求一款隔离音频放大器电路图的内部电路图

导读:模拟信号隔离放大器技术应用4-20mAISOLATIONAMPLIFIER,关键词:模拟信号:0-10mA/0-20mA/4-20mA/0-5V/0-10V,说明:ISO系列隔离放大器是一种将模拟信号按比例进行隔离和转换的混合集成电路(I,无源型IC内部包含有电流信号调制解调电路、信号耦合隔离变换电路等,以满足用户无需外接电源而实现信号远距离、无失真传输的需要,内部的陶瓷基板、印刷电阻工艺及新模拟信号隔离放大器 技术应用 4-20mA ISOLATION AMPLIFIER
关键词:模拟信号:0-10mA/0-20mA/4-20mA/0-5V/0-10V/0-±5V/1-5V等输入与输出之间的隔离及变换。
说 明:ISO系列隔离放大器是一种将模拟信号按比例进行隔离和转换的混合集成电路(IC),它分为有源(含辅助电源)型和无源型两大类。
无源型IC内部包含有电流信号调制解调电路、信号耦合隔离变换电路等,很小的输入等效电阻,使该IC的输入电压达到超宽范围(7.5―32V),以满足用户无需外接电源而实现信号远距离、无失真传输的需要。内部的陶瓷基板、印刷电阻工艺及新技术隔离措施使器件能达到3KVAC绝缘电压和工业级宽温度、潮湿、震动的现场恶劣环境要求。ISO 4-20mA系列产品使用非常方便无需外接任何元件即可实现4-20mA电流环隔离或信号一进二出、二进二出等变换功能。
有源型IC是在同一芯片上集成了一个高隔离的DC/DC电源及高性能线性光电耦合器的混合集成电路。该芯片除了为内部放大电路供电外,还可以向外部(信号输入与输出端)提供两组隔离的正、负直流电源和两组的5VDC稳压基准源,专供外部电路扩展用,如电桥电路、小信号前置放大电路等用户专用电路。该系列产品具有宽信号带宽20KHZ,可对0~±10VDC双向直流信号或0~5VAC的交流信号进行隔离、调理和变换。该IC体积很小,使用非常方便,只需很少外部元件即可实现模拟信号的(I/I I/V V/I V/V)隔离及变换功能。
主要应用领域: 模拟信号数据采集,隔离传输及供电,工业现场信号隔离传输及变换,地线干扰抑制,信号远程无失真传输,仪器仪表与传感器信号的隔离变换。电力设备及医疗仪器安全隔离栅。
产品体系:ISO 4-20mA 系列―――两线无源4-20mA信号隔离调理IC
ISO-Ax-Px-Ox系列―――直流电流信号(I/V I/I)隔离放大器IC
ISO-Ux-Px-Ox系列―――直流电压信号(V/I V/V)隔离放大器IC
ISO 系列―――直流双向或交流信号隔离放大器IC
产品特性:
精度等级:0.1级、0.2级、0.5级 全量程范围内极高的线性度(非线性度<0.2%) 国标标准信号: 0-10mA/0-20mA/4-20mA/0-5V/0-10V/0-±5V/1-5V输入/输出。具有低输入阻抗和输出高负载能力 信号输入/输出/辅助电源之间 3KV 三隔离 单电源供电,可为用户在信号输入或输出端提供隔离电源 低成本,小体积,标准单列SIP12和双列DIP24脚IC封装
工业级工作温度范围,符合UL-94标准的阻燃材料真空灌封
信号隔离技术是使模拟信号在发送时不存在穿越发送和接收端之间屏障的电流连接。这允许发送和接收端外的地或基准电平之差值可以高达几千伏,并且防止了可能损害信号的不同地电位之间的环路电流。信号地的噪声可使信号受损。隔离可将信号分离到一个干净的信号子系统地,使传感器、仪器仪表或控制系统与电源之间互相隔离,从而保证整个系统装置的工作安全、可靠及稳定。
而在另一种应用中,基准电平之间的电连接可隔离产生一个对于操作人员或病人不安全的电流通路。
信号隔离器件依赖于无发送器和接收器来跨越隔离屏障,这种器件曾用于数字信号,但线性化问题迫使模拟信号隔离采用变压器、光电耦合器、电容或光电池等器件来实现。
模拟信号隔离:在很多系统中,模拟信号必须隔离。模拟信号所考虑的电路参量完全不同于数字信号。
模拟信号通常先要考虑:精度或线性度、频率响应、噪声等。
然后是对电源的要求,电源要求高隔离、高精度、低噪声,特别是对输入级。也应该关注隔离放大器的基本精度或线性度不能依靠相应的应用电路来改善,但这些电路可降低噪声和降低输入级电源要求。
对于电源噪声的干扰,可以采用调制载波使模拟信号跨越这个屏障。如ISO 4-20的两线无源信号隔离放大器使模拟隔离简化。输入信号被占空度调制并以数字方式发送跨过屏障。输出部分接收被调制的信号,把它变换回模拟信号并去掉调制/解调过程中固有的纹波成分。
对信号隔离的另一问题是隔离放大器输入级所需的功耗,而隔离放大器的输入阻抗及自身的等效电阻是问题的关键所在。而输出级通常以机壳或地为基准,输入级通常浮动在另一个电位上。因此,输入级的电源也必须隔离。通常用一个单电源(5V/12V/15V/24V),而不是理想中使用的正、负双电源。
二、原理介绍
通过反复实验验证,本系列产品达到了预期的目的。 附图说明: 图一、隔离放大器原理框图
图一 . 1.两线无源4-20mA隔离放大器原理框图
图一 . 2. ISO 1001系列电压输出内置电源隔离放大器原理框图
图一 . 3. ISO APO系列电流输出内置电源隔离放大器原理框图
3、典型电性能指标:
三、典型应用技术
图三、为ISO 系列隔离放大器典型应用接线原理图,其中输入和输出放大器都为跟随方式。 此时隔离放大器的整体放大倍数为20倍,R1,R2和W1为调零电路,R1=5.1K R2=2K W1=2K(多圈电位器)。
辅助电源为 +12VDC,R3和W3为增益调节电路,R3=39K W3=10K(多圈电位器)
图三. ISO 系列隔离放大器典型应用接线原理图
信号输入放大器设计:
图四 为输入放大器电路,当输入放大器输出(21脚COM端)为0.5V时,输出即为5V(13和14脚短接时)。输入反相放大电路:
图五 为输入反相放大电路接线图,其中放大倍数为:Kin = - R11/R12
R3 = R11//R12 例如:当输入Vin为0~-100mV,输出为0~5V时,可以取:R11=50K R12=10K R13=8.3K 放大倍数:Kin=-50/10=-5 输入同相放大电路:
图六 为输入同相放大电路接线图,其放大倍数为:Kin=1+R2/R1
图四 输入放大器
包含总结汇报、考试资料、IT计算机、专业文献、党团工作、教学教材、人文社科、应用文书、办公文档以及模拟信号隔离放大器 技术应用等内容。本文共2页
相关内容搜索隔离放大器的作用是什么?_百度知道
隔离放大器的作用是什么?
不需要解释原理,只需要说明用它来干什么
我有更好的答案
  隔离放大器用于防止数据采集器件遭受远程传感器出现的潜在破坏性电压的影响。这些放大器还用于在多通道应用中放大低电平信号。它们也可以消除由接地环路引起的测量误差。由于不需要附加的隔离电源,带有内部变压器的隔离放大器可以降低电路成本。  简介:  隔离放大器是一种特殊的测量放大电路,其输入、输出和电源电路之间没有直接电路耦合,即信号在传输过程中没有公共的接地端。输入电路和放大器输出之间有欧姆隔离的器件。  是在自动化控制系统中对电压电流、AC交流、4-20mA、0-5V、mV毫伏、PWM脉冲、Hz频率、Pt100热电阻、正弦波、方波、电位器、转速等各种信号进行变送、转换、隔离、放大、远传的集成电路,可与各种工业传感器配合使用,满足用户本地监视远程数据采集的需求。
采纳率:89%
来自团队:
在不直接影响原信号的前提下,对原信号进行放大
本回答被提问者采纳
故名思意,隔离放大器的作用,就是隔离并放大。隔离,主要是因为两个电路没有公用点。通过隔离放大器把一个电路的量(V,I,或其它)转换为与原电路隔离的,等效的量。之后用于另一电路。
用途:对信号的输入和输出进行电气隔离。使得输出信号中的噪声和纹波达到最小,为后级应用电路提供良好的激励源。
隔离地线,就是不共地,同时放大。
加强信号输出
屏蔽干扰,放大反馈信号,此时信号可能比原信号大
其他4条回答
为您推荐:
其他类似问题
您可能关注的内容
隔离放大器的相关知识
&#xe675;换一换
回答问题,赢新手礼包&#xe6b9;
个人、企业类
违法有害信息,请在下方选择后提交
色情、暴力
我们会通过消息、邮箱等方式尽快将举报结果通知您。用数字隔离技术取代隔离放大器的应用实例
  进行隔离是防止电流在两个通讯点之间流动的一种方法。一般在两种情况下采用隔离:第一种情况是,在有可能存在损坏设备或危害人员的潜在的电流浪涌时。第二种情况是必须避免存在不同地电位和?裂的接地回路的互连。两种情形都是采用隔离来避免电流流过,而允许两点之间有数据或功率传送。
  最近在设计及机械设备的使用方面立法方面都有变化,要求在恶劣环境下几乎任何类型的数据采集系统都要有隔离。此外,从传统的单通道隔离系统到采用多通道隔离的应用转变的趋势导致引入了新型隔离策略。这些应用涉及高电压、高速/高精度通信、或者长距离通信。普通的例子如工业I/O系统、接口、电源/调节杆,发动机控制/驱动系统以及。
  本文首先回顾了以前的隔离方法及其要素,然后回顾了数字隔离器的工作原理及其在多通道数据采集系统中的应用。
  早期的隔离技术
  早期的设计除使用之外,还使用各种模拟,将工厂地面的传感器电路与控制室内的信号处理系统进行隔离。在通道数量有限及信号带宽小的应用中,目前仍在采用这些放大器。图1示意了一种单通道温度测量系统中的这类隔离。
  这些隔离放大器为精密放大器,用来将输入信号数字传输穿过微分容性屏障(图2)。采用数字调制后,屏障特性就不会影响信号完整性了,结果可靠性极佳,屏障间的高频瞬态免疫性也很优秀。
  如图2,输入放大器A1对输入电流(VIN/RIN) 和电流源之间的差异进行积分。积分器在超过比较器阈值之前向一个方向斜坡上升。比较器和检测放大器AS1驱使电流源切换,得到的信号为三角波,占空比是50%。内部振荡器驱使电流源以高频率(500
kHz)切换。合成驱动是一种补充的占空比调制方波。
  同时,检测放大器AS2探测穿过容性屏障的信号变化,将一切换电流源驱动入积分器A2。输出级根据流过反馈RF的电流对占空比调制电流进行平衡,使在VOUT引脚的平均值等于VIN。输出反馈环内的采样保持放大器消除不期望而解调过程固有的电压纹波。
  隔离放大器虽然具有高可靠性和高精度,但受限于信号带宽50 kHz。其老旧的技术要求最小?±4 V的电源,不支持目前的3
V及以下的低电压应用。此外,其制造过程涉及输入和输出部分单独制作,异常电路匹配的激光微调,以及在两部分间安装隔离电容,使这些器件相当昂贵。
  多通道隔离
  工业自动控制中的许多数据采集系统采用多输入通道模数转换器(ADC)捕获多个模拟输入的输入数据(被测物理量)(图3)。绝大多数Δ-Σ
ADC都具有串行接口来减小封装尺寸和占板面积。串行接口的复杂性在于需要的慢速控制信号数不同,如片选、功率降低、增益及速度设定以及多路器寻址。不过,所有串行接口都具有时钟信号和输出数据(转换结果)高速传输线。
  因为信号获取和调理发生在ADC内部,将传感器电路与信号处理电路隔离的最佳位置是在采用数字隔离器的数字接口处。如前所述,因为接口复杂,隔离器必须能够传输高速ADC转换结果,同时也要能传输低速控制信号。下一部分论述数字隔离器内部工作,说明这些器件如何进行高速及低速数据传输的。
  数字隔离器
  图4的隔离器是基于一种电容性隔离屏障技术。此器件由两个数据通道组成:一个是高频通道(HF),带宽从100 kHz到150
MHz;另一个是低频通道(LF),覆盖范围从100 kHz到直流。
  原则上来说,一个单端输入信号进入HF通道之后被输入端的非门分离为一微分信号。随后的电容电阻网络将此信号微分为瞬变信号,然后再通过两个比较器转换成微分脉冲。比较器输出驱动一个‘或非’门跳转,其输出进入一输出多路器。跳转的输出驱动处的一精密逻辑(DCL)测量信号瞬变之间的间隔。如果两个连续瞬变的间隔超过某一时间限(如在低频率信号时),DCL驱使输出多路器从高频通道转向低频通道。
  因为低频输入信号需要内部电容为受限制的大容量值,这些信号用一内部振荡器的载波频率进行宽调制,这样,得到能通过容性屏障的高频信号。调制输入时,需要一个低通滤波器(LPF)将高频载波从实际数据中除掉,然后再到达输出多路器。图5和图6给出了高频通道和低频通道及相应的代表性波形。
  高频操作
  将单端输入信号分离成微分信号分量A和/A。每个信号分量然后再微分成瞬变B和/B。跟随的比较器对瞬变进行比较。只要比较器正输入的电位高于负输入端电位,比较器输出即为逻辑高,这样就将输入瞬变转换成了短输出脉冲了。
  输出脉冲置位及复位‘或非’门跳转。我们可以从真值表看出,‘或非’门配置有一个反向跳转,即输入C的高电平将输出/D置为高,而/C为高电平则将D置为高。因为比较器输出脉冲持续时间短,就可能出现两个输出都为低的情况。这时,跳转将其之前的输出状态存储了下来。由于/D的信号与输入信号在形状和相位上都相同,/D就成为了高速通道的输出而与输出多路器相连。
  低频通道工作
  慢输入信号用一高频载波进行脉宽调制,信号高则位置A的占空比为90:10,信号低则在此处的占空比为10:90。此后,信号处理与高速通道的不对称信号处理相同。唯一不同是,低速通道(/D)的高频成分用一R-C低通滤波器滤波,然后再进入输出多路器(E)。
  单个隔离器能够传送宽带数据(从直流直到100
MHz以上)的功能成功完成了概念验证,隔离器制造商从此得到灵感,制造了双、三和四路的单向和双向器件。这些器件用于工业应用中最普遍的数字接口。
  应用实例
  隔离工业接口时,需要区分过程控制和工厂自动化应用。这是因为两者之间的差别会影响到数字接口设计的隔离工作。过程控制一般涉及到检测某些设备、系统或过程的不同物理量(如压力“与”温度)。每一个物理量都用一特定类型的传感器或变换器,其输出信号需要特定的信号调理。因此,多种不同的传感器需要不同的参数设置,如内部增益、采样率、测量重复性、以及阻抗缓冲。支持宽范围设置的ADC提供有多个接口控制线,除标准串行接口线要求隔离之外,所有这些控制线也都要求隔离。
  图7中,许多不同灵敏度(mV/K)的传感器测量不同的过程参数,如温度、压力和电流。要求有多种增益设置来使各传感器的ADC的输入动态范围最大化。如果期望一个或多个通道输入变化能比别的通道快,可能就要求采样率(速度)之间有切换。降低功率功能用来节省测量后的功耗,此功能可使控制器执行其它系统功能。这种高度多功能性要求许多控制通道用两个四路隔离器隔离。
  与过程控制相比,工厂自动化常涉及监测多个器件和设备的单个物理量(如温度‘或’压力)。因此,这些系统采用多个同类型传感器,灵敏度和响应时间一致。
  图8给出了这样一种使用了四个同类型热电耦进行不同设备温度测量的电路。此应用使用的ADC与图7电路的相同。不过,因传感器特性一致,通过连接相关控制引脚(Gain1、Gain2和Speed)将增益和采样率设置值固定到合适的电源轨(VDD或GND)。工厂自动化中的许多自激系统连续测量其输入,这样就需要将/PWDN引脚接到正电源轨上。
  本系统配置将接口大大简化为数据、时钟和地址线的隔离。因此,只需要3:1的四路隔离器。
  在上述例子中,接口隔离出现在ADC和系统控制器之间。这种方法非常适合每个模块只需要一个或最多两个ADC进行通道计数的输入模块。如果超过此种情况,而将每个数据转换器隔离就不经济了。因此,建议使用本地控制器。这时,每个ADC都通过一个GPIO总线接口与本地控制器通信。不过,实际隔离位于本地到系统的控制器接口。
  总之,可以肯定地说隔离放大器已经过时了,而数字隔离器正当时。了解系统要求后再决定采用哪种隔离器以及将隔离器置于系统哪个位置。(德州仪器)
推荐我朋友的博客:-
已投稿到:
以上网友发言只代表其个人观点,不代表新浪网的观点或立场。温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!&&|&&
LOFTER精选
网易考拉推荐
用微信&&“扫一扫”
将文章分享到朋友圈。
用易信&&“扫一扫”
将文章分享到朋友圈。
阅读(1960)|
用微信&&“扫一扫”
将文章分享到朋友圈。
用易信&&“扫一扫”
将文章分享到朋友圈。
历史上的今天
在LOFTER的更多文章
loftPermalink:'',
id:'fks_',
blogTitle:'BA 地隔离放大器电路IC性能特点及应用电路说明',
blogAbstract:'
概述:&&&&&&&&&&&&&&&&&&&&&&&
{if x.moveFrom=='wap'}
{elseif x.moveFrom=='iphone'}
{elseif x.moveFrom=='android'}
{elseif x.moveFrom=='mobile'}
${a.selfIntro|escape}{if great260}${suplement}{/if}
{list a as x}
推荐过这篇日志的人:
{list a as x}
{if !!b&&b.length>0}
他们还推荐了:
{list b as y}
转载记录:
{list d as x}
{list a as x}
{list a as x}
{list a as x}
{list a as x}
{if x_index>4}{break}{/if}
${fn2(x.publishTime,'yyyy-MM-dd HH:mm:ss')}
{list a as x}
{if !!(blogDetail.preBlogPermalink)}
{if !!(blogDetail.nextBlogPermalink)}
{list a as x}
{if defined('newslist')&&newslist.length>0}
{list newslist as x}
{if x_index>7}{break}{/if}
{list a as x}
{var first_option =}
{list x.voteDetailList as voteToOption}
{if voteToOption==1}
{if first_option==false},{/if}&&“${b[voteToOption_index]}”&&
{if (x.role!="-1") },“我是${c[x.role]}”&&{/if}
&&&&&&&&${fn1(x.voteTime)}
{if x.userName==''}{/if}
网易公司版权所有&&
{list x.l as y}
{if defined('wl')}
{list wl as x}{/list}线性放大电路
上一个 下一个

我要回帖

更多关于 运算放大器电路图 的文章

 

随机推荐