同等外部条件和型号规格下,有的稳压二极管工作条件被可逆击穿,说明此稳压二极管工作条件性能变差了吗?

【图文】二极管的识别与检测_百度文库
赠送免券下载特权
10W篇文档免费专享
部分付费文档8折起
每天抽奖多种福利
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
二极管的识别与检测
阅读已结束,下载本文到电脑
想免费下载本文?
登录百度文库,专享文档复制特权,积分每天免费拿!
你可能喜欢雪崩二极管的应用_雪崩二极管吧_百度贴吧
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&签到排名:今日本吧第个签到,本吧因你更精彩,明天继续来努力!
本吧签到人数:0可签7级以上的吧50个
本月漏签0次!成为超级会员,赠送8张补签卡连续签到:天&&累计签到:天超级会员单次开通12个月以上,赠送连续签到卡3张
关注:19贴子:
雪崩二极管的应用
基本介绍与基本型号的应用范围    
每个模块包括一个(快速或雪崩光电二极管)和一个互阻抗放大器。同一封装中兼备放大器和光探测器,使其环境噪声更低,寄生电容更小。  
 C30659 系列模块包括一个连接到低噪声互阻抗放大器的APD。有4种型号使用硅晶体雪崩和2 种型号铟镓砷雪崩光电二极管可选择。50 兆赫和200 兆赫的标准频带宽度可以适应大范围应用。另有两种C30659 型号的雪崩光电二极管配置热电制冷(LLAM 系列),帮助改善噪音或保持雪崩光电二极管在任何环境温度下恒温工作,C30659 型号可以根据特殊应用需要,选择一种定制频带宽度或适合特殊环境要求的定制产品。另有一种带尾纤封装14 插脚双列直插式插件,可以达到几乎100 %耦合效率。C30950EH是可以替代C30659 的低成本型产品。放大器用来抵消放大器的输入电容。C30919E 与C30950EH 使用相同设计结构,多了一个高压温度补偿电路以保持模块在宽温度范围内的响应性常数。另两种HUV 模块可用于低频高增益应用,它涵盖了从紫外线到接近红外线的广谱范围。
应用范围大概介绍   · 激光测距仪· 共焦检查· 视频扫描成像仪· 高速分析仪器· 自由空间通信   · 紫外线传感· 分布式   特点和优点   · 超低噪声· 高速· 高互阻抗增益   
常用型号:C-R5BH,C-R8AH, C-R8BH,C-3AH   C-R08BH,C-R2AH, C30919E, C30950EH,LLAM-1550-R2A, LLAM-1060-R8BH   HUV-1100BGH,HUV-2000BH   应用图片介绍
有需要咨询 可上博云网讯科技有限公司联系找龚先生(PHONE:,QQ:) 处了解产品详情.
鑫沐电子专业生产二极管产品规格封装全,2.5-46v的二极管电压,提供完整的esd保护方案 可为客户提供超低电容及超低漏电流二极管,量大咨询
欢迎大家咨询讨论
击穿分两类:电性击穿和热击穿,电性击穿又分成隧道击穿和雪崩击穿。通常来说超过6V为雪崩击穿,小于4V为隧道击穿,4V~6V两种都有。隧道击穿又称齐纳击穿。两者在电压允许范围内是可逆击穿,但超过一定程度时就会转换成热击穿,引起的永久失效。整流管的工艺一般都是N+NP+的台面工艺,不管是OJ还是GPP,其PN结是一个台面,降低漏电流,至于400V的普通管和雪崩管工艺异同处,我认为lz分类混淆了,400V的普通管应该就是雪崩管
雪崩光电二极管(APD)(又称累崩光电二极管或崩溃光二极体)是一种半导体光检测器,其原理类似于光电倍增管。在加上一个较高的反向偏置电压后(在硅材料中一般为100-200 V),利用电离碰撞(雪崩击穿)效应,可在APD中获得一个大约100的内部电流增益。某些硅APD采用了不同于传统APD的掺杂等技术,允许加上更高的电压(&1500 V)而不致击穿,从而可获得更大的增益(&1000)。一般来说,反向电压越高,增益就越大。APD倍增因子M的计算公式很多,一个常用的公式为
其中L是电子的空间电荷区的长度,而是电子和空穴的倍增系数,该系数取决于场强、温度、掺杂浓度等因素。由于APD的增益与反向偏置和温度的关系很大,因此有必要对反向偏置电压进行控制,以保持增益的稳定。雪崩光电二极管的灵敏度高于其它半导体光电二极管。为获得更高的增益(105–106),某些APD可以工作在反向电压超出击穿电压的区域。此时,必须对APD的信号电流加以限制并迅速将其清为零,为此可采用各种主动或被动的电流清零技术。这种高增益的工作方式称为Geiger方式,它特别适用于对单个光子的检测,只要暗计数率足够低。 APD主要用于激光测距机和长距离光纤通信,此外也开始被用于正电子断层摄影和粒子物理等领域 [1]。APD阵列也已被商业化。 APD的用途取决于许多性能指标。主要的几个性能指标为量子效率(表示APD吸收入射光子并产生原始载流子的效率)和总漏电流(为暗电流、光电流与噪声之和)。暗电噪声包括串联和并联噪声,其中串联噪声为霰弹噪声,它大致正比于APD的电容,而并联噪声则与APD的体暗电流和表面暗电流的波动有关。此外,还存在用噪声系数F表示的超额噪声,它是随机的APD倍增过程中所固有的统计噪声。
论上,在倍增区中可采用任何半导体材料: 硅材料适用于对可见光和近红外线的检测,且具有较低的倍增噪声(超额噪声)。 锗(Ge)材料可检测波长不超过1.7µm的红外线,但倍增噪声较大。 InGaAs材料可检测波长超过1.6µm的红外线,且倍增噪声低于锗材料。它一般用作异构(heterostructure)二极管的倍增区。该材料适用于高速光纤通信,商用产品的速度已达到10Gbit/s或更高。 氮化镓二极管可用于紫外线的检测。 H***Te二极管可检测红外线,波长最高可达14µm,但需要冷却以降低暗电流。使用该二极管可获得非常低的超额噪声。 [编辑] 超额噪声 如前所述,超额噪声是由倍增过程产生的噪声,它与倍增过程的增益M有关,记作F(M),一般可用下式计算:
其中为空穴与电子的碰撞电离率之比,在电子倍增器件中定义为空穴碰撞电离率除以电子碰撞电离率的比值。一般希望两个碰撞电离率的差别尽可能大,以减小F(M),因为F(M)是决定最高能量分辨率等性能指标的主要因素之一。
特别提醒,有些型号的订货周期比较长 大概要6-8周
楼主 讲的还挺不错哦
贴吧热议榜
使用签名档&&
保存至快速回贴周热销排行
用户评论(0)
在此可输入您对该资料的评论~
添加成功至
资料评价:二极管在什么情况下会被击穿?击穿后会怎样?_百度知道
二极管在什么情况下会被击穿?击穿后会怎样?
二极管在什么情况下会被击穿?击穿后会怎样?请准确详细地解释,最好有解释,要尽量详细,谢谢!
我有更好的答案
外加反向电压超过某一数值时,反向电流会突然增大,这种现象称为电击穿。引起电击穿的临界电压称为二极管反向击穿电压。电击穿时二极管失去单向导电性。如果二极管没有因电击穿而引起过热,则单向导电性不一定会被永久破坏,在撤除外加电压后,其性能仍可恢复,否则二极管就损坏了。因而使用时应避免二极管外加的反向电压过高。二极管是一种具有单向导电的二端器件,有电子二极管和晶体二极管之分,电子二极管现已很少见到,比较常见和常用的多是晶体二极管。二极管的单向导电特性,几乎在所有的电子电路中,都要用到半导体二极管,它在许多的电路中起着重要的作用,它是诞生最早的半导体器件之一,其应用也非常广泛。二极管的管压降:硅二极管(不发光类型)正向管压降0.7V,锗管正向管压降为0.3V,发光二极管正向管压降会随不同发光颜色而不同。主要有三种颜色,具体压降参考值如下:红色发光二极管的压降为2.0--2.2V,黄色发光二极管的压降为1.8—2.0V,绿色发光二极管的压降为3.0—3.2V,正常发光时的额定电流约为20mA。二极管的电压与电流不是线性关系,所以在将不同的二极管并联的时候要接相适应的电阻。二极管的击穿电压UBR值差别很大,从几十伏到几千伏。 二极管的反向击穿齐纳击穿反向击穿按机理分为齐纳击穿和雪崩击穿两种情况。在高掺杂浓度的情况下,因势垒区宽度很小,反向电压较大时,破坏了势垒区内共价键结构,使价电子脱离共价键束缚,产生电子-空穴对,致使电流急剧增大,这种击穿称为齐纳击穿。如果掺杂浓度较低,势垒区宽度较宽,不容易产生齐纳击穿。雪崩击穿  另一种击穿为雪崩击穿。当反向电压增加到较大数值时,外加电场使电子漂移速度加快,从而与共价键中的价电子相碰撞,把价电子撞出共价键,产生新的电子-空穴对。新产生的电子-空穴被电场加速后又撞出其它价电子,载流子雪崩式地增加,致使电流急剧增加,这种击穿称为雪崩击穿。无论哪种击穿,若对其电流不加限制,都可能造成PN结永久性损坏。
下面有“击穿”当二极管两端的反向电压增大到某一数值,反向电流会急剧增大,二极管将失去单方向导电特性,这种状态称为二极管的击穿。二极管 二极管的特性与应用几乎在所有的电子电路中,都要用到半导体二极管,它在许多的电路中起着重要的作用,它是诞生最早的半导体器件之一,其应用也非常广泛。 二极管的工作原理 晶体二极管为一个由p型半导体和n型半导体形成的p-n结,在其界面处两侧形成空间电荷层,并建有自建电场。当不存在外加电压时,由于p-n 结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流。当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流I0。当外加的反向电压高到一定程度时,p-n结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。 二极管的类型 二极管种类有很多,按照所用的半导体材料,可分为锗二极管(Ge管)和硅二极管(Si管)。根据其不同用途,可分为检波二极管、整流二极管、稳压二极管、开关二极管等。按照管芯结构,又可分为点接触型二极管、面接触型二极管及平面型二极管。点接触型二极管是用一根很细的金属丝压在光洁的半导体晶片表面,通以脉冲电流,使触丝一端与晶片牢固地烧结在一起,形成一个“PN结”。由于是点接触,只允许通过较小的电流(不超过几十毫安),适用于高频小电流电路,如收音机的检波等。面接触型二极管的“PN结”面积较大,允许通过较大的电流(几安到几十安),主要用于把交流电变换成直流电的“整流”电路中。平面型二极管是一种特制的硅二极管,它不仅能通过较大的电流,而且性能稳定可靠,多用于开关、脉冲及高频电路中。 二极管的导电特性 二极管最重要的特性就是单方向导电性。在电路中,电流只能从二极管的正极流入,负极流出。下面通过简单的实验说明二极管的正向特性和反向特性。 1.
正向特性。 在电子电路中,将二极管的正极接在高电位端,负极接在低电位端,二极管就会导通,这种连接方式,称为正向偏置。必须说明,当加在二极管两端的正向电压很小时,二极管仍然不能导通,流过二极管的正向电流十分微弱。只有当正向电压达到某一数值(这一数值称为“门槛电压”,锗管约为0.2V,硅管约为0.6V)以后,二极管才能直正导通。导通后二极管两端的电压基本上保持不变(锗管约为0.3V,硅管约为0.7V),称为二极管的“正向压降”。 2.
反向特性。 在电子电路中,二极管的正极接在低电位端,负极接在高电位端,此时二极管中几乎没有电流流过,此时二极管处于截止状态,这种连接方式,称为反向偏置。二极管处于反向偏置时,仍然会有微弱的反向电流流过二极管,称为漏电流。当二极管两端的反向电压增大到某一数值,反向电流会急剧增大,二极管将失去单方向导电特性,这种状态称为二极管的击穿。 二极管的主要参数 用来表示二极管的性能好坏和适用范围的技术指标,称为二极管的参数。不同类型的二极管有不同的特性参数。对初学者而言,必须了解以下几个主要参数: 1、额定正向工作电流 是指二极管长期连续工作时允许通过的最大正向电流值。因为电流通过管子时会使管芯发热,温度上升,温度超过容许限度(硅管为140左右,锗管为90左右)时,就会使管芯过热而损坏。所以,二极管使用中不要超过二极管额定正向工作电流值。例如,常用的IN型锗二极管的额定正向工作电流为1A。 2、最高反向工作电压 加在二极管两端的反向电压高到一定值时,会将管子击穿,失去单向导电能力。为了保证使用安全,规定了最高反向工作电压值。例如,IN4001二极管反向耐压为50V,IN4007反向耐压为1000V。 3、反向电流 反向电流是指二极管在规定的温度和最高反向电压作用下,流过二极管的反向电流。反向电流越小,管子的单方向导电性能越好。值得注意的是反向电流与温度有着密切的关系,大约温度每升高10,反向电流增大一倍。例如2AP1型锗二极管,在25时反向电流若为250uA,温度升高到35,反向电流将上升到500uA,依此类推,在75时,它的反向电流已达8mA,不仅失去了单方向导电特性,还会使管子过热而损坏。又如,2CP10型硅二极管,25时反向电流仅为5uA,温度升高到75时,反向电流也不过160uA。故硅二极管比锗二极管在高温下具有较好的稳定性。
本回答被提问者采纳
为您推荐:
其他类似问题
您可能关注的内容
二极管的相关知识
换一换
回答问题,赢新手礼包
个人、企业类
违法有害信息,请在下方选择后提交
色情、暴力
我们会通过消息、邮箱等方式尽快将举报结果通知您。

我要回帖

更多关于 发光二极管的工作条件 的文章

 

随机推荐