图片中的x光检测仪图片表示什么意思

请问这样的甲醛测试仪准确吗?图片中的值在安全范围值之内吗? - 知乎2被浏览201分享邀请回答0添加评论分享收藏感谢收起请问HPLC色谱图的纵坐标代表什么意思(纵坐标显示LU),是Agilent公司1200型高效液相色谱仪,荧光检测器,
本回答由提问者推荐
var sogou_ad_id=731547;
var sogou_ad_height=160;
var sogou_ad_width=690;图纸识别及测量仪器使用培训教材_百度文库
赠送免券下载特权
10W篇文档免费专享
部分付费文档8折起
每天抽奖多种福利
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
图纸识别及测量仪器使用培训教材
阅读已结束,下载本文到电脑
想免费下载本文?
登录百度文库,专享文档复制特权,积分每天免费拿!
你可能喜欢【图片】关于材料检测的,希望大家不要觉的我是在捣乱。【监理吧】_百度贴吧
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&签到排名:今日本吧第个签到,本吧因你更精彩,明天继续来努力!
本吧签到人数:0可签7级以上的吧50个
本月漏签0次!成为超级会员,赠送8张补签卡连续签到:天&&累计签到:天超级会员单次开通12个月以上,赠送连续签到卡3张
关注:55,033贴子:
关于材料检测的,希望大家不要觉的我是在捣乱。
无损检测是指在不损害或不影响被检测对象使用性能,不伤害被检测对象内部组织的前提下,利用材料内部结构异常或缺陷存在引起的热、声、光、电、磁等反应的变化,以物理或化学方法为手段,借助现代化的技术和设备器材,对试件内部及表面的结构、性质、状态及缺陷的类型、性质、数量、形状、位置、尺寸、分布及其变化进行检查和测试的方法[1] 。无损检测是工业发展必不可少的有效工具,在一定程度上反映了一个国家的工业发展水平,无损检测的重要性已得到公认,主要有射线检验(RT)、超声检测(UT)、磁粉检测(MT)和液体渗透检测(PT) 四种。其他无损检测方法有涡流检测(ECT)、声发射检测(AE)、热像/红外(TIR)、泄漏试验(LT)、交流场测量技术(ACFMT)、漏磁检验(MFL)、远场测试检测方法(RFT)、超声波衍射时差法(TOFD)等。简介无损检测就是NDT Training,缩写是NDT(或NDE,non-destructive examination),也叫无损探伤,是在不损害或不影响被检测对象使用性能的前提下,采用射线、超声、红外、电磁等原理技术并结合仪器对材料、零件、设备进行缺陷、化学、物理参数检测的技术。常见的如超声波检测焊缝中的裂纹。中国机械工程学会无损检测学会是中国无损检测学术组织,TC56是其标准化机构。[2] 无损检测是工业发展必不可少的有效工具,在一定程度上反映了一个国家的工业发展水平,其重要性已得到公认。中国在1978年11月成立了全国性的无损检测学术组织——中国机械工程学会无损检测分会。此外,冶金、电力、石油化工、船舶、宇航、核能等行业还成立了各自的无损检测学会或协会;部分省、自治区、直辖市和地级市成立了省(市)级、地市级无损检测学会或协会;东北、华东、西南等区域还各自成立了区域性的无损检测学会或协会。在无损检测的基础理论研究和仪器设备开发方面,中国与世界先进国家之间仍有较大的差距,特别是在红外、声发射等高新技术检测设备方面更是如此。常用的无损检测方法:涡流检测(ECT)、射线照相检验(RT)、超声检测(UT)、磁粉检测(MT)和液体渗透检测(PT) 五种。其他无损检测方法:声发射检测(AE)、热像/红外(TIR)、泄漏试验(LT)、交流场测量技术(ACFMT)、漏磁检验(MFL)、远场测试检测方法(RFT)、超声波衍射时差法(TOFD)等。原理无损检测是利用物质的声、光、磁和电等特性,在不损害或不影响被检测对象使用性能的前提下,检测被检对象中是否存在缺陷或不均匀性,给出缺陷大小,位置,性质和数量等信息。与破坏性检测相比,无损检测有以下特点。第一是具有非破坏性,因为它在做检测时不会损害被检测对象的使用性能;第二具有全面性,由于检测是非破坏性,因此必要时可对被检测对象进行100%的全面检测,这是破坏性检测办不到的;第三具有全程性,破坏性检测一般只适用于对原材料进行检测,如机械工程中普遍采用的拉伸、压缩、弯曲等,破坏性检验都是针对制造用原材料进行的,对于产成品和在用品,除非不准备让其继续服役,否则是不能进行破坏性检测的,而无损检测因不损坏被检测对象的使用性能。所以,它不仅可对制造用原材料,各中间工艺环节、直至最终产成品进行全程检测,也可对服役中的设备进行检测。无损检查目视检测范围:1、焊缝表面缺陷检查。检查焊缝表面裂纹、未焊透及焊漏等焊接质量。2、状态检查。检查表面裂纹、起皮、拉线、划痕、凹坑、凸起、斑点、腐蚀等缺陷。3、内腔检查。当某些产品(如蜗轮泵、发动机等)工作后,按技术要求规定的项目进行内窥检测。4、装配检查。当有要求和需要时,使用同三维工业视频内窥镜对装配质量进行检查;装配或某一工序完成后,检查各零部组件装配位置是否符合图样或技术条件的要求;是否存在装配缺陷。5、多余物检查。检查产品内腔残余内屑,外来物等多余物。[3]发展无损检测已不再是仅仅使用X 射线,包括声、电、磁、电磁波、中子、激光等各种物理现象几乎都被用做于了无损检测,譬如:超声检测、涡流检测、磁粉检测、射线检测、渗透检测、目视检测、红外检测、微波检测、泄漏检测、声发射检测、漏磁检测、磁记忆检测、热中子照相检测、激光散斑成像检测、光纤光栅传感技术,等等,而且还在不断地开发和应用新的方法和技术。  一些看上去非常传统的无损检测方法,实际上也已经发展出了许多新技术,譬如:  射线检测——传统技术是:胶片射线照相(X 射线和伽马射线)。新技术有:加速器高能X射线照相、数字射线成像(DR)、计算机射线照相(CR,类似于数码照相)、计算机层析成像(CT)、射线衍射等等。  超声检测——传统技术是:A 型超声(A 扫描超声,A 超)。新技术有:B 扫描超声(B 超)、C 扫描超声(C 超)、超声衍射(TOFD)、相控阵超声、共振超声、电磁超声、超声导波等等。[4] 特点1、非破坏性无损检测系统非破坏性——是指在获得检测结果的同时,除了剔除不合格品外,不损失零件。因此,检测规模不受零件多少的限制,既可抽样检验,又可在必要时采用普检。因而,更具有灵活性(普检、抽检均可)和可靠性。2、互容性互容性——即指检验方法的互容性,即:同一零件可同时或依次采用不同的检验方法;而且又可重复地进行同一检验。这也是非破坏性带来的好处。3、动态性动态性——这是说,无损探伤方法可对使用中的零件进行检验,而且能够适时考察产品运行期的累计影响。因而,可查明结构的失效机理。4、严格性严格性——是指无损检测技术的严格性。首先无损检测需要专用仪器、设备;同时也需要专门训练的检验人员,按照严格的规程和标准进行操作。5、检验结果的分歧性检验结果的分歧性——不同的检测人员对同一试件的检测结果可能有分歧。特别是在超声波检验时,同一检验项目要由两个检验人员来完成。需要“会诊”。  概括起来,无损检测的特点是:非破坏性、互容性、动态性、严格性以及检测结果的分歧性等。检测形式无损检测方法很多,据美国国家宇航局调研分析,其认为可分为六大类约70余种。但在实际应用中比较常见的有以下几种:目视检测(VT)目视检测,在国内实施的比较少,但在国际上非常重视的无损检测第一阶段首要方法。按照国际惯例,目视检测要先做,以确认不会影响后面的检验,再接着做四大常规检验。例如BINDT的PCN认证,就有专门的VT1、2、3级考核,更有专门的持证要求。VT常常用于目视检查焊缝,焊缝本身有工艺评定标准,都是可以通过目测和直接测量尺寸来做初步检验,发现咬边等不合格的外观缺陷,就要先打磨或者修整,之后才做其他深入的仪器检测。例如焊接件表面和铸件表面较多VT做的比较多,而锻件就很少,并且其检查标准是基本相符的。射线照相法(RT)是指用X射线或γ射线穿透试件,以胶片作为记录信息的器材的无损检测方法,该方法是最基本的,应用最广泛的一种非破坏性检验方法。原理:射线能穿透肉眼无法穿透的物质使胶片感光,当X射线或r射线照射胶片时,与普通光线一样,能使胶片乳剂层中的卤化银产生潜影,由于不同密度的物质对射线的吸收系数不同,照射到胶片各处的射线强度也就会产生差异,便可根据暗室处理后的底片各处黑度差来判别缺陷。总的来说,RT的定性更准确,有可供长期保存的直观图像,总体成本相对较高,而且射线对人体有害,检验速度会较慢。超声波检测(UT)原理:通过超声波与试件相互作用,就反射、透射和散射的波进行研超声波检测究,对试件进行宏观缺陷检测、几何特性测量、组织结构和力学性能变化的检测和表征,并进而对其特定应用性进行评价的技术。适用于金属、非金属和复合材料等多种试件的无损检测;可对较大厚度范围内的试件内部缺陷进行检测。如对金属材料,可检测厚度为1~2mm的薄壁管材和板材,也可检测几米长的钢锻件;而且缺陷定位较准确,对面积型缺陷的检出率较高;灵敏度高,可检测试件内部尺寸很小的缺陷;并且检测成本低、速度快,设备轻便,对人体及环境无害,现场使用较方便。但其对具有复杂形状或不规则外形的试件进行超声检测有困难;并且缺陷的位置、取向和形状以及材质和晶粒度都对检测结果有一定影响,检测结果也无直接见证记录。磁粉检测(MT)原理:铁磁性材料和工件被磁化后,由于不连续性的存在,使 磁粉检测工件表面和近表面的磁力线发生局部畸变而产生漏磁场,吸附施加在工件表面的磁粉,形成在合适光照下目视可见的磁痕,从而显示出不连续性的位置、形状和大小。适用性和局限性:磁粉探伤适用于检测铁磁性材料表面和近表面尺寸很小、间隙极窄(如可检测出长0.1mm、宽为微米级的裂纹)目视难以看出的不连续性;也可对原材料、半成品、成品工件和在役的零部件检测,还可对板材、型材、管材、棒材、焊接件、铸钢件及锻钢件进行检测,可发现裂纹、夹杂、发纹、白点、折叠、冷隔和疏松等缺陷。但磁粉检测不能检测奥氏体不锈钢材料和用奥氏体不锈钢焊条焊接的焊缝,也不能检测铜、铝、镁、钛等非磁性材料。对于表面浅的划伤、埋藏较深的孔洞和与工件表面夹角小于20°的分层和折叠难以发现。渗透检测(PT)原理:零件表面被施涂含有荧光染料或着色染料的渗透剂后,在毛细管作用下,经过一段时间,渗透液可以渗透进表面开口缺陷中;经去除零件表面多余的渗透液后,再在零件表面施涂显像剂,同样,在毛细管的作用下,显像剂将吸引缺陷中保留的渗透液,渗透液回渗到显像剂中,在一定的光源下(紫外线光或白光),缺陷处的渗透液痕迹被现实,(黄绿色荧光或鲜艳红色),从而探测出缺陷的形貌及分布状态。优点及局限性:渗透检测可检测各种材料,金属、非金属材料;磁性、非磁性材料;焊接、锻造、轧制等加工方式;具有较高的灵敏度(可发现0.1μm宽缺陷),同时显示直观、操作方便、检测费用低。但它只能检出表面开口的缺陷,不适于检查多孔性疏松材料制成的工件和表面粗糙的工件;只能检出缺陷的表面分布,难以确定缺陷的实际深度,因而很难对缺陷做出定量评价,检出结果受操作者的影响也较大。涡流检测(ECT)原理:将通有交流电的线圈置于待测的金属板上或套在待测的金属管外。这时线圈内及其附近将产生交变磁场,使试件中产生呈旋涡状的感应交变电流,称为涡流。涡流的分布和大小,除与线圈的形状和尺寸、交流电流的大小和频率等有关外,还取决于试件的电导率、磁导率、形状和尺寸、与线圈的距离以及表面有无裂纹缺陷等。因而,在保持其他因素相对不变的条件下,用一探测线圈测量涡流所引起的磁场变化,可推知试件中涡流的大小和相位变化,进而获得有关电导率、缺陷、材质状况和其他物理量(如形状、尺寸等)的变化或缺陷存在等信息。但由于涡流是交变电流,具有集肤效应,所检测到的信息仅能反映试件表面或近表面处的情况。应用:按试件的形状和检测目的的不同,可采用不同形式的线圈,通常有穿过式、探头式和插入式线圈3种。穿过式线圈用来检测管材、棒材和线材,它的内径略大于被检物件,使用时使被检物体以一定的速度在线圈内通过,可发现裂纹、夹杂、凹坑等缺陷。探头式线圈适用于对试件进行局部探测。应用时线圈置于金属板、管或其他零件上,可检查飞机起落撑杆内筒上和涡轮发动机叶片上的疲劳裂纹等。插入式线圈也称内部探头,放在管子或零件的孔内用来作内壁检测,可用于检查各种管道内壁的腐蚀程度等。为了提高检测灵敏度,探头式和插入式线圈大多装有磁芯。涡流法主要用于生产线上的金属管、棒、线的快速检测以及大批量零件如轴承钢球、汽门等的探伤(这时除涡流仪器外尚须配备自动装卸和传送的机械装置)、材质分选和硬度测量,也可用来测量镀层和涂膜的厚度。优缺点:涡流检测时线圈不需与被测物直接接触,可进行高速检测,易于实现自动化,但不适用于形状复杂的零件,而且只能检测导电材料的表面和近表面缺陷,检测结果也易于受到材料本身及其他因素的干扰。声发射(AE)通过接收和分析材料的声发射信号来评定材料性能或结构完整性的无损检测方法。材料中因裂缝扩展、塑性变形或相变等引起应变能快速释放而产生的应力波现象称为声发射。1950年联邦德国J.凯泽对金属中的声发射现象进行了系统的研究。1964年美国首先将声发射检测技术应用于火箭发动机壳体的质量检验并取得成功。此后,声发射检测方法获得迅速发展。这是一种新增的无损检测方法,通过材料内部的裂纹扩张等发出的声音进行检测。主要用于检测在用设备、器件的缺陷即缺陷发展情况,以判断其良好性。声发射技术的应用已较广泛。可以用声发射鉴定不同范性变形的类型,研究断裂过程并区分断裂方式,检测出小于 0.01mm长的裂纹扩展,研究应力腐蚀断裂和氢脆,检测马氏体相变,评价表面化学热处理渗层的脆性,以及监视焊后裂纹产生和扩展等等。在工业生产中,声发射技术已用于压力容器、锅炉、管道和火箭发动机壳体等大型构件的水压检验,评定缺陷的危险性等级,作出实时报警。在生产过程中,用PXWAE声发射技术可以连续监视高压容器、核反应堆容器和海底采油装置等构件的完整性。声发射技术还应用于测量固体火箭发动机火药的燃烧速度和研究燃烧过程,检测渗漏,研究岩石的断裂,监视矿井的崩塌,并预报矿井的安全性。超声波衍射时差法(TOFD)TOFD技术于20世纪70年代由英国哈威尔的国家无损检测中心Silk博士首先提出,其原理源于silk博士对裂纹尖端衍射信号的研究。在同一时期我国中科院也检测出了裂纹尖端衍射信号,发展出一套裂纹测高的工艺方法,但并未发展出现在通行的TOFD检测技术。TOFD技术首先是一种检测方法,但能满足这种检测方法要求的仪器却迟迟未能问世。详细情况在下一部分内容进行讲解。TOFD要求探头接收微弱的衍射波时达到足够的信噪比,仪器可全程记录A扫波形、形成D扫描图谱,并且可用解三角形的方法将A扫时间值换算成深度值。而同一时期工业探伤的技术水平没能达到可满足这些技术要求的水平。直到20实际90年代,计算机技术的发展使得数字化超声探伤仪发展成熟后,研制便携、成本可接受的TOFD检测仪才成为可能。但即便如此,TOFD仪器与普通A超仪器之间还是存在很大技术差别。是一种依靠从待检试件内部结构(主要是指缺陷)的“端角”和“端点”处得到的衍射能量来检测缺陷的方法,用于缺陷的检测、定量和定位。[3] 非常规检测方法除以上指出的八种,还有以下三种非常规检测方法值得注意:泄漏检测 Leak Testing(缩写LT);相控阵检测Phased Array(缩写PA);导波检测Guided Wave Testing;依据1.产品图样图样是生产中使用的最基本的技术资料,也是加工、检验的依据。尤其在图样的技术要求中,往往规定了原材料、零件、产品的质量等级、具体要求以及是否需要作无损检验等等。2.相关标准生产企业往往要贯彻相关标准,如:企业标准、行业标准、国家标准、国际标准等等。这些都是产品加工的指导性文件,自然也是实施无损检测的指导性文件。在具体标准中,往往详细规定了检验对象、检验方法、检验规模等等。3.技术文件产品生产工艺部门下达的各种技术文件,如工艺规程、检验卡片、产品检验报告、返修单等等。有时还要追加或改变检验要求等等。4.订货合同某些产品的特殊检验要求、质量控制的条款,有时可能较详细的强调在订货合同中,应引起特别注意。仪器校准在经典仪表管理中一直使用&校验&这一名词,现在在计量管理中,称为&校准&。校准(Calibration)是确定计量器具示值误差(必要时也包括确定其他计量性能)的全部工作。一、校准与检定的异同校准和检定是两个不同的概念,但两者之间有密切的联系。校准一般是用比被校计量顺具精度高的计量器具(称为标准器具)与被校计量器具进行比较,以确定被校计量器具的示值误差,有时也包括部分计量性能,但往往进行校准的计量器具只需确定示值误差,如果校准是检定工作中示值误差的检定内容,那样准可说是检定工作中的一部分,但校准不能视为检定,况且校准对条件的要求亦不如检定那么严格,校准工作可在生产现场进行,而检定则须在检定室内进行。有人把校准理解为将计量器具调整到规定误差范围的过程,沧州欧谱这是不够确切的。虽然校准过程中可以调整,但调整又不等于校准。二、校准的基本要求校准应满足的基本要求如下:(1) 环境条件 校准如在检定(校准)室进行,则环境条件应满足实验室要求的温度、湿度等规定。校准如在现场进行,则环境条件以能满足仪表现场使用的条件为准。(2) 仪器 作为校准用的标准仪器其误差限应是被校表误差限的1/3~1/10。(3) 人员 校准虽不同于检定,但进行校准的人员也应经有效的考核,并取得相应的合格证书,只有持证人员方呆出具校准证书和校准报告,也只有这种证书和报告才认为是有效的[5] 。
监理公司-南京三方,是以化检中心为基础注册成立,具备8项甲级和2项乙级设备监理资格!监理公司-南京三方,来电咨询:.传真:.Email:
金属 材料分析金属与牌号鉴定金属材料广泛应用于冶金、机械、建筑、有色金属等各行各业,对金属材料原材料、半成品、成品进行成分分析及牌号判断对于控制产品的性能有着至关重要的作用。广特材料表面分析检测中心为您提供专业的金属成分分析,金属牌号鉴定,不锈钢牌号鉴定,不锈钢成分分析,金属材质检测。我中心拥有优秀的工程师队伍,配备有电感耦合等离子体(ICP-OES)、(XRF)、、和能谱分析仪(SEM+EDS)等精密仪器,可对金属材料成分进行定性、半定量、定量分析,可根据、ISO国际标准、国标、、德标、日标等进行金属牌号鉴定及元素分析。可检测的项目有:1.不锈钢、牌号鉴定:304,,316,,201,202等不锈钢分析,对碳(C)、硅(Si)、锰(Mn)、磷(P)、硫(S)、镍(Ni)、铬(Cr)、钼(Mo)等元素进行测定。2.其他:铸铁、、结构钢、、、轴承钢等。3.检测:(纯铜,,,等)、(变型铝,,等)、(纯锌,等)、(镁铝锌,镁铝硅等)、等。
金相检测金相分析是金属材料试验研究的重要手段之一,采用定量金相学原理,由二维金相试样磨面或薄膜的金相显微组织的测量和计算来确定合金组织的三维空间形貌,从而建立合金成分、组织和性能间的定量关系。金相检测项目 1、焊接金相检验; 2、铸铁金相检验; 3、热处理质量检验; 4、各种金属制品及原材料显微组织检验及评定; 5、铸铁、铸钢、、原材低倍缺陷检验; 6、金属硬度(HV、HRC、HB、HL)测定、晶粒度评级; 7、非金属夹杂物含量测定; 8、脱碳层/渗碳硬化层深度测定等。
金属材料测试金属材料测试范围涉及对黑色金属、有色金属、机械设备及零部件等的机械性能测试(力学性能检测)、化学成分分析(金属牌号鉴定)、金相分析、耐腐蚀性能盐雾实验等。现实验室配备有高频电感耦合等离子体发射光谱仪(ICP-AES)、X荧光光谱仪、紫外-可见分光光度计、碳硫分析仪、金相显微镜、维氏硬度计、摩擦磨损试验机等。化学成分分析(金属牌号鉴定):金属材料的化学成分分析广泛应用于压铸、培铸、钢铁冶金、机械、汽车、建筑工程及有色金属等各行各业。主要测定的元素:碳(C)硫(S)镁(Mg)铝(Al)硅(Si)磷(P)钛(Ti)钒(V)铁(Fe)铬(Cr)锰(Mn)钴(Co)镍(Ni)铜(Cu)钡(Ba)锆(Zr)锌(Zn)砷(As)锡(Sn)铌(Nb)镉(Cd)铟(In)硒(Se)钼(Mo)锑(Sb)钽(Ta)汞(Hg)铅(Pb)铋(Bi)铍(Be)银(Ag)钨(W)铼(Re)铱(Ir)铂(Pt)金(Au)碲(Te)钯(Pd)铪(Hf)镓(Ga)锗(Ge)钇(Y)钙(Ca)镧(La)铈(Ce)铊(Tl)氧(O)氮(N)机械性能测试:机械性能测试是指金属在一定温度条件下承受外力(载荷)作用时,抵抗变形和断裂的能力,也称为力学性能。金属材料的力学性能体现的形式多种,例如拉伸应力、弯曲应力、扭转应力、摩擦、振动等等。我们的金属材料实验室为您提供专业的金属材料机械性能测试和判定。主要测试项目:布氏硬度洛氏硬度显微硬度拉伸试验扭转试验弯曲试验冲击试验焊接板(管)机械性能金相分析:金相分析是金属材料试验研究的重要手段,根据其提供的特征物的三维空间形态、数量、大小及分布,并与材料的机械性能建立内在联系,科学地评价材料和合理地使用材料。主要测试项目:线路板切片观察膜层厚度晶粒度非金属夹杂物低倍组织检验断口检验硬化层深度灰口铸铁金相球墨铸铁金相脱碳、渗碳、渗氮层深度有色、黑色金属组织其他分析腐蚀测试(盐雾测试):腐蚀试验是指检测金属或其他材料因与环境发生相互作用而引起的化学或物理(机械)-化学损伤过程的材料试验,是掌握材料与环境所构成的腐蚀体系的特性,腐蚀试验的目的在于:a.在给定环境中确定各种防蚀措施的适应性、最佳选择、质量控制途径和预计采取这些措施后构件的服役寿命;b.评价材料的耐蚀性能;c.研究环境中杂质、添加剂等对腐蚀速度、腐蚀形态的作用。主要测试项目:不锈钢10%草酸浸蚀试验不锈钢硫酸-硫酸铁腐蚀试验不锈钢65%硝酸腐蚀试验不锈钢硝酸-氢氟酸腐蚀试验不锈钢硫酸-硫酸铜腐蚀试验不锈钢5%硫酸腐蚀试验中性盐雾试验酸性盐雾试验铜离子加速盐雾二氧化硫腐蚀试验硫化氢腐蚀试验混和气体腐蚀实验
金属材料现场鉴别方法一、火花鉴别  火花鉴别是将钢与高速旋转的砂轮接触,根据磨削产生的火花形状、“花粉”和颜色,近似地确定钢的化学成分的方法。火花鉴别原理是:当钢被砂轮磨削成高温微细颗粒被高速抛射出来时,在空气中剧烈氧化,金属微粒产生高热和发光,形成明亮的流线,并使金属微粒熔化达熔融状态,使所含的碳及金属元素被氧化形成流线和气体的爆裂而成火花。根据流线和火花特征,可大致鉴别钢的化学成分。  钢材在砂轮上磨削时所射出的火花由根部火花、中部火花和尾部火花构成火花束。磨削时由灼热粉末形成的线条状火花称为流线。流线在飞行途中爆炸而发出稍粗而明亮的点称为节点。火花在爆裂时所射出的线条称为芒线。芒线所组成的火花称为节花。爆花分一次花、二次花、三次花,四次花,形式如下图;芒线附近呈现明亮的微小细点称为花粉, 火花组成:  (1)火花束:火花束是指被测材料在砂轮上磨削时产生的全部火花,常由根部、中部、尾部组成。  (2)流线:从砂轮上直接射出的好像直线的火流称为流线。每条流线都由节点、爆花和尾花组成  (3)节点:节点就是流线上火花爆裂的原点,呈明亮点。  (4)爆花:爆花就是节点处爆裂的火花。钢的化学成分不同,尾花的形状也不同。通常,尾花可分为狐尾尾花、枪尖尾花、菊花状尾花、羽状尾花等。  碳是钢铁材料火花的基本元素,也是火花鉴别法测定的主要成分。由于含碳量的不同,其火花形状不同。  1、碳素钢火花的特征  (1)、通常低碳钢火花束较长,流线少,芒线稍粗,多为一次花,发光一般,带暗红色,花粉微少。  (2) 、中碳钢火花束稍短,流线较细长而多,爆花分叉较多,开始出现二次、三次花,花粉较多,发光较强,颜色橙。  (3)、高碳钢火花束较短而粗,流线多而细,碎花、花粉多,又分叉多且多为三次花,发光较亮。  (4)、铸铁的火花束很粗,流线较多,一般为二次花,花粉多,爆花多,尾部渐粗下垂成弧形,颜色多为橙红。手感较软。  2 合金钢的火花特征  (1)、镍、硅、钼、钨等元素抑制火花爆裂。  (2)、锰、钒、铬等元素却可助长火花爆裂。      合金钢的鉴别难掌握,一般铬钢的火花束白亮,流线稍粗而长,爆裂多为一次花、花型较大,呈大星形,分叉多而细,附有碎花粉,爆裂的火花心较明亮。镍铬不锈钢的火花束细,发光较暗,爆裂为一次花,五、六根分叉,呈星形,尖端微有爆裂。高速钢火花束细长,流线数量少,无火花爆裂,色泽呈暗红色,根部和中部为断续流线,尾花呈弧状。举例如下:  (1)、15钢:火花束较长,流线少,芒线稍粗,多为一次花,发光一般,带暗红色,花粉微少。       (2)、40钢:火花束稍短,流线较细长而多,爆花分叉较多,开始出现二次、三次花,花粉较多,发光较强,颜色橙。       (3)、T10钢:火花束较短而粗,流线多而细,碎花、花粉多,又分叉多且多为三次花,发光较亮。      (4)、合金结构钢20CrMnTi钢为**加黑色;  (5) 40CrMo钢为绿色加紫色;  (6) GCr15钢:火花束白亮,流线稍粗而长,爆裂多为一次花、花型较大,呈大星形,分叉多而细,附有碎花粉,爆裂的火花心较明亮。  (7) W18Cr4V钢;火花束细长,流线数量少,无火花爆裂,色泽呈暗红色,根部和中部为断续流线,尾花呈弧状。   (8) 不锈钢1Cr18Ni9Ti钢为蓝绿色;  (9) 热作模具钢5CrMnMO钢为紫色加白色。  (10) 铸铁:火花束很粗,流线较多,一般为二次花,花粉多,爆花多,尾部渐粗下垂成弧形,颜色多为橙红。火花试验时,手感较软。   二、断口鉴别  材料或零部件因受某些物理、化学或机械作用的影响而导致破断,此时所形成的自然表面称为断口。生产现场根据断口的自然形态判定材料的韧脆性,从而推断材料含碳量的高低。  若断口呈纤维状,无金属光泽,颜色发暗,无结晶颗粒,且断口边缘有明显的塑性变形特征,则表明钢材具有良好的塑性和韧性,属碳量偏低。  若断口齐平,呈银灰色,且具有明显的金属光泽和结晶颗粒,则表明属脆性材料。  而过共析钢或合金钢经淬火后,断口呈亮灰色,具有绸缎光泽,类似于细瓷器断口特征。  常用钢铁材料的断口特点如下:  1 低碳钢不易敲断,断口边缘有明显的塑性变形特征,有微量颗粒;  2 中碳钢的断口边缘的塑性变形特征没有低碳钢明显,断口颗粒较细、较多;  3 高碳钢的断口边缘无明显塑性变形特征,断口颗粒很细密;  4 铸铁极易敲断,断口无塑性变形,晶粒粗大,呈暗灰色。  三、音、声鉴别法  生产现场有时也根据钢铁敲击时声音的不同,对其进行初步鉴别。例如:1、当原材料钢中混入铸铁材料时,由于铸铁的减振性较好,敲击时声音较低沉,而钢材敲击时则可发出较清脆的声音。  2、淬火件(包括钢铁件及铝件):  (1)、硬度高者叠落(或敲击)时声音清脆锐耳;  (2)、硬度较低者叠落(或敲击)时声音较低沉。  若要准确地鉴别材料,在以上几种现场鉴别方法的基础上,还应采用化学分析、金相检验、硬度试验等实验室分析手段对材料进行进一步的鉴别。
冷热冲击试验又名温度冲击试验或高低温冲击试验,是用于考核产品对周围环境温度急剧变化的适应性,是装备设计定型的鉴定试验和批产阶段的例行试验中不可缺少的试验,在有些情况下也可以用于环境应力筛选试验。可以说冷热冲击试验箱在验证和提高装备的环境适应性方面应用的频度仅次于振动与高低温试验。常见的执行标准1、GJB 150-86《军用设备环境试验方法》2、GB 2423《电工电子产品基本环境试验规程》3、美军标MIL-STD-810F《环境工程考虑和实验室试验》冷热冲击试验的目的实际上冷热冲击试验箱作为一种工具,应用在产品研制的不同阶段时的目的是不同的:1、工程研制阶段可用于发现产品的设计和工艺缺陷;2、产品定型或设计鉴定和批产阶段验收决策提供依据;3、作为环境应力筛选应用时,目的是剔除产品的早期故障。因此在编写研制过程不同阶段的环境试验大纲或筛选大纲,试验报告或筛选报告时,就将冷热冲击试验的试验目的具体化,不宜表达含糊或笼统。试验要求虽然一般的冷热冲击试验标准中对冷热冲击试验的起始温度不予提及或不做硬性规定,但这却是试验进行时必须考虑的问题,因为涉及到试验是结束在低温还是高温状态,从而决定了是否需要对产品进行烘干,导致延长试验时间。如果试验结束在低温标准受试产品从冷热冲击试验箱(室)内取出后,应在正常的试验大气条件下进行恢复,直到样品到到达温度稳定,这一操作难免使试验样品表面产生凝露引入温度对产品的影响。从而改变试验的性质。在GBJ 150实施指南中提出,为了消除这一影响避免长时间恢复延长试验实施时间,可将样品在50的高温箱中恢复,待凝露干后再在常温中达到温度稳定。实施指南中提出可改变起始冲击温度,从低温开始试验,以使试验结果在高温避免产品出冷热冲击试验箱产生凝露。两种试验方法却使受试样品经受六次极端温度(三次高温,三次低温)作用及五次温度冲击过程,只是不同冲击方向的次数有所不同,这两种试验可能达到的试验效果是基本相同的,但后一种试验方法无需加烘干时间,缩短了冷热冲击试验时间。试验时间要求1、GJB150.5规定了下限1h,即温度稳定时间小于1h,必有要1h;若大于1h,则用该大于1h的时间;2、GB2423.22中给出10min到3h的5个时间等级,同使用表根据冷热冲击试验箱测得的产品温度稳定时间,采用与其最相近的时间或可选时间等级,直接采用与其最相近的时间作为保持时间;3、810F方法503.4中则不规定具体时间或可选时间等级,直接采用产品达到温度稳定的时间或产品在环境中真实暴露时间。在温度冲击试验中,最为关键的是建立起不同材料热胀冷缩不一致造成的应力。实际热冲击最可能发生在受试产品的外部,有关资料指出不必达到整个产品温度稳定,而只要受试产品外表而温度与试验温度一致就行。这一意见是虽有一定道理,实施起来也有一定困难,因为不可能在产品表面安装许多传感器,此外产品各部分传热能力不一致,受试产品内部邻近部件热容量也不一致,确定起来有难度。
铸造碳钢的金相组织及检验一)铸造碳钢的显微组织1.铸态组织 为铁素体+珠光体+魏氏组织。铸态组织的形貌和组成相的含量与钢的碳含量有关。碳含量越低的铸钢,铁素体含量越多,魏氏组织的针状越明显、越发达,数量也多。随铸钢碳含量的增加,珠光体量增多,魏氏组织中的针状和三角形的铁素体量减少,针齿变短,量也减少,而块状和晶界上的网状铁素体粗化,含量也增多。若存在严重的魏氏组织,或存在大量低熔点非金属夹杂物沿晶界呈断续网状分布,将使铸钢的脆性显著增加。2.退火组织 为铁素体+珠光体。铁素体呈细等轴晶。珠光体分布形态随钢的碳含量增加而变化。随钢的碳含量增加,珠光体呈断续网状分布→网状分布→珠光体与铁素体均匀分布,其含量也不断增多。若退火组织中存在残留的铸态组织或组织粗化均属于不正常组织。3.正火组织 为铁素体+珠光体,分布较均匀,。与退火组织相比较,正火组织的组成相更细、更均匀,珠光体含量稍多。若存在残留铸态组织或组织粗化均属不正常组织。4.调质组织 ZG270-500以上牌号的铸造碳钢可进行调质处理,组织为回火索氏体。若出现未溶铁素体或粗大的回火索氏体属不正常组织。5.几种常用铸造碳钢的组织 铸 造 碳 钢 ZG200-400 ZG230-450 ZG270-500 ZG310-570 ZG340-640显微组织 铸态 魏氏组织+块状铁素体+珠光体 珠光体+魏氏组织+铁素体 珠光体+铁素体部分铁素体呈网状分布 铁素体呈网状分布退火 铁素体+珠光体 珠光体+铁素体珠光体呈断续网状分布 珠光体呈网状分布 正火 铁素体+珠光体 珠光体+铁素体调质 回火索氏体(二)铸造碳钢的质量检验铸造碳钢多数用于一般工程,金相检验按照GB/T 《一般工程用铸造碳钢金相》标准进行。主要是在金相显微镜下进行显微组织鉴别及晶粒度和非金属夹杂物级别的测定。标准规定金相试样从力学性能试块或试样上切取,特殊情况由供需双方协商决定。1.显微组织检验 试样用2~4%硝酸酒精溶液侵蚀后,在显微镜下按大多数视场确定其组织。对铸态、退火、正火态组织放大100倍观察,对调质态组织在500倍下鉴别。GB/T 标准对ZG200-400、ZG230-450、ZG270-500, ZG310-577、ZG340-640五种铸钢分别按铸态、退火、正火及调质状态下的正常和非正常组织的特征列表作了文字说明,并列出了标准组织照片,供对照评定。2.晶粒度测定 奥氏体晶粒度和铁素体晶粒度的测定方法,按 GB/T 标准的规定执行。被测试样在放大100倍下与标准晶粒度图对照进行评级。若放大倍数为非100倍时,按YB/T 5148标准规定的方法评定。3.非金属夹杂物的评级 GB/T 标准将铸造碳钢中的非金属夹杂物分为五级,并列出了5张标准级别的照片,供对照评级用。二、铸造低合金结构钢的金相组织各种能进行压力加工(锻、轧)的低合金结构钢,基本上都可以作为铸钢,但为满足铸造性能的要求需适当调整化学成分。常用的铸造低合金钢有ZG22Mn、 ZG40Mn、 ZG40Mn2、ZG40Cr、ZG35CrMo、ZG35SiMn、ZG20MnMo、 ZG50B和ZG25MnVCu等。铸造低合金结构钢可以进行退火、正火处理。由于它们的淬透性较好,可以用淬火-回火方法进行强化处理。为消除铸造应力、细化晶粒和防止开裂,淬火前一般要预先经退火或正火处理。这类钢还可以进行表面淬火或化学热处理。几种常用铸造低合金钢的热处理组织如下:1.铬钢、铬钼钢(1) 铬钢。如ZG40Cr,经常在调质状态下使用。组织为均匀的回火索氏体。(2) 铬钼钢。如ZG35CrMo, 铸态组织为粗大的铁素体+珠光体,略呈魏氏组织,并可见明显的枝晶状组织。退火组织为铁素体十珠光体。其中珠光体含量的体积分数约占50%。正火组织为珠光体+少量铁素体。细晶粒铁素体呈细网络状分布,其含量明显少于退火组织。珠光体分散度也更大,有时会出现贝氏体和铁素体组织(钼元素抑制珠光体析出的结果)。淬火组织为针状淬火马氏体。马氏体针中等粗细,分布较均匀(组织与35CrMo锻钢淬火相似)。调质组织为均匀的回火索氏体。2.钼钢如ZG15Mo钢、ZG25Mo钢。(1) ZG15Mo钢.退火组织为铁素体十少量珠光体。其中铁素体呈等轴晶,珠光体呈块状均匀分布。正火组织为铁素体+少量珠光体。调质组织为回火索氏体,有针状分布痕迹。(2) ZG25Mo钢。退火及正火组织类似于ZG15Mo钢,仅其中珠光体含量较多,分布更均匀一些。对于大型铸件常采用正火+高温回火处理,得到的组织与正火态相似。调质组织为回火索氏体。若铸件不先作预处理,铸件内存在枝晶偏析严重,直接淬火+高温回火(调质)后的索氏体分布不均匀。3.锰钢、硅锰钢(1) ZG40Mn2钢的正火组织为珠光体+铁素体。铁素体量少且呈较细网状分布。淬火组织为淬火马氏体。调质后得到均匀的回火索氏体。(2)硅锰钢常使用调质态,组织与相应的锰钢相似。这两种钢都有过热敏感性和对回火脆性敏感的特点。4.铬镍钢、铬镍钼钢及硼钢例ZG40CrNiMo或ZG50B钢,它们都使用调质态,组织均为均匀分布的回火索氏体。
铸造高锰钢的金相组织(一)高锰钢的组织和性能特点高锰钢是在过共析碳钢(ωc=1.0%~1.3%)中增加锰含量(ωMn = 11%一14%),使Mn/C之比接近10/1,再经过水淬后得到室温下单一奥氏体组织的钢。这类钢具有在承受冲击载荷和严重摩擦作用下使钢发生显著硬化的特性,而且载荷越大,其表面层的硬化程度越高,耐磨性就越好,是一种典型的耐磨钢。由于它的加工硬化能力很大,不利于压力加工和切削加工,宜采用铸造成型,一般仅在铸造状态下使用,故属铸钢范围。典型的高锰钢牌号为ZGMn13系列。水韧处理: ZGMn13钢铸态组织中存在着碳化物,使铸件的性能既硬又脆。欲使高锰钢具有高的韧性和耐磨性,必须获得单一奥氏体组织。将ZGMn13铸件加热至高温(℃)保温一段时间,使铸态组织中的碳化物全部溶人基体奥氏体中。然后迅速淬水快冷,使碳化物来不及从过饱和的奥氏体中析出,以获得均匀的单相奥氏体组织,这种热处理称为水韧处理。高锰钢的高硬度获得: 经过水韧处理的ZGMn13钢的组织为单一的奥氏体,具有高的韧、塑性,硬度一般为180~220 HB范围。在受到剧烈的冲击载荷和严重摩擦力(压应力)作用下,使受力表层发生强烈的塑性变形,迅速造成加工硬化,使硬度高达50~55 HRC,有效地提高了耐磨性,而铸件内部仍保持着原有良好的韧塑性。水韧处理的质量对铸造高锰钢的耐磨性起着十分关键的作用。若水韧处理后的ZGMn13钢的组织未达到单相奥氏体,表明水韧处理温度过低,使韧性较差。若出现单相奥氏体的晶粒粗大(晶粒度大于5级),则表明水韧处理温度过高,铸件的屈服强度显著下降。水韧处理后的ZGMn13钢一般不作回火处理,也不适合在250℃以上工作温度下服役。(二)铸造高锰钢的组织1.铸态组织 铸造高锰钢平衡态凝固后的最终铸态组织应为:奥氏体基体+少量珠光体型共析组织十大量分布在晶内和晶界上的碳化物, 如图8-5。图8-5 ZGMn13铸钢铸态组织 (500X) 图8-6 ZGMn13铸钢水韧处理组织 (100X)2.水韧处理后的组织 正常组织为过饱和的单相奥氏休,晶粒大小不匀,如图8-6。也允许有少量均匀分布的粒状碳化物存在。3.铸造高锰钢的常见缺陷 主要是分散分布的或串连成断续网状分布的显微疏松、气孔、非金属夹杂物及沿晶裂纹等。(三)铸造高锰钢的金相检验应按GB/T 《铸造高锰钢金相》标准,进行显微组织、晶粒度和非金属夹杂物级别的评定。1.显微组织 高锰钢经水韧处理后的组织,应为奥氏体或奥氏体加碳化物。2.碳化物评级按未溶、析出、过热碳化物分别评定。3.晶粒度评级按YB/T 标准评定。4.非金属夹杂物(氧化物十硫化物)评级在100倍的Φ80 mm视场中选取最严重的视场评定。
铸铁的分类及金相检验铸铁是一种含碳量的质量分数大于2.11%的铁碳合金。铸铁中的碳可以固溶、化合和游离三种状态存在。在铸铁的凝固、结晶和随后的热处理过程中,碳的存在状态还会发生变化,从而影响到铸铁的组织和性能。在工业铸铁中,除碳、硅以外,还含有锰、硫、磷等其他元素。特殊性能的合金铸铁分别含有铬、钼、铜、镍、钨、钛、钒等合金元素。铸铁的显微组织主要由石墨和金属基体组织所构成。铸铁金相检验主要检验:石墨的形态、大小和分布状况,以及金属基体中各种组织组成物的形态、分布和数量及其相互配置的情况等,并按相应的金相标准进行各项评级。由于铸铁组织中的石墨比较柔软,有些石墨的颗粒尺寸较大,甚至结构较松散,应特别注意防止在铸铁试样制备过程中产生石墨剥落、石墨曳尾,或抛光不足等制样缺陷,以免有碍对铸铁石墨和组织的正常检验。铸铁的分类方法有多种,一般按铸铁中碳的存在状态、石墨的形态特征及铸铁的性能特点可将铸铁分为五类:白口铸铁、灰铸铁、球墨铸铁、可锻铸铁和蠕墨铸铁。一、白口铸铁(一)白口铸铁的分类及基本组织按铸铁的化学成分,可将白口铸铁分为亚共晶白口铸铁、共晶白口铸铁和过共晶白口铸铁。当共晶成分的铁水冷却时,先发生共晶转变,形成渗碳体和奥氏体的共晶体称莱氏体。当冷却至共析温度以下时,共晶体中的奥氏体转变成珠光体。因此,共晶白口铸铁的莱氏体组织在室温时由渗碳体(白色基体)与珠光体(黑色)组成,见图8-7。亚共晶白口铸铁的组织在室温时为莱氏体加珠光体,其中珠光体呈树枝状分布。而过共晶铸铁的组织为初生渗碳体加莱氏体。由于渗碳体硬而脆.所以生产上使用的白口铸铁大多数采用共晶成分或亚共晶成分。白口铸铁主要用于要求具有高硬度和高耐磨性的铸件,其应用较多的是激冷白口铸铁和高铬白口铸铁。 (二)激冷白口铸铁的金相检验激冷白口铸铁(又称冷硬铸铁)是铁水在结晶时,通过对铁水的激冷作用而得到的白口铸铁。激冷白口铸铁一般选用高碳低硅铁水。高的含碳量有利于形成碳化物,低的含硅量可以避免白口区出现石墨。此外,为了获得必要的白口层深度,并细化晶粒.提高珠光体弥散度以提高白口层硬度,往往加人合金元素,如铬、钼、铜、镍等。 生产上,一般采用金属型浇注而获得。由于受金属型冷却能力所限,只能在距激冷面的一定深度内得到白口组织,其内层便出现麻口,并逐渐过渡至灰口。这样,便得到表面高硬度而心部具有一定韧性的激冷白口铸铁。1.白口层深度 为了保证激冷铸铁的高硬度和高耐磨性,必须确保必要的白口层深度。检验时,应从激冷面开始沿着激冷方向制取金相磨面。2.白口区的石墨 当铸铁的含硅量过高或浇注温度过低时,往往在白口区内析出石墨。这种石墨一般呈点状,故称点状石墨。点状石墨的存在,将降低白口层的硬度。为此,应对点状石墨的数量加以严格控制。点状石墨数量检验应在铸铁的激冷面上进行。3.白口组织 共晶激冷铸铁的组织为莱氏体。莱氏体沿激冷方向呈树枝状分布。对于亚共晶激冷铸铁,尚存在呈枝晶分布的珠光体。(三)高铬白口铸铁的金相检验高铬白口铸铁的含铬量的质量分数一般为12~34%。高的含铬量不仅可以形成高硬度的合金碳化物,而且可以改变基体组织。当含铬量的质量分数达10时,铸铁中会出现呈菊花状分布的(Cr, Fe)7C3碳化物,其硬度为 HV。随着含铬量的不同,可获得三种不同基体的高铬白口铸铁:①含质量分数12 ~28铬的马氏体铸铁;②含质量分数30%~34铬的铁素体铸铁;③含质量分数13%~30%铬和10%~15%镍的奥氏体铸铁。为了获得马氏体基体组织,高铬白口铸铁必须进行淬火、回火处理。高铬白口铸铁的金相检验主要是对碳化物和基体的检验。1.碳化物 高铬白口铸铁中的碳化物,主要作用是提高铸铁的硬度和耐磨性。碳化物应是呈菊花状均匀分布的共晶碳化物。2.基体组织 对于含铬量较高的铸态型高铬白口铸铁,其铸态基体组织为奥氏体。对于含铬量较低的高铬白口铸铁,其铸态基体为奥氏体和少量马氏体和珠光体。(四)白口铸铁的热处理白口铸铁热处理的目的是消除内应力,提高耐磨性或冲击韧性,以适应在冲击载荷下工作,扩大应用范围。常用的热处理有:消除内应力退头、淬火和回火及等温淬火等。1.消除内应力退火 它大多应用于高合金白口铸铁,将铸铁加热到800~900℃保温一定时问后随炉冷却以消除铸件的内应力。2.白口铸铁的淬火与回火 它主要应用于Mn-Mo、Mn-Si、Mn-Cr、Cr-Mo、Ni-Cr-Mo等合金白口铸铁,在吹风冷却,甚至在空气冷却时就可以获得马氏体加渗碳体加残留奥氏体,或获得贝氏体加渗碳体加残留奥氏体的基体组织,再通过低温回火得以提高综合力学性能。3.白口铸铁的等温淬火 白口铸铁通过等温淬火则可获得下贝氏体加渗碳体加残留奥氏体的组织,这种组织具有较好的综合力学性能,特别是耐冲击性。
灰铸铁灰铸铁是指金相组织中石墨呈片状的铸铁。由于这种铸铁具有生产简便、成本低和足够高的使用性能等特点,所以它是工业上应用最广泛的一种铸铁材料。按照灰铸铁的化学成分和性能特点,将其分为普通灰铸铁、合金灰铸铁和特殊性能灰铸铁。生产上,通过孕育处理而获得的高强度铸铁又称孕育铸铁。(一)灰铸铁的牌号及基本组织国家标准GB/T 《灰铸铁件》,根据Φ30 mm的单铸试棒的抗拉强度分级,规定了HT100、HT150、HT200、HT250、HT300、HT350六级灰铸铁的牌号。各牌号中的数字为其单铸试棒具有的抗拉强度Rm (MPa)。不论灰铸铁的成分如何,其平衡冷却的室温组织均为石墨和铁素体。受到某些因素的影响(如化学成分和冷却速度等),则可能出现碳化物和磷共晶。因此,铸铁结晶后的组织可能是珠光体和铁素体,或全部珠光体。也有可能存在共晶碳化物或二次碳化物,甚至初生碳化物。可能还存在磷共晶。为了确保灰铸铁强度,一般需要获得珠光体基体。灰铸铁中的片状石墨在空间的分布实际上并非是孤立的片状,而是以一个个石墨核心出发,形成一簇簇不同位向的石墨分枝,以构成一个个空间立体结构。同一簇石墨与其间的共晶奥氏体构成一个共晶团。铸铁凝固之后,便由这种相互毗邻的共晶团所组成。(二)灰铸铁的金相检验灰铸铁金相检验必须按照国家标准GB/T 《灰铸铁金相》的规定方法和内容进行。灰铸铁的金相试块应取自抗拉试棒距断口10 mm处,或从试棒的底部切除10 mm后再取金相检验试块。试块尺寸应包括试棒半径的一半。由于特殊需要,从铸件上取样时,应在报告中注明取样部位和壁厚等情况,但不允许直接从浇口和冒口上切取金相试块。1.铸铁石墨的检验(1) 石墨分布。标准规定灰铸铁石墨检验应在未侵蚀的试样上进行,观察放大倍数为100倍。将石墨分布分为A型、B型、C型、D型、E型和F型。1) 片状(A型)石墨:特征是片状石墨均匀分布。2) 菊花状(B型)石墨:特征是片状与点状石墨聚集成菊花状。其心部为少量点状石墨,外围为卷曲片状石墨。这种石墨一般铁水经孕育处理后在较大的过冷度下形成。3) 块片状(C型)石墨:特征是部分带尖角块状、粗大片状初生石墨及小片状石墨。4) 枝晶点状(D型)石墨:特征是点状和片状枝晶间石墨呈无向分布。5) 枝晶片状(E型)石墨:特征是短小片状枝晶间石墨呈有方向分布。6) 星状(F型)石墨:特征是星状(或蜘蛛状)与短片状石墨混合均匀分布。生产中,在同一铸件的同一部位上往往存在几种形状的石墨。从石墨分布形状对灰铸铁性能的影响看,一般以A型石墨和B型石墨为好。片状(A型)石墨 菊花状(B型)石墨 块片状(C型)石墨枝晶点状(D型)石墨 枝晶片状(E型)石墨 星状(F型)石墨(2)石墨长度。在灰铸铁中,石墨长度也是影响铸铁力学性能的重要因素。抗拉强度随石墨长度的增加而降低。国家标准将石墨长度分为八级。2.灰铸铁基体组织的检验 灰铸铁的基体组织一般为珠光体或珠光体加铁素体。在某些情况下,也可以得到贝氏体或马氏体组织。此外,由于受化学成分和冷却速度的影响,在铸铁结晶后,可能出现碳化物和磷共晶。(1)珠光体粗细和珠光体数量。灰铸铁的珠光体一般呈片状,片状珠光体的粗细可以用渗碳体与铁素体的片间距来表示。珠光体的片间距愈小,铸铁的强度和硬度愈高。珠光体数量是指珠光体和铁素体的相对量。在灰铸铁中,珠光体数量愈多,铸铁的强度、硬度和耐磨性愈高。(2)碳化物的分布形态和数量。生产中的大多数普通灰铸铁件碳化物含量均较少,但在合金铸铁和耐磨铸铁中,会出现较多碳化物。根据碳化物的分布形态,可分为条状碳化物、块状碳化物、网状碳化物和莱氏体状碳化物。虽然碳化物具有很高的硬度,却降低铸铁的韧性,并恶化加工性能。国家标准将碳化物分为1--6级,级别的名称依次为:碳1、碳3、碳5、碳10、碳15,碳20。各级名称中的数字表示该级碳化物数量体积分数(%)。(3)磷共晶类型分布形态和数量。根据磷共晶的形态特征,将磷共晶分为二元磷共晶、三元磷共晶、二元磷共晶-碳化物复合物和三元磷共晶-碳化物复合物四种类型。在金相检验中,为了鉴别碳化物和磷共晶,也可以采用染色法。一般来说,灰铸铁的磷共晶数量随铸铁含磷量的增加而增多。磷共晶硬而脆,显著降低铸铁的韧性。国家标准将磷共晶数量分为1~6级,级别名称依次为磷1、磷2、磷4、磷6、磷8和磷10。各级名称中的数字表示该级磷共晶的近似含量。(4)灰铸铁共晶团的检验。灰铸铁在共晶转变时,共晶成分的铁水形成由石墨和奥氏体所组成的共晶团。由于共晶团边界上常富集一些夹杂物和偏析物以及某些低熔点共晶体,所以可以利用适当的侵蚀剂将共晶团边界显示出来。灰铸铁共晶团的大小反映铸铁机械性能的高低。在其他条件相同的情况下,共晶团愈细小,铸铁的强度愈高。
球墨铸铁球墨铸铁的石墨呈球状,或接近球状,因此铸铁中因石墨引起的应力集中现象远比片状石墨的灰铸铁小。此外,球状石墨不像片状石墨那样对金属基体存在严重的割裂作用,这就为通过热处理以提高球墨铸铁基体组织性能,从而发掘其性能潜力提供了条件。为此,对球墨铸铁的石墨和基体组织的检验,是球墨铸铁生产的一个重要环节。根据球墨铸铁的成分、力学性能和使用性能,一般将其分为普通球墨铸铁、高强度合金球墨铸铁和特殊性能球墨铸铁。(一)球墨铸铁的牌号及基本组织球墨铸铁的牌号是根据其所具有的力学性能指标而划分的。共分为8种牌号,即QT400-18、QT400-15、QT450-10、QT500-7、QT600-3、QT700-2、QT800-2、QT900-2。牌号中短划线前面的数字为该牌号所具有的抗拉强度Rm (MPa),后面的数字为延伸率A(%)。各种牌号的球墨铸铁有其相应的金属基体组织:QT400-18 , QT400-15、QT450-10主要为铁素体;QT500-7为铁素体+珠光体;QT600-3为珠光体十铁素体;QT700-2为珠光体;QT800-2为珠光体或回火组织;QT900-2为贝氏体或回火组织。此外,还可能存在碳化物及磷共晶等组织。(二)球墨铸铁的石墨及其检验1.石墨形态 所谓石墨形态,是指单颗石墨的形状。实际上,球墨铸铁中的石墨并不全是理想的球状。由于不同形态的石墨对金属基体连续性的割裂程度不同,因此石墨形态是影响球墨铸铁力学性能和使用性能的重要因素。GB/T 《球墨铸铁金相检验》根据石墨面积率(单颗石墨的实际面积与其最小外接圆面积的比率)值将球墨铸铁的石墨形态分为球状、团状、团絮状、蠕虫状和片状。2.石墨球化率及其确定 在金相检验中,通常所见到的是几种形态的石墨共存。在这种情况下,评定石墨的球化质量须用球化率来解决。所谓球化率,是指在规定的视场内,所有石墨球化程度的综合指标。它反映该视场内所有石墨接近球状的程度。国家标准根据石墨形态及其分布和球化率,将球墨铸铁石墨球化分为1-6级。标准还列出了各球化级别的标准等级图片,在使用时,可对照标准等级图片进行评级。球墨铸铁的力学性能在很大程度上决定于球化率。一般来说,在其他条件相同的情况下,球化率愈高,力学性能也高。3.石墨大小 石墨大小也会影响球墨铸铁的力学性能。石墨球细小可减小由石墨引起的应力集中现象。而且,细小的石墨球往往具有高的球化率。因此,均匀、圆整、细小的石墨可以使球墨铸铁具有高的强度、塑性、韧性和疲劳强度。国家标准参照国际标准中关于石墨大小的分级方法,将石墨大小分为六级。(三)球墨铸铁的基体组织及其检验球墨铸铁铸态下的基体组织为铁素休和珠光体。大多数球墨铸铁有必要进行热处理改善其基体组织,从而达到所需要的性能。球墨铸铁的正火处理,可以消除铸造应力,细化晶粒,而且可以获得全部珠光体或以珠光体为主的基体组织。铁素体基体组织往往是通过退火来达到的。此外,由于受到化学成分和冷却速度的影响,在基体组织中,可能出现碳化物和磷共晶。在某些高合金含量的特殊性能球墨铸铁的基体中,还会出现马氏体和奥氏体。在有些情况下,一些合金球墨铸铁(如铜钼合金球墨铸铁)经正火处理后,会在晶界处出现马氏体或贝氏体组织,这将增加球墨铸铁的脆性。在基体组织中,各种相(或组织)的形态、分布和相对量对铸铁性能的影响起着决定性的作用。这正是金相检验所要解决的问题。GB/T 《球墨铸铁金相检验》对于球墨铸铁铸态和正火、退火态的基体组织的检验作了明确规定。1. 珠光体粗细和珠光体数量 在一般情况下,球墨铸铁的珠光体呈片状。按照珠光体的片间距,将其分为粗片状珠光体、片状珠光体和细片状珠光体。珠光体的粗细虽对球铁性能有影响,但其影响的程度远较珠光体数量和球化率对性能的影响来得小。珠光体数量是指珠光体与铁素体的相对量强度球铁,应确保高的珠光体数量;而对于高韧性球铁,则应确保高的铁素体数量。在铸态或完全奥氏体化正火后,球墨铸铁的铁素体呈牛眼状。它在球墨铸铁中很常见。国家标准将珠光体数量分为珠95~珠5共十二级。2. 分散分布的铁素体数量 如果采用直接加热至三相区进行部分奥氏体化正火工艺,则铁素体呈分散分布的块状。当采用完全奥氏体化后炉冷至三相区保温,进行二阶段正火工艺时, 铁素体呈分散分布的网状。国家标准按块状和网状两个系列,各分为六级,依次为铁5、铁10、铁15、铁20、铁25和铁30。各级别名称中的数字表示该级分散分布铁素体数量的体积分数(%)的近似值。 3.磷共晶数量 在铸铁中,磷共晶作为一种低熔点组织,总是分布在晶界处和铸件最后凝固的热节部位。球墨铸铁中的磷共晶,多为由奥氏体、磷化铁和渗碳体所组成的三元磷共晶。由于磷共晶显著降低冲击韧性,一般情况下,球墨铸铁的磷共晶含量的体积分数应控制在2%以下。在球墨铸铁中,磷共晶数量对性能的影响比磷共晶形态对性能的影响要显著。国家标准中的磷共晶数量分为五级,依次为磷0.5、磷1、磷1.5、磷2、磷3。各级别名称中的数字表示该级磷共晶数量的体积分数(%)的近似值。4.渗碳体数量 在球墨铸铁结晶后,往往在组织中出现一定数量的渗碳体。严重时,出现莱氏体。渗碳体显著降低球墨铸铁的塑性和韧性,并恶化加工性能。在球墨铸铁的生产中,若渗碳体作为硬化相单独存在时,其含量的体积分数一般应小于5%作为控制界限。对于某些高韧性球墨铸铁,应作更严格的控制。国家标准将渗碳体数量分为五级,依次为渗1、渗2、渗3、渗5和渗10。各级别名称中的数字表示该级渗碳体数量的体积分数(%)的近似值。(四)球墨铸铁等温淬火的组织及检验1.等温淬火的组织 当等温温度比较低时,获得针状贝氏体,也称下贝氏体。针状贝氏体经侵蚀后在显微镜下呈针状。针状贝氏体具有高的强度和硬度,但塑性和韧性较低。当等温温度比较高时,获得羽毛状贝氏体也称上贝氏体。这种组织总伴有较多的高碳残留奥氏体,羽毛状贝氏体具有较高的综合力学性能。当等温温度在Ms附近时,获得针状贝氏体与马氏体的混合组织,在部分奥氏体化等温淬火的条件下,获得贝氏体与铁素体的混合组织,前者强度、硬度高,脆性大,而后者虽然强度稍低,但塑性和韧性较高。检验球墨铸铁等温淬火组织,可按JB/T 《稀土镁球墨铸铁等温淬火金相标准》进行。2.贝氏体长度 奥氏体化温度愈高,则转变成贝氏体的尺寸愈长。在贝氏体形态及其他条件相同的情况下,贝氏体尺寸愈长,力学性能愈低。JB/T 标准将贝氏体的长度分为五级。3.白区数量 所谓白区,是指球墨铸铁经等温淬火后,集中分布在共晶团边界上尚未转变的残留奥氏体和淬火马氏体。试样经侵蚀后呈白色断续网络状。试验表明,奥氏体化温度愈高,等温转变愈不充分,铸铁中稳定奥氏体的合金元素含量愈高,则白区数量愈多。白区增加球墨铸铁的脆性,为此,应控制白区的数量。标准将白区数量分为四级。4.铁素体数量 球墨铸铁等温淬火后的铁素体一般出现于部分奥氏体化的淬火状态下,其数量决定于三相区内未溶铁素体的多寡。一般来说,少量铁素体的存在,虽使强度和硬度有所降低,但使塑性、韧性和疲劳强度有所提高。标准中将铁素体数量分为四级。五)球墨铸铁几种常见的铸造缺陷1.球化不良和球化衰退 球化不良和球化衰退的显微组织特征是除球状石墨外,出现较多蠕虫状石墨。球化不良和球化衰退的球墨铸铁铸件只能报废。2.石墨飘浮 石墨飘浮的金相组织特征是石墨大量聚集,往往出现开花状。在壁厚较大的铸件上容易出现。石墨飘浮降低铸件的力学性能。3.夹渣 球墨铸铁的夹渣一般是指呈聚集分布的硫化物和氧化物。在显微镜下,为黑色不规则形状的块状物或条带状物,常见于铸件的上表面或泥芯的下表面。具有夹渣的铸件,力学性能低。严重时,使铸件渗漏。4.缩松 缩松是指在显微镜下所见到的微观缩孔。缩松分布在共晶团的边界上,呈向内凹陷的黑洞。缩松破坏了金属的连续性,降低力学性能,严重时引起铸件渗漏。5.反白口 反白口的组织特征是在共晶团的边界上出现许多呈一定方向排列的针状渗碳体。一般位于铸件的热节部位。在反白口区域内,往往都存在较多的显微缩松。
关于金相侵蚀的介绍在某些合金中,由于各相组成物的硬度差别较大,或由于各相本身色泽显著不同,在显微镜下能分辨出它的组织。但大部分的显微组织均需经过不同方法的侵蚀,才能显示出各种组织来,常用的金属组织侵蚀法有化学侵蚀及电解侵蚀法等。(一)电解侵蚀法化学侵蚀法虽然有不少强烈作用的侵蚀剂,但对于某些具有极高化学稳定性的合金,仍难清晰地显示出它们的组织,如不锈钢、耐热钢、热电偶材料等。电解侵蚀的工作原理基本上与电解抛光相同。在电解抛光开始时试样产生“侵蚀”现象,这一阶段正好是电解侵蚀的工作范围。由于各项之间与晶粒之间的析出电位不一致,在微弱电流的作用下各相的侵蚀深浅不同,因而能显示各相的组织。(二)化学侵蚀法1.化学侵蚀的原理 此法是利用化学试剂的溶液,借助于化学或电化学作用显示金属的组织。纯金属及单相合金的侵蚀纯粹是一个化学溶解过程,磨面表层的原子被溶入侵蚀剂中,在溶解过程中由于晶粒与晶粒之间的溶解度的不同,组织就被显示出来。---两相合金的侵蚀与单相合金的侵蚀的原理不同,它主要是电化学腐蚀过程。合金中的两个相具有不同的电位,当磨面浸入侵蚀剂中便形成许多微小的局部电池,具有较高负电位的一相成为局部电池的阳极,被很快地溶入侵蚀剂中,因而该相逐渐呈现凹沟。具有较高正电位的另一相成为阴极,在正常电化学作用下不受侵蚀,保持原有的光滑平面。---多相合金的侵蚀也是一个电化学溶解过程。一般电化学作用对于多相合金的侵蚀,往往是负电位较高的各相都产生溶解作用,只有正电位较高的一相未被侵蚀,一般不能鉴别多相组织,所以要用多种侵蚀剂进行侵蚀。2.化学侵蚀的要点 磨面侵蚀前必须冲洗清洁,去除污垢,侵蚀的方法有侵入法和揩擦法。---侵入法是将试样用夹子或手指夹住,浸入盛有侵蚀剂的器皿中,使磨面朝上,并使试样全部浸入。在侵蚀过程中应摇动侵蚀剂,使磨面受蚀更均匀。整个侵蚀过程如下:光亮的磨面经侵蚀逐渐失去光泽,再变成银白色或淡黄色,最后成为灰黑色。一般宜侵蚀较浅先在显微镜上观察侵蚀的程度,如果组织尚未显露,可以不经抛光再进行侵蚀。---揩擦法是将试样磨面朝上平放在工作台上,以蘸有侵蚀剂的棉花在磨面上轻轻揩擦。此法侵蚀后磨面易产生侵蚀不均匀。它适合大型工件和大试样的金相检查。---把经侵蚀适度的试样从侵蚀剂中取出后,应迅速用清水彻底冲洗,然后浸入酒精中或用酒精喷射试样磨面,再用热风吹干,喷酒精的目的是使磨面加快干燥,吹风时试样应倾斜,防止表面积水而成“水渍”。侵蚀后的试样磨面应保持清洁,保护磨面不受损坏。侵蚀后的试样如果不要求及时观察,或需保存,应立即放入干燥器内。
冷弯型钢及在建筑工程中应用概况冷弯型钢一般是用钢带或钢板为原料,在常温下经辊弯或模压成型,是带钢或钢板的深加工产品,是一种高效、经济型材。按其生产成型方式分为:辊式冷弯成型,弯折成型,拉拔成型。其中辊式冷弯成型具有生产效率高,产品质量好,对材料的性能影响小,易于实现生产自动化,可生产闭口、开口型钢及各种断面的异型材。适合大规模化生产作业,代表了生产冷弯型钢先进性、合理性,是冷弯型钢生产的一种发展方向。适合制作冷弯型钢的材质品种繁多,原料来源丰富。有普通碳素钢,如Q215,Q235。低合金钢如Q345,Q390等。优质结构钢,如10钢及不锈钢等。另外还有各钢厂研制开发的新钢种,如武钢集团公司研制的高性能耐火耐候建筑用钢WGJ510C2,耐大气腐蚀钢,汽车大梁用钢WL510等。冷弯型钢产品可按照响应的标准组织生产、执行,如国家标准GB/T6723-86《通用冷弯开口型钢尺寸,外形,重量及允许偏差》,GB/T《结构用冷弯空心型钢》,GB/T《冷弯型钢》及日本标准JISG《一般结构用方、矩形钢管》,JSSⅡ10-1988《冷弯方矩钢管》,欧盟标准EN97《非合金及细晶粒钢的冷成形焊接空心型材 第2部分:尺寸、偏差和截面特性》,也可按用户与生产厂商定的技术条件组织生产。冷弯型钢的用途十分广泛,可用于建筑工程、车辆(铁路、汽车等)制造、矿井建设、桥梁建设、电力建设等,其中建筑工程是冷弯型钢的第一大用户,冷弯型钢用于建筑工程的主要是结构用的方形、矩形钢管及圆管和各种断面的开口冷弯型钢。被广泛应用于承重骨架和构件,如冷弯方、矩形钢管,圆管用于制作梁或柱;方、矩形钢管和开口型钢配套制作单体构件、配件,如屋架、钢架、檀条、支撑平台、楼梯、门窗及管道等。据资料表明,在发达国家中,如日本,冷弯型钢使用量占钢材总量5%左右,建筑行业使用冷弯型钢占冷弯型钢总量达到70%。在国内,冷弯型钢使用量仅占钢材总量的1%左右,建筑行业使用冷弯型的数量不大。近年来,随着建筑技术的进步和冷弯型钢的发展,冷弯型钢已应用到房屋结构,工程钢结构中,冷弯型钢在建筑业中的用量在逐渐增加。冷弯型钢的特点冷弯型钢带钢或钢板的深加工产品,同其他型材(如热轧型钢)相比具有很多的优越性。1 任意的断面形状辊式冷弯成型的冷弯型钢断面形状具有很大的灵活性,断面形状和尺寸可以按使用的需要结合生产加工工艺的特点进行设计和制造,可最大限度地满足用户的要求合理的断面形状,可生产出材料分布最合理的各种断面型材。常用的断面形状有:圆形、方形和矩形,及其它异形闭口型钢。开口型钢有角钢,槽形钢(内/外卷边槽钢),Z形钢(卷边Z型钢)及一些较复杂断面型钢。冷弯型钢用于建筑,主要借助于优化截面形状而不是单纯依赖改变材质或增加材料的用量来提高材料的性能和用途。2 任意长度辊式冷弯型钢生产是连续进行的,一般都在生产线上安装了数控飞锯机,用工业计算机全数字控制,能随时调整产品定尺长度并跟踪锯切。定尺长度准确(定尺长度偏差可控制在0~30mm以内,精确可控制在0~6mm以内),可满足需要的多个定尺长度。3 表面质量,尺寸精度高辊式冷弯成型的型钢主要是以钢带为原料,经辊压成型后其表面光洁,尺寸精度高,截面形状均匀一致,外形美观,截面的金属分布均匀、合理。4 同热轧型钢相比具有单位长度的重量轻冷弯型钢在同一截面的厚度一样,断面均匀一致,断面的性能得到充分的发挥,在承载能力(抗弯模量)相同的情况下,冷弯成型同热轧型钢相比具有单位长度的重量轻,可减少用钢量,节约钢材。如8# 热轧槽钢同冷弯槽钢100×50×4.0规格比较如表1。表1名称 规格(mm) 抗弯摸量(cm3) 理论重量(kg/m) 重量减轻(%) 热轧槽钢 8#:80×40×4.5 22.4 7.05 18% 冷弯槽钢 100×50×4.0 22.2 5.79 使用冷弯型钢可节约钢材20%左右,可获得较大的经济效益。冷弯型钢是一种高效,经济断面型材。5 冷弯型钢具有冷作硬化现象冷弯型钢属冷加工产品,带钢在成型过程中的变形是冷变形,变形过程也伴随冷作硬化。一方面,材料的强度因冷作硬化而提高,可提高构件承载能力,另一方面,材料的塑性和冲击韧性也有所降低,对材料的性能不利。6 能源消耗少、对环境的污染少冷弯型钢是在常温状态下进行加工的,其生产过程中的能源消耗低于热轧型钢生产中的能耗。生产过程中没有热加工等工序,对环境的污染也较少。冷弯型钢在建筑工程中推广应用的几个问题冷弯型钢在建筑行业的推广,应用,有以下几个方面问题需要共同完善,解决。1 品种、材质方面产品的品种,钢材材质还不够齐全,不能完全满足建筑工程需要。在品种,规格方面,一些大断面,厚壁的(如边长大于500mm,厚度大于14mm的方、矩形钢管)目前国内还没有生产,不能给建筑工程配套供应,(对于一些大断面,厚壁方、矩形钢管也可采用两根冷弯槽形钢对扣拼焊,如500×500×14mm的方形钢管可用两根同等长度的500×250×14mm的冷弯槽形钢对扣拼焊形成)。在材质方面,一些要求有高强度、高延伸率及综合性能优良的材料还要进一步研究,开发,以满足建筑工程特殊的需要。2 设计规范和标准不够完善冷弯型钢在国内建筑业和钢结构中的应用处于起步阶段,有关的设计规范和标准还不够完善和全面。目前国内有冷弯薄壁型钢(厚度不超过6mm)的技术规范-《冷弯薄壁型钢结构技术规范》,对于厚度大于6mm的冷弯型钢在设计过程中就没有相应的设计规范,同时工程设计手册中还没有完全地将冷弯型钢归纳进来,不便于设计选型,制约了冷弯型钢在建筑工程中的推广的应用。3 冷弯行业宣传力度不够冷弯型钢生产厂和行业部门与一些设计院所,施工等建筑行业单位的宣传、沟通力度不够,有关设计人员在设计选用冷弯型钢时,对冷弯型钢的认识还不够全面、深入,也不利于冷弯型钢的推广,应用。冷弯型钢生产厂和行业部门要加大对冷弯型钢的宣传力度,以便有更多的人认识、了解冷弯型钢。结束语冷弯型钢作为带钢或钢板的深加工产品,是一种经济,高效的断面型材,材质、品种繁多,具有诸多优良的特点,是国家大力推广的新型材料,是建筑工程的较理想选用型材,随着我国经济建设的快速发展和人们逐步对冷弯型钢的认识及相关规范的完善,冷弯型钢在国民经济建设中的应用,特别是在建筑工程中的应用将会大展身手,越来越普及。
金属材料疲劳断裂的特点1)载荷应力是交变的;  (2)载荷的作用时间较长;  (3)断裂是瞬时发生的;  (4)无论是塑性材料还是脆性材料,在疲劳断裂区都是脆性的。  所以,疲劳断裂是工程上最常见、最危险的断裂形式。  金属材料的疲劳现象,按条件不同可分为下列几种:  (1)高周疲劳:指在低应力(工作应力低于材料的屈服极限,甚至低于弹性极限)条件下,应力循环周数在100000以上的疲劳。它是最常见的一种疲劳破坏。高周疲劳一般简称为疲劳。  (2)低周疲劳:指在高应力(工作应力接近材料的屈服极限)或高应变条件下,应力循环周数在以下的疲劳。由于交变的塑性应变在这种疲劳破坏中起主要作用,因而,也称为塑性疲劳或应变疲劳。  (3)热疲劳:指由于温度变化所产生的热应力的反复作用,所造成的疲劳破坏。  (4)腐蚀疲劳:指机器部件在交变载荷和腐蚀介质(如酸、碱、海水、活性气体等)的共同作用下,所产生的疲劳破坏。  (5)接触疲劳:这是指机器零件的接触表面,在接触应力的反复作用下,出现麻点剥落或表面压碎剥落,从而造成机件失效破坏。
盐雾试验与实际情况的关系一、 盐雾的腐蚀 腐蚀是材料或其性能在环境的作用下引起的破坏或变质。大多数的腐蚀发生在大气环境中,大气中含有氧气、湿度、温度变化和污染物等腐蚀成分和腐蚀因素。盐雾腐蚀就是一种常见和最有破坏性的大气腐蚀。这里讲的盐雾是指氯化物的大气,它的主要腐蚀成分是海洋中的氯化物盐——氯化钠,它主要来源于海洋和内地盐碱地区。盐雾对金属材料表面的腐蚀是由于含有的氯离子穿透金属表面的氧化层和防护层与内部金属发生电化学反应引起的。同时,氯离子含有一定的水合能,易被吸附在金属表面的孔隙、裂缝排挤并取代氯化层中的氧,把不溶性的氧化物变成可溶性的氯化物,使钝化态表面变成活泼表面。造成对产品极坏的不良反应。 二、 盐雾试验及与实际的联系 盐雾试验是一种主要利用盐雾试验设备所创造的人工模拟盐雾环境条件来考核产品或金属材料耐腐蚀性能的环境试验。它分为二大类,一类为天然环境暴露试验,另一类为人工加速模拟盐雾环境试验。人工模拟盐雾环境试验是利用一种具有一定容积空间的试验设备——盐雾试验箱,在其容积空间内用人工的方法,造成盐雾环境来对产品的耐盐雾腐蚀性能质量进行考核。它与天然环境相比,其盐雾环境的氯化物的盐浓度,可以是一般天然环境盐雾含量的几倍或几十倍,使腐蚀速度大大提高,对产品进行盐雾试验,得出结果的时间也大大缩短。如在天然暴露环境下对某产品样品进行试验,待其腐蚀可能要1年,而在人工模拟盐雾环境条件下试验,只要24小时,即可得到相似的结果。
盐雾试验盐雾试验是一种主要利用盐雾试验设备所创造的人工模拟盐雾环境条件来考核产品或金属材料耐腐蚀性能的环境试验。它分为二大类,一类为天然环境暴露试验,另一类为人工加速模拟盐雾环境试验。人工模拟盐雾环境试验是利用一种具有一定容积空间的试验设备——盐雾试验箱,在其容积空间内用人工的方法,造成盐雾环境来对产品的耐盐雾腐蚀性能质量进行考核。它与天然环境相比,其盐雾环境的氯化物的盐浓度,可以是一般天然环境盐雾含量的几倍或几十倍,使腐蚀速度大大提高,对产品进行盐雾试验,得出结果的时间也大大缩短。如在天然暴露环境下对某产品样品进行试验,待其腐蚀可能要1年,而在人工模拟盐雾环境条件下试验,只要24小时,即可得到相似的结果。人工模拟盐雾试验又包括中性盐雾试验、醋酸盐雾试验、铜盐加速醋酸盐雾试验、交变盐雾试验。中性盐雾试验,是出现最早目前应用领域最广的一种加速腐蚀试验方法。一般情况下,它采用5%的氯化钠盐水溶液,溶液PH值调在中性范围(6.5~7.2)作为喷雾用的溶液。试验温度均取35℃,要求盐雾的沉降率在1~3ml/2000px2.h之间,沉降量一般都是1~2ml/2000px2.h之间。醋酸盐雾试验,是在中性盐雾试验的基础上发展起来的。它是在5%氯化钠溶液中加入一些冰醋酸,使溶液的PH值降为3左右,溶液变成酸性,最后形成的盐雾也由中性盐雾变成酸性。它的腐蚀速度要比NSS试验快3倍左右。铜盐加速醋酸盐雾试验,是国外新近发展起来的一种快速盐雾腐蚀试验,试验温度为50℃,盐溶液中加入少量铜盐—氯化铜,强烈诱发腐蚀。它的腐蚀速度大约是NSS试验的8倍。交变盐雾试验,是一种综合盐雾试验,它实际上是中性盐雾试验加恒定湿热试验。它主要用于空腔型的整机产品,通过潮态环境的渗透,使盐雾腐蚀不但在产品表面产生,也在产品内部产生。它是将产品在盐雾和湿热两种环境条件下交替转换,最后考核整机产品的电性能和机械性能有无变化。
影响不锈钢锈蚀的主要因素广特检测金属实验室专业提供金属成分分析,金属材质检测,合金成分分析,不锈钢检测等。在日常生活中,我们经常得知不锈钢会生锈,那么什么样的不锈钢不易生锈呢。 影响不锈钢锈蚀的主要因素有三点: 其一:合金元素的的含量,一般地说铬的含量在10.5%钢就不易生锈了。铬镍的 含量越高防腐性就越好,如304材质镍要的含量在8-10%,铬的含量达到18-20%,这样的不锈 钢在一般情况下是不会生锈的。 其二:生产企业的冶炼工艺也会影响不锈钢的耐腐蚀性。冶炼技术好、设备先进、工艺先进的大的不锈钢厂无论是在合金元素的控制,杂质的去除、钢坯冷却温度的控制都能得到保,因此产品质量稳定可靠,内在质量好,不易生锈。反之一些小的钢厂设备落后,工艺落后,冶炼过程中,杂质不能去除,生产的产品难免会生锈。其三:外部环境,气候干燥通风好的环境不易生锈。而空气湿度大,连续阴雨天气、或空气中含酸碱度大的环境地区就易生锈。304材质不锈钢,如果周边环境太差也是会生锈的。 不锈钢就是不带磁,不带磁就是好不锈钢吗?如果微带磁了就不是304了吗? 很多客户到市场买不锈钢,自身带一块小磁铁,看货时吸一下,认为吸不上的就 是好不锈钢。不带磁就不会生锈了,其实这是一种错误的理解。不锈钢带不不带磁是组织结构决定的,钢水在凝固过程当中由于凝固的温度不同会形成“铁素体” “奥氏体”“马氏体”等不同组织结构的不锈钢,其中“铁素体”“马氏体”不锈钢都是带磁的。而“奥氏体”不锈钢其综合力学性能,工艺性能可焊性都好,但仅从耐腐蚀性而言带磁的“铁素体”不锈钢要强于“奥氏体”不锈钢。目前市场流通的高含锰少含镍的所谓200系列、300系列不锈钢也不带磁,但其性能与高含镍的304的差距很大,反而,304经过拉伸、退火、抛光、铸造等工艺处理也会微带磁性,因此用不锈钢带不带磁来判断不锈钢的优劣是一种误解,也是不科学的。 广特检测技术(天津)有限公司(GTTS)是一家公正的第三方检测机构,目前拥有材料可靠性、物理力学、化学(环境)实验室,服务于汽车零部件产品、电子产品、环境及石油石化、交通等制造业领域,是一家能力范围较广的第三方检测实验室。
铁合金化学成分和硬度检测铁合金(英文Ferroalloys ),铁与一种或几种元素组成的中间合金,主要用于钢铁冶炼。在钢铁工业中一般还把所有炼钢用的中间合金,不论含铁与否(如硅钙合金),都称为“铁合金”。习惯上还把某些纯金属添加剂及氧化物添加剂也包括在内。习惯上还把某些纯金属添加剂及氧化物添加剂也包括在内。铁合金一般用作:脱氧剂:在炼钢过程中脱除钢水中的氧,某些铁合金还可脱除钢中的其他杂质如硫、氮等。合金添加剂:按钢种成分要求,添加合金元素到钢内以改善钢的性能。孕育剂:在铸铁浇铸前加进铁水中,改善铸件的结晶组织。金属分析项目:  1、 不锈钢成分分析—不锈钢牌号鉴定:304、304L、316等不锈钢;元素含量检测:镍Ni、铬Cr、钼Mo、铁Fe等;  2、 合金成分分析检测——铜合金、铝合金、锌合金、焊锡及其他合金:碳C,氮N,硫S,磷P,硅Si,铜Cu,铁Fe,铝Al,锡Sn,钼Mo,镍Ni,铬Cr,锰Mn,钛Ti,钨W,铅Pb,锌Zn……; 本着“准确、快捷、公正、保密”的服务宗旨,为广大客户提供高效率的服务。广特检测技术(天津)有限公司(GTTS)是一家公正的第三方检测机构,目前拥有材料可靠性、物理力学、化学(环境)实验室,服务于汽车零部件产品、电子产品、环境及石油石化、交通等制造业领域,是一家能力范围较广的第三方检测实验室。
机械冲击试验,可靠性必做项目冲击和碰撞都属于冲击范畴,规定冲击脉冲脉波形的冲击试验,主要用来确定元件、设备和其他产品在使用和运输过程中经受多次重复(碰撞)的机械冲击的适用性,以及评价结构的完好性。冲击来源于运输、撞击、弹跳、跌落、翻滚等。主要造成结构损伤,表面损伤,机构界面变形、磨耗、电器特性变异、短路、断路等。本试验的目的是用来揭露机械弱点和(或)性能下降情况,并且利用这些资料,结合相关规范,来决定样品是否可以接收。在某些情况下,本冲击试验也可用来确定样品的结构完好性,或作为质量控制的手段。对于安装于车辆上的电子产品更因车辆环境较一般商用产品环境恶劣,尤其是若产品安装于轮胎、车门或后行李箱位置等,其结构耐冲击要求更高,因此,产品设计阶段利用好冲击强度试验手法可快速验证结构强度水准以及判断是否有适当的包装缓冲设计。试验标准:GB/T 2423.5IECGB/T 485701GB/T 4857.2GB/T 4857.3GB/T 4857.17GB/T 4857.18
金属成分分析和全元素分析金属材料广泛应用于冶金、机械、建筑、有色金属等各行各业,对金属材料原材料、半成品、成品进行全元素和全成分的分析及牌号判断对于控制产品的性能有着至关重要的作用。深圳市材料表面分析检测中心为您提供专业的金属全元素和全成分分析,金属牌号鉴定,不锈钢牌号鉴定,不锈钢成分分析,金属材质检测。我中心拥有优秀的工程师队伍,配备有电感耦合等离子体原子发射光谱(ICP-OES)、X射线荧光光谱仪(XRF)、碳硫分析仪、扫描电子显微镜和能谱分析仪(SEM+EDS)等精密仪器,可对金属材料的全元素和全成分进行定性、半定量、定量分析,可根据美标、ISO国际标准、国标、欧标、德标、日标等进行金属牌号鉴定及元素分析。可检测的项目有:1. 不锈钢成分分析、牌号鉴定:304,304L,316,316L,201,202等不锈钢分析,对碳(C)、硅(Si)、锰(Mn)、磷(P)、硫(S)、镍(Ni)、铬(Cr)、钼(Mo)等元素进行测定。2. 其他铁基合金全元素和全成分分析:铸铁、碳钢、结构钢、弹簧钢、工具钢、轴承钢等。3. 有色金属合金全元素和全成分分析:铜合金(纯铜,黄铜,白铜,青铜等)、铝合金(变型铝,铸铝,纯铝等)、锌合金(纯锌,锌铝合金等)、镁合金(镁铝锌,镁铝硅等)、钛合金等。
金相的术语相-phase--指金属组织中化学成分、晶体结构和物理性能相同的组成,其中包括固溶体、金属化合物及纯物质。组织-structure--泛指用金相观察方法看到的由形态、尺寸不同和分布形式不同的一种或多种相构成的总体,以及各种材料缺陷和损伤。宏观组织;低倍组织- macrostructure--金属试样的磨面经适当处理后用肉眼或借助放大镜观察到的组织。显微组织-microstructure--将用适当方法(如侵蚀)处理后的金属试样的磨面或其复型或用适当方法制成的薄膜置于光学显微镜或电子显微镜下观察到的组织。晶粒-grain--多晶体材料内以晶界分开、晶体学位向基本相同的小晶体。晶界-grain-boundary--多晶体材料中相邻晶粒的界面。相邻晶粒晶体学位向差小于10°的晶界称为小角晶界,相邻晶粒晶体学位向差较大的晶界称为大角晶界。相界面-interphase-boundary--相邻两种相的分界面。两相的点阵在跨越界面处完全匹配者称为共格界面,部分匹配者称为半共格界面,基本不匹配者称为非共格界面。亚晶粒-subgrain--晶粒内相互间晶体学位向差很小(2°~3°)的小晶块。亚晶粒之间的界面称为亚晶界。晶粒度-grain-size--意指多晶体内晶粒的大小,可用晶粒号、晶粒平均直径、单位面积或单位体积内的晶粒数目定量表征。树枝组织-dendritic-structure--金属铸件中呈树枝状的晶体(晶粒)。 共晶组织-eutectic-structure--金属凝固时,由液相同时析出,紧密相连的两种或多种固体构成的铸态组织。针状组织-acicular-structure--含有一种(或多种)针状相的组织。片层状组织-lamellar-structure--两种或多种薄层状相交替重叠形成的共晶组织、共析组织及其他组织。a 铁-在921℃以下稳定存在,晶体结构为体心立方的纯铁。y –-iron-在921~1390℃稳定存在,晶体结构为面心立方的纯铁。
金属材料失效分析一:金属失效分析概述在金属材料检测中,失效分析是一门新兴发展中的学科,在提高产品质量,金属材料检测技术开发、改进,产品修复及仲裁失效事故等方面具有很强的实际意义,失效分析主要含有金属材料、热处理、焊接、材料加工与成型、机械设计、材料力学、无损检测等不同的专业。科标无机检测中心提供金属失效分析方面的相关服务。 二:具体检测项目金相检验是一种常规的实验分析方法.它在失效分析中能提供被检材料的大概种类和组织状况。从检验出的显散组织来推断或证实被检材料制造过程中经历的工艺过程,以及执行这些工艺是否属正常,同时还可提供失效件在发生事故时是否发生塑性变形等情况,以及失效件在使用过程中无意造成的热处理效果等。反映出失效件在工作条件下发生的腐蚀(大致可以定性和对腐蚀程度的半定量)、磨损、氧化和严重的表面加工硬化等,并可初步确定其程度。从失效件上存在的裂纹,通过光学金相,大致可看出裂纹的发生及延伸分布的特征以及裂纹两侧的显微组织,来判断裂纹的性质,从而可提供失效件裂纹的产生原因;夹杂物的类型、级别及分布;相的类型、大小及分布。在失效分析中,化学成分分析是必不可少的。它能为失效分析提供有用的信息。如由于选材错误所造成的失效,只需要用化学成分分析就能得到结果。利用X射线和荧光分析、能谱分析、俄歇分析、电子探针、离子探针、激光探针等方法,对金属的表面或内部的成分进行分析和研究。在进行化学我分分析时,宏观化学成分分析最常用,对于特殊情况,可采用微区化学成分分析。
检测金属铜中的痕量元素铜是最早被人类认识的金属并早在10000 年前就已被开采利用。由于其质地较软,具有良好的延展性,很早就被人们用来制造工具、容器、装饰品和武器等。后来人们又发现,在熔化的铜中加入少量锡后,能够形成硬度更高的合金,由此人类便开始进入了青铜器时代。如今,铜以及铜合金是金属贸易的主要领域之一,消耗量仅次于钢铁和铝。同时也是应用性最广的工程材料之一。这些均得益于铜以及铜合金所具有的一些重要性质,其中包括:¾ 优异的导电性能(仅次于Ag)¾ 优异的导热性¾ 良好的耐腐蚀性¾ 良好的机械加工性¾ 非磁性¾ 极低温度仍能保持良好的机械性和导电性如果对铜合金的组成和加工工艺作调整还可进一步优化其特性。例如,添加Pb 和Te 可增强其机械加工性。全世界每年铜的消耗量接近1800 万吨,其中最主要的消耗来源于建筑业,其次是电子工业。铜和铜合金中痕量杂质的存在对材料性能有非常不利的影响。例如电解铜中Fe、Pb 和Sn 的存在会增大其电阻,另外,其它金属的存在还会影响铜合金的耐腐蚀性。因此,杂质含量必须严格控制,以确保材料性能。本文实验应用利曼公司的Prodigy 高色散型全谱直读等离子体发射仪分析测定铜标准物质中的痕量杂质。
金属材料检测(判定)金属材料检测范围涉及对黑色金属、有色金属、机械设备及零部件等的机械性能测试、化学成分分析、金相分析、精密尺寸测量、无损探伤、耐腐蚀试验和环境模拟测试等。1检测项目物理性能、化学成分检测,未知牌号的鉴定,不锈钢的等级判定,材料的无损探伤及材质证明金属成分分析,元素测试、五大元素测试及全元素分析。提供牌号鉴定服务及不锈钢等级判定等服务。2检测原理五大元素通常指钢铁中存在的锰、磷、硅、碳、硫元素,是钢铁中最重要的也是最基本的元素,是区分普通钢铁的牌号及品质,它们的含量直接影响钢铁的机械性能。金属元素分析在国内冶金,铸造,机械,矿产领域非常常见。实验室配备有电感耦合等离子发射光谱仪(ICP-OES)、原子吸收光谱仪(AAS)、X射线荧光光谱仪(XRF)、电位滴定仪、分光光度计、氮氧仪、碳硫仪等各类高精度化学检测仪器。可以分析的元素有碳元素、硫元素、硅元素、锰元素、磷元素、铬元素、钙元素、镍元素、铜元素、钼元素、钒元素、钛元素、铌元素、钽元素、钨元素、镉元素、铁元素、锌元素、镁元素、铝元素、铅元素、锡元素、砷元素、锑元素、铋元素、氮元素、氢元素、氧元素、钴元素等。常见的金属元素分析试样有: 各类水质,土壤,矿物,废弃物,纺织品,化妆品,橡塑材料等。
贴吧热议榜
使用签名档&&
保存至快速回贴

我要回帖

更多关于 中医经络检测仪厂家 的文章

 

随机推荐