装到电路板,不强烈摇动电容器。
电容低电压失效的机理
在电路设计中,有一种常见的认识,“器件的裕度设计在没有把握的情况下,余量尽可能大就会可靠”,事实上这个观点是错误的。对于安规电容来说,耐压余量留的太大,也会导致一种失效,称之为“低电压失效”。
低电压失效的机理是介质漏电流的存在。在较大湿度情况下,因为电容的不密封性,会导致潮气渗入,在电容两极加电压时,渗入的潮气表面会因其导电性形成漏电流,过量的漏电流会使电容的储能特性大大降低,结果就表现为电容的特性丧失。这个现象在湿度储存试验后加电运行时最容易出现。
但经过一段时间(不少于2h)的高温储存后,再开机,该电容的性能又可以恢复。或者将电容拆下,给两端加较高电压(不低于0.7倍额定电压的电压值,如50V的电容,加不低于35V,不高于50V的电压),加压一小段时间后,再将电容焊上电路板,开机后,失效现象消失。
实际施加的电压很小时(如施加10%的额定耐压),热量很小,不足以使潮气挥发掉,因此表现为电容失效。但施加的电压较大时,相同的电阻值,却能产生较大的热量,热量会使潮气快速挥发,电容特性很快恢复。因此,电容的耐压值降额幅度过大,容易引发低电压失效。一般以按照**降额到额定值的70%为宜。
高温储存试验后,潮气在高温下快速挥发,电容特性可恢复。
电容引脚断裂失效的机理和解决方法
环境应力筛选试验(ESS试验)是考核产品整机质量的常用手段。在ESS试验中,随机振动的应力旨在考核产品在结构、装配、应力等方面的缺陷。体积较大的电容,在焊接后,如果没有施加单独的处理措施,在振动试验时容易发生引脚断裂的问题。这个实验模拟的是运输振动、运行振动、冲击碰撞跌落的应力条件。
断裂的机理是应力集中,一般发生在电容引出脚或焊盘连接点位置,如图。当振动环境下,电容引出脚和焊盘连接点承受的将是整个电容横向剪切和纵向拉伸方向的冲击力,尤其当电容较大的时候,如大的电解电容。
此现象的发生机理简单,解决方案也不复杂,常规经验是在电容的底部涂1圈硅橡胶GD414以粘接固定,但这种处理方式是不行的。
硅橡胶拉伸强度为4-5MPa,伸长率为100%-200%,分子间作用力弱,粘附性差,粘接强度低;用于粘接电容时,表面上看是固定住了,但实际上冲击应力较大的时候,硅橡胶的被拉伸程度较大,电容自身依然会受到较大的拉伸应力和剪切应力;所以,固定用的材料推荐首选E-4X环氧树脂胶,其拉伸强度大于83MPa,伸长率小于9%,粘合性好,粘接强度高,收缩率低,尺寸稳定。从性能上能明显看出,E-4X环氧树脂胶才能起到真正的固定作用。
对涂胶工序也须进行细化,要求环氧胶固定电容高度达到电容本体的1/3,并在两肋形成山脊状支撑,使电容与E-4X胶成为一体,振动中不再颤振,引脚得到保护。
另外,除了涂胶固定,电路板装配生产的流程也会引出,先装配电容,再装配其它元件,这样,立式电容为最高点,周转或放置时,易受到磕碰或外力而造成歪斜;更改工序,先装配其它元件和粘接立柱再装配高电容,这样周转或放置时,比电容稍高的立柱受力就保护了电容。
改进工序前,先对电路板真空涂覆(在电容陶瓷面上形成约15μm厚的派埃林薄膜材料),再涂硅橡胶固定。改进后,先在电容上涂环氧胶,再在整个电路板真空涂覆,这样在电容和胶外表面一体形成派埃林薄膜。由于派埃林薄膜表面粗糙度小于陶瓷面,胶在派埃林薄膜表而的接触角大于陶瓷表面(接触角越小润湿效果越好),改进后固定效果更好。
对以上问题和解决方法做一个总结结论有三:1、电容引脚断裂性质是疲劳断裂;2、装配方式设计不合理,固定胶粘接强度不够和工艺不完善是导致引脚断裂的原因;3、改用环氧树脂胶和调整生产流程从工程上解决此问题
新能源又称非常规能源,是指传统能源之外的各种能源形式。指刚开始开发利用或正在积极研究、有待推广的能源,如太阳能、地热能、风能、海洋能、生物质能和核聚变能等。
现在国家都在大力提倡使用风能、太阳能,这是清洁能源。所以现在越来越多公司在设计太阳能发电、风能发电电源治理系统的时候,选型时主要是高电压、大容值的电容器有很大的产品需求。比如风能产品系统,有三处运用电容器到这个产品中,第一个可以选用薄膜电容器做高电压吸收的应用;还有一个是DC-LINK,DC-DC转换过程中,起滤波储能的作用;第三个是并网时的抗干扰电容。见图一所示。
需要说明的是,在这三款电容器中,大家最关注的就是DC-LINK用电容器,一般用户有两种电容器可以选择,第一个就是铝电解电容器,尤其在DC-DC转换单元,它的工作电压是700伏,容量是uF,这些仅仅是在小功率风能系统中的应用。大功率单元场合使用的电容器数目还会成倍增加。
铝电解电容器的最高耐压一般是在450V,那么如何在700伏这个电压值下使用呢?至少需要两只铝电解电容串联达到900伏耐压满足大于700伏的要求,一般像这种稳压和滤波电容器,假如使用铝电解电容器的话,都需要很多铝电解电容器串、并联,才能达到很大的容量值和耐高电压的使用要求。直流应用的场合也可以选择使用薄膜电容器,薄膜电容器的应用场合容量值和铝电解电容器是一样的,但是它的耐电压值可以直接做到700伏,不需要通过串、并联来满足耐压的要求的。
怎样来选择铝电解电容器和薄膜电容器呢?在完全相同的应用场合,到底是采用铝电解电容器还是采用薄膜电容器呢?假如薄膜电容器能够达到每一元人民币1μF~2μF的电容量,那以后的趋势一定是采用薄膜电容器为主,但有一点夸大的目前用薄膜电容器替换铝电解电容器的最大的障碍关键是价格题目。假如从特性角度而言,采用薄膜电容器有以下四个方面的理由:
1.铝电解电容器是液体电容器,首先有一个使用寿命的限制,现在很多太阳能、风能产品终极使用的用户对产品有一个寿命的要求,必须要大于15年,产品在15年之内必须是可靠的,由于风能产品的维修用度是非常昂贵和困难的。薄膜电容器是固体电容器,它正好可以满足这一使用要求,铝电解电容器有电解液材料的挥发,一般它没有办法达到15年的使用寿命期,假如要达到15年的试验寿命,意味着期间要更换两到三次。
2.第二个优点是,由于薄膜电容器的介质材料的特点,决定了它的ESR值低,因而它的发热量也非常的低,另外,它还可以做到很高的耐纹波电压。
3.第三个特点,有更宽使用环境温度范围的特性,这也是液体电容器和固体电容器的差别,薄膜电容器在低温状态工作的稳定性非常好。
4.薄膜电容器滤波能力比铝电容电容器要强很多倍。滤波要好的话可以采用薄膜电容器,转换的效率更高。这个就是现在在风能、太阳能应用发展的趋势。
所以,对于铜峰电子股份有限公司将来在薄膜电容器方面的投资决策是十分有必要的,这也必将在未来会带来利润的增长点。
此外,在太阳能运用方面,由于超级电容器充放电次数可达到数十万次以上,寿命特性远远优于其他电池类产品,这样,可以解决特别是在高空及密闭状态免维护的担忧,所以,经常会运用超级电容器作为储能器件来取代传统铅酸蓄电池,传统铅酸蓄电池充电寿命一般在500次左右。譬如,太阳能路灯、交通讯号灯就有应用的实例。
当然,新能源行业除对耐高压、大电容量电解电容器、薄膜电容器和超级电容器行业带来市场需求外,对其他常规电容器的需求也会带来新的增长。
一:电容的特性(隔直通交)
&&&&电容器是一种能储存电荷的容器.它是由两片靠得较近的金属片,中间再隔以绝缘物质而组成的.按绝缘材料不同,可制成各种各样的电容器.如:云母.瓷介.纸介,电解电容器等.在构造上,又分为固定电容器和可变电容器.电容器对直流电阻力无穷大,即电容器具有隔直流作用.电容器对交流电的阻力受交流电频率影响,即相同容量的电容器对不同频率的交流电呈现不同的容抗.为开么会出现这些现象呢\’这是因为电容器是依靠它的充放电功能来工作的,如图1,电源开关s未合上时.电容器的两片金属板和其它普通金属板—样是不带电的。当开关S合上时,如图2所示,电容器正极板上的自由电子便被电源所吸引,并推送到负极板上面。由于电容器两极板之间隔有绝缘材料,所以从正极板跑过来的自由电子便在负极板上面堆积起来.正极板便因电子减少而带上正电,负极板便因电子逐渐增加而带上负电。电容器两个极板之间便有了电位差,当这个电位差与电源电压相等时,电容器的充电就停上了.此时若将电源切断,电容器仍能保持充电电压。对已充电的电容器,如果我们用导线将两个极板连接起来,由于两极板间存在的电位差,电子便会通过导线,回到正极板上,直至两极板间的电位差为零.电容器又恢复到不带电的中性状态,导线中也就没电流了.电容器的放电过程如图3所示.加在电容器两个极板上的交流电频率高,电容器的充放电次数增多;充放电电流也就增强;也就是说.电容器对于频率高的交流电的阻碍作用就减小,即容抗小,反之电容器对频率低的交流电产生的容抗大.对于同一频率的交流电电.电容器的容量越大,容抗就越小,容量越小,容抗就越大.
&&二:电容器的参数与分类
&&&&在电子产品中,电容器是必不可少的电子器件,它在电子设备中充当整流器的平滑滤波、电源的退耦、交流信号的旁路、交直流电路的交流耦合等。由于电容器的类型和结构种类比较多,因此,我们不仅需要了解各类电容器的性能指标和一般特性,而且还必须了解在给定用途下各种元件的优缺点,以及机械或环境的限制条件等。这里将对电容器的主要参数及其应用做简单说明。
&&&&1.标称电容量(CR)。电容器产品标出的电容量值。云母和陶瓷介质电容器的电容量较低(大约在5000pF以下);纸、塑料和一些陶瓷介质形式的电容器居中(大约在0.005uF~1.0uF);通常电解电容器的容量较大。这是一个粗略的分类法。
&&&&2.类别温度范围。电容器设计所确定的能连续工作的环境温度范围。该范围取决于它相应类别的温度极限值,如上限类别温度、下限类别温度、额定温度(可以连续施加额定电压的最高环境温度)等。
&&&&3.额定电压(UR)。在下限类别温度和额定温度之间的任一温度下,可以连续施加在电容器上的最大直流电压或最大交流电压的有效值或脉冲电压的峰值。电容器应用在高电压场和时,必须注意电晕的影响。电晕是由于在介质/电极层之间存在空隙而产生的,它除了可以产生损坏设备的寄生信号外,还会导致电容器介质击穿。在交流或脉动条件下,电晕特别容易发生。对于所有的电容器,在使用中应保证直流电压与交流峰值电压之和不得超过电容器的额定电压。
&&&&4.损耗角正切(tgδ)。在规定频率的正弦电压下,电容器的损耗功率除以电容器的无功功率为损耗角正切。
在实际应用中,电容器并不是一个纯电容,其内部还有等效电阻,它的简化等效电路如附图所示。对于电子设备来说,要求RS愈小愈好,也就是说要求损耗功率小,其与电容的功率的夹角要小。
&&&&5.电容器的温度特性。通常是以20℃基准温度的电容量与有关温度的电容量的百分比表示。
&&&&6.使用寿命。电容器的使用寿命随温度的增加而减小。主要原因是温度加速化学反应而使介质随时间退化。
&&&&7.绝缘电阻。由于温升引起电子活动增加,因此温度升高将使绝缘电阻降低。
&&&&电容器包括固定电容器和可变电容器两大类。其中固定电容器又可根据其介质材料分为云母电容器、陶瓷电容器、纸/塑料薄膜电容器、
电容的类别和符号
&&&&电容的种类也很多,为了区别开来,也常用几个拉丁字母来表示电容的类别,如图1所示。第一个字母C表示电容,第二个字母表示介质材料,第三个字母以后表示形状、结构等。上图是小型纸介电容,下图是立式矩开密封纸介电容。表1列出电容的类别和符号。表2是常用电容的几项特性。
电解电容极性的判别
&&&&不知道极性的电解电容可用万用表的电阻挡测量其极性。
&&&&我们知道只有电解电容的正极接电源正(电阻挡时的黑表笔),负端接电源负(电阻挡时的红表笔)时,电解电容的漏电流才小(漏电阻大)。反之,则电解电容的漏电流增加(漏电阻减小)。
&&&&测量时,先假定某极为“+”极,让其与万用表的黑表笔相接,另一电极与万用表的红表笔相接,记下表针停止的刻度(表针靠左阻值大),然后将电容器放电(既两根引线碰一下),两只表笔对调,重新进行测量。两次测量中,表针最后停留的位置靠左(阻值大)的那次,黑表笔接的就是电解电容的正极。
&&&&测量时最好选用R*100或R*1K挡。用万用表判断电容器质量
用万用表判断电容器质量
&&&&视电解电容器容量大小,通常选用万用表的R&10、R&100、R&1K挡进行测试判断。红、黑表笔分别接电容器的负极(每次测试前,需将电容器放电),由表针的偏摆来判断电容器质量。若表针迅速向右摆起,然后慢慢向左退回原位,一般来说电容器是好的。如果表针摆起后不再回转,说明电容器已经击穿。如果表针摆起后逐渐退回到某一位置停位,则说明电容器已经漏电。如果表针摆不起来,说明电容器电解质已经干涸推失去容量。
&&&&有些漏电的电容器,用上述方法不易准确判断出好坏。当电容器的耐压值大于万用表内电池电压值时,根据电解电容器正向充电时漏电电流小,反向充电时漏电电流大的特点,可采用R&10K挡,对电容器进行反向充电,观察表针停留处是否稳定(即反向漏电电流是否恒定),由此判断电容器质量,准确度较高。黑表笔接电容器的负极,红表笔接电容器的正极,表针迅速摆起,然后逐渐退至某处停留不动,则说明电容器是好的,凡是表针在某一位置停留不稳或停留后又逐渐慢慢向右移动的电容器已经漏电,不能继续使用了。表针一般停留并稳定在50-200K刻度范围内。
&&&六:略谈电解电容
&&&&一、电解电容在电路中的作用
&&&&1,滤波作用,在电源电路中,整流电路将交流变成脉动的直流,而在整流电路之后接入一个较大容量的电解电容,利用其充放电特性,使整流后的脉动直流电压变成相对比较稳定的直流电压。在实际中,为了防止电路各部分供电电压因负载变化而产生变化,所以在电源的输出端及负载的电源输入端一般接有数十至数百微法的电解电容.由于大容量的电解电容一般具有一定的电感,对高频及脉冲干扰信号不能有效地滤除,故在其两端并联了一只容量为0.001--0.lpF的电容,以滤除高频及脉冲干扰.
&&&&2,耦合作用:在低频信号的传递与放大过程中,为防止前后两级电路的静态工作点相互影响,常采用电容藕合.为了防止信号中韵低频分量损失过大,一般总采用容量较大的电解电容。
&&&&二、电解电容的判断方法
&&&&电解电容常见的故障有,容量减少,容量消失、击穿短路及漏电,其中容量变化是因电解电容在使用或放置过程中其内部的电解液逐渐干涸引起,而击穿与漏电一般为所加的电压过高或本身质量不佳引起。判断电源电容的好坏一般采用万用表的电阻档进行测量.具体方法为:将电容两管脚短路进行放电,用万用表的黑表笔接电解电容的正极。红表笔接负极(对指针式万用表,用数字式万用表测量时表笔互调),正常时表针应先向电阻小的方向摆动,然后逐渐返回直至无穷大处。表针的摆动幅度越大或返回的速度越慢,说明电容的容量越大,反之则说明电容的容量越小.如表针指在中间某处不再变化,说明此电容漏电,如电阻指示值很小或为零,则表明此电容已击穿短路.因万用表使用的电池电压一般很低,所以在测量低耐压的电容时比较准确,而当电容的耐压较高时,打时尽管测量正常,但加上高压时则有可能发生漏电或击穿现象.
&&&&三、电解电容的使用注意事项
&&&&1、电解电容由于有正负极性,因此在电路中使用时不能颠倒联接。在电源电路中,输出正电压时电解电容的正极接电源输出端,负极接地,输出负电压时则负极接输出端,正极接地.当电源电路中的滤波电容极性接反时,因电容的滤波作用大大降低,一方面引起电源输出电压波动,另一方面又因反向通电使此时相当于一个电阻的电解电容发热.当反向电压超过某值时,电容的反向漏电电阻将变得很小,这样通电工作不久,即可使电容因过热而炸裂损坏.
&&&&2.加在电解电容两端的电压不能超过其允许工作电压,在设计实际电路时应根据具体情况留有一定的余量,在设计稳压电源的滤波电容时,如果交流电源电压为220~时变压器次级的整流电压可达22V,此时选择耐压为25V的电解电容一般可以满足要求.但是,假如交流电源电压波动很大且有可能上升到250V以上时,最好选择耐压30V以上的电解电容。
&&&&3,电解电容在电路中不应靠近大功率发热元件,以防因受热而使电解液加速干涸.
&&&&4、对于有正负极性的信号的滤波,可采取两个电解电容同极性串联的方法,当作一个无极性的电容
&铝电解电容器是制约变频器使用寿命的最关键的元件,其主要原因是铝电解电容器的寿命问题,特别在变频器这样的高谐波电流、高温的应用场合。相对其它元件而言,铝电容电容器的寿命是最短的。
1“直流支撑”与“DC-Link”电容器的作用
在直流电作为逆变器的供电电源时,由于这个直流电源需要通过直流母线与逆变器链连,这种供电方式也被称为“DC-Link”。由于逆变器需要向“DC-Link”索取有效值和幅值很高的脉动电流,会在“DC-Link”上产生很高的脉动电压使得逆变器难以承受。为此,需要对“DC-Link”进行“支撑”,以确保“DC-Link”的供电质量。
在大多数情况下,支撑“DC-Link”的元件是电容器。“DC-Link”电容器的作用主要是吸收来自于逆变器向“DC-Link”索取的高幅值脉动电流,阻止其在“DC-Link”的阻抗上产生高幅值脉动电压,使逆变器端的电源电压波动保持在允许范围。
“DC-Link”电容器的第二个作用就是防止来自于“DC-Link”的电压过冲和瞬时过电压对逆变器的影响。
2& 工频多相整流的直流母线电容器的作用
&&&三相桥式整流电路或12相整流电路用于负载电流没有突变的应用中,没有必要在整流输出端跨接直流母线电容器,由于没有电流突变,整流器及交流电源的寄生电感生产的感生电势不会很高而影响输出电压。
然而,当负载为开关功率变换器时,开关功率变换器将向直流母线索取开关频率下的纹波电源,如果这个电流流入直流母线及交流侧的寄生电感,将会产生不能容忍的开关频率下的纹波电压。从这一点看,直流电源不再是仅仅提供直流电流,而是需要提供带有丰富交流成分的脉冲电流,这时的直流电源不仅需要低的直流内阻,还需要在很宽的频带宽度内均具有良好的低阻抗。而这个宽频段的低阻抗作为整流器的直流电源是不会提供的,要想获得良好的宽频段的低阻抗必须应用性能良好的电容器。利用电容器电压不能跃变和电容器容抗随频率的升高而降低的特性,用电容器降低直流母线的交流阻抗。
从这个角度考虑,三相桥式整流或12相整流输出直流母线并接的电容器不再是平滑电压的滤波电容器,而是电源旁路电容器,或称为“直流支撑”、“DC-Link”电容器。
“直流支撑”、“DC-Link”电容器可以选择铝电解电容器,也可以选择薄膜电容器。由于铝电解电容器自身可承受的纹波电流值比较低,在“直流支撑”、“DC-Link”应用中需要满足承受高幅值纹波电流,这就要求在选择铝电解电容器时要按纹波电流的大小选择铝电解电容器,如果负载产生20A的纹波电流,要选择1000μF的电容量。
从上述叙述可以得出结论,直流支撑电容器的作用就是在负载电流波动时为负载提供“无感”的直流“电源”,消除开关与供电电源之间无法估计的并且量值很大的寄生电感所产生的不希望出现的感生电视的电压尖峰。
尽管这种解决方案可能是最优的,但是价格可能是非常高,一般应用将接受不了。那么,是否有更好的解决方案?结论是可以有几种低价格并且性能很好的解决方案。
3&价格问题
用薄膜电容器替代铝电解电容器的关键是价格问题。如果额定电压为700V的薄膜电容器能够做到每一元人民币1μF~2μF的电容量就可以替代铝电解电容器。
有的电容器制造商认为每一元人民币2μF的价格是绝对制造不出来的,也有的电容器制造商经过精打细算后认为是可以实现的。如果有足够的电容量并且在价格上接近或低于铝电解电容器,这样的解决方案将是更好的。需要采用薄膜电容器替代铝电解电容器时,应按小容量替换比例进行替换。
4& 薄膜电容器替代铝电解电容器方案
薄膜电容器替代铝电解电容器最大的障碍是薄膜电容器的价格问题。如果电容器一比一替代在价格上肯定是不现实的。从上述分析可以知道,多相整流输出滤波电容器不再是平滑作用,而是直流母线的电源旁路,因此,只要电容量能满足电源旁路的要求即可。事实上,作为直流母线的电源旁路对电容量的要求并没有铝电解电容器时那么大,致使铝电解电容器的电流承受能力差,而且ESR比较高的原因。
由于三相桥式整流器的电容器滤波实际上是直流支撑、DC-Link或直流母线旁路电容器。这样问题的关键就是“滤波”电容器的电流承受能力是否满足要求。薄膜电容器制造商已经制造出相应的金属化聚丙烯薄膜电容器。铜峰的SHD系列DC-Link单面金属化聚丙烯薄膜电容器的数据如表1所示。
表1 铜峰的SHD、SHE系列DC-Link单面金属化聚丙烯薄膜电容器部分数据
铜峰的SHD、SHE系列DC-Link单面金属化聚丙烯薄膜电容器的外形与螺栓式铝电解电容器相似,用这种薄膜电容器替代铝电解电容器仅需要很小的改动。
从表1可以看到,铜峰的SHD系列DC-Link单面金属化聚丙烯薄膜电容器可以承受很高的纹波电流,而且基本不受工作温度限制。;例如:300μF/700V的SHD-700-300聚丙烯薄膜电容器的电流承受能力为50A,两只并联时达100A。远远高于3900μF/400V铝电解电容器所能承受的约15A纹波电流值,高于15kW变频器“滤波”电容器需要“滤波”大约60A左右的整流滤波和逆变器产生的开关纹波电流。从这个数据看,铝电解电容器发热是必然的,而且寿命是短的。
5 试验与试验结果
以下是三个薄膜电容器替代铝电解电容器的替换实验。
(1)试验1
一个15kW变频器正常采用应用3900μF/400V铝电解电容器2个串联,等效电容量为1950μF。采用EACO的SHD系列DC-Link单面金属化聚丙烯薄膜电容器替代铝电解电容器,可以是300μF/700V
2个并联的电容量替换比率30.7%,或者采用250μF/700V
2个并联,替换比率25.6%。满功率条件下运行的测试结果列于表2。
表2 铜峰薄膜电容器替代铝电解电容器测试结果
从表2的结果可以看到,采用低电容量替换比例后满载时的峰-峰值电压明显增加甚至高于空载电压的13.3%(76V)的理想状态的无滤波电容器时整流输出电压的峰-峰值。在设计变频器控制策略时需要考虑这个电压变化对输出的影响。
在表2中还可以看到,随着滤波电容器电容量的降低,输出电压平均值有所上升,这与常规滤波电容器的电容量越大输出电压平均值越高的概念不同。其原因可能是由于随着滤波电容器电容量的降低,整流器的导通角增加,使电流脉冲在电网内阻的电压降减少的结果;而输出电压峰-峰值高于电阻性负载的理想输出电压峰-峰值的原因可能是由于交流电网寄生电感所致。
(2)试验2
更进一步的替换实例为30kW变频器一般采用3300μF/400V
铝电解电容器2串2并。采用250μF/700V的铜峰的SHD系列单面金属聚丙烯薄膜电容器2个并联替换原铝电解电容器组,电容量的替换比率为27%。长期运行温升仅仅2℃,电机运行正常,无异常现象。
(3)试验3
第三个替换试验是用薄膜电容器替代660V交流输入电压变频器中的铝电解电容器。由于手头没有660V感应电机,负载只能采用电阻箱替代感应电机。其测试结果列于表3。
表3 铜峰薄膜电容器替代铝电解电容器测试结果
采用大比率电容量替换率的DC-Link聚丙烯薄膜电容器替换铝电解电容器在性能上可以满足变频器“滤波”电容器的要求。如果这时的聚丙烯薄膜电容器的价格不高于铝电解电容器组,则这种替代方案在经济效益相同的条件下,性能上完成可以满足要求。
采用聚丙烯薄膜电容器替代铝电解电容器后,由于聚丙烯薄膜电容器基本上不存在寿命限制问题,避免了高可靠应用时变频器定期替换铝电解电容器的麻烦和成本的提高。
一,金属化薄膜电容器
通常的薄膜电容器其制法是将铝等金属箔当成电极和塑料薄膜重叠后卷绕在一起制成。但是另外薄膜电容器又有一种制造法,叫做金属化薄膜(Metallized
Film),其制法是在塑料薄膜上以真空蒸镀上一层很薄的金属以做为电极。如此可以省去电极箔的厚度,缩小电容器单位容量的体积,所以薄膜电容器较容易做成小型,容量大的电容
器。例如常见的MKP电容,就是金属化聚丙烯膜电容器(Metailized Polypropylene Film
Capacitor)的代称,而MKT则是金属化聚乙酯电容(Metailized Polyester)的代称。
金属化薄膜电容器所使用的薄膜有聚乙酯、聚丙烯、聚碳酸酯等,除了卷绕型之外,也有叠层型。金属化薄膜这种型态的电容器具有一种所谓的我我复原作用(Self
Action),即假设电极的微小部份因为电界质脆弱而引起短路时,引起短路部份周围的电极金属,会因当时电容器所带的静电能量或短路电流,而引发更大面积的溶
融和蒸发而恢复绝缘,使电容器再度回复电容器的作用。
金属化薄膜电容器的特点:
金属化薄膜电容即是在聚酯薄膜的表面蒸镀一层金属膜代替金属箔做为电极,因为金属化膜层的厚度远小于金属箔的厚度,因此卷绕后体积也比金属箔式电容体积小很多。金属化膜电容的最大优点是“自愈”特性。所谓自愈特性就是假如薄膜介质由于在某点存在缺陷以及在过电压作用下出现击穿短路,而击穿点的金属化层可在电弧作用下瞬间熔化蒸发而形成一个很小的无金属区,使电容的两个极片重新相互绝缘而仍能继续工作,因此极大提高了电容器工作的可靠性。从原理上分析,金属化薄膜电容应不存在短路失效的模式,而金属箔式电容器会出现很多短路失效的现象。
二,薄膜电容器的应用场合
薄膜电容器主要应用于电子、家电、通讯、电力、电气化铁路、混合动力汽车、风力发电、太阳能发电等多个行业,这些行业的稳定发展,推动了薄膜电容器市场的增长。
随着技术水平的发展,电子、家电、通讯等多个行业更新换代周期越来越短,而薄膜电容器凭借其良好的电工性能和高可靠性,成为推动上述行业更新换代不可或缺的电子元件[2]。未来几年随着数字化、信息化、网络化建设进一步发展和国家在电网建设、电气化铁路建设、节能照明、混合动力汽车等方面的加大投入以及消费类电子产品的升级,薄膜电容器的市场需求将进一步呈现快速增长的趋势。
据中国电子元件行业协会统计,预计到 2010 年,全球薄膜电容器市场将以
15~20%的速度快速增长,薄膜电容器市场的增长必将带动聚丙烯电子薄膜市场的快速增长。
三,薄膜电容器的优点
薄膜电容器由于具有很多优良的特性,因此是一种性能优秀的电容器。它的主要等性如下:无极性,绝缘阻抗很高,频率特性优异(频率响应宽广),而且介质损失很小。基于以上的优点,所以薄膜电容器被大量使用在模拟电路上。尤其是在信号交连的部分,必须使用频率特性良好,介质损失极低的电容器,方能确保信号在传送时,不致有太大的失真情形发生。在所有的塑料薄膜电容当中,又以聚丙烯(PP)电容和聚苯乙烯(PS)电容的特性最为显著,当然这两种电容器的价格也比较高。
资料来源网络

我要回帖

更多关于 家长不理解老师的专业 的文章

 

随机推荐