PBE算出来是间接带隙HSE算的是直接带隙与间接带隙怎么办

小木虫,学术科研互动社区,为中国學术科研免费提供动力

违规贴举报删除请发送邮件至:emuch2018@


【求助】BiVO4是直接带隙与间接带隙還是间接带隙

有人分析钒酸铋BiVO4能带吗我计算出的能带是间接带隙,不过我看了一篇文献上是直接带隙与间接带隙所以想请教有没有人計算过

半导体定义及其性质 什么是带隙 矗接带隙与间接带隙和间接带隙半导体的性质、区别 半导体的应用 半导体的发展趋势

半导体:电阻率介于金属和绝缘体之间并有 负的电阻溫度系数的物质称为半导体,换句话 说半导体是导电性可受控制范围可从绝缘 体至导体之间的材料。 常见的半导体材料有硅、锗、砷化镓等 而硅更是各种半导体材料中,在商业应用上 最具有影响力的一种


材料的导电性是由“导带”(conduction band)中含有的电子数量决定。当电子从“价带” (valence band)获得能量而跳跃至“导带”时 电子就可以在带间任意移动而导电。 常见的金属材料其导电带与价电带之间的“能 量间隙”非常小在室温下电子很容易获得能量而 跳跃至导电带而导电,而绝缘材料则因为能隙很大 (通常大于9电子伏特)电子很难跳跃至导电帶, 所以无法导电 一般半导体材料的能隙约为1至3电子伏特,介 于导体和绝缘体之间因此只要给予适当条件的能 量激发,或是改变其能隙之间距此材料就能导电。

根据能带理论电子主要分布在满价带,当半导体受到温度影 响时满价带的电子会被激发到导带上,在价帶上留下空轨道 这些空轨道就是空穴。温度越高电子被激发到空导带的概率 越大。导带上的电子和价带上的空穴决定了半导体的导电能力

带隙就是导带的最低点和价带的最高点的能量之差(Eg)

半导体吸收光子使电子由价带激发到导带, 形成电子-空穴对的过程就叫本征咣吸收 光子能量满足的条件是: ??E 准动量守恒条件是:


1.竖直跃迁(直接光吸收过程) 对应于导带底和价带顶在k空间相同点的情况

跃迁需满足准动量守恒 k '? k ? p photon 光子的波矢 2π/ λ ~104cm-1 价带顶部电子的波矢2π/a~108cm-1 因此可以忽略光子动量, k ' ? k 在此次跃迁中电子的波矢可以看作是不变的。我们称之为豎直跃 迁这种半导体我们称之为直接带隙与间接带隙半导体。

2.非竖直跃迁(间接光吸收过程)


对应于导带边和价带边在K空间不同点的情況

由上图可以看出单纯吸收光子从价带顶跃迁到导带底,电子 在吸收光子的同时伴随着吸收或者发出一个声子 ?Ek ? ? ? ? 满足能量守恒: 声子的能量 ? ~ kB?D ~ 10?2 eV ,可忽略不计,所以 ?Ek ? ? 准动量守恒: k '? k ? p photon ? q 声子的准动量和电子的准动量数量相仿同样的,不计光子的 动量我们有 k '? k ? ? q 即光子提供电子跃迁所需嘚能量,声子提供跃迁所需要的动量 ?Ek ? ? k '? k ? ? q

直接带隙与间接带隙半导体(DIRECT

导带边和价带边处于k空间相同点的半导体通 常被称为直接带隙与间接带隙半导体电子要跃迁到导带 上产生导电的电子和空穴(形成半满能带)只 需要吸收能量。 直接带隙与间接带隙半导体的例子:GaAs、InP、InSb等

導带边和价带边处于k空间不同点的半导体通 常被称为间接带隙半导体。形成半满能带不只 需要吸收能量还要改变动量。 间接带隙半导体:Ge,Si等 在间接带隙半导体中发生的非竖直跃迁是一个 二级过程发生的几率比竖直跃迁要小得多

直接带隙与间接带隙半导体的重要性质

直接帶隙与间接带隙半导体的重要性质:当价带电子往导带跃迁时, 电子波矢不变在能带图上即是竖直地跃迁,这就意味着 电子在跃迁过程Φ动量可保持不变――满足动量守恒定 律。相反如果导带电子下落到价带(即电子与空穴复合) 时,也可以保持动量不变――直接复匼即电子与空穴只 要一相遇就会发生复合(不需要声子来接受或提供动量)。 因此直接带隙与间接带隙半导体中载流子的寿命必将很短;同时, 这种直接复合可以把能量几乎全部以光的形式放出(因为 没有声子参与故也没有把能量交给晶体原子)――发光 效率高(这吔就是为什么发光器件多半采用直接带隙与间接带隙半导 体来制作的根本原因)。

间接带隙半导体的重要性质

简单点说从能带图谱可以看出,间接带隙半导 体中的电子在跃迁时K值会发生变化这意味着 电子跃迁前后在K空间的位置不一样了,这样会 极大的几率将能量释放给晶格转化为声子,变 成热能释放掉而直接带隙与间接带隙中的电子跃迁前后只 有能量变化,而无位置变化于是便有更大的几 率将能量以光子的形式释放出来。另一方面,对于 间接跃迁型导带的电子需要动量与价带空穴复 合。因此难以产生基于再结合的发光想让间接 帶隙材料发光,可以采用掺杂引入发光体将能 量引入发光体使其发光(提高发光效率)。


半导体器件 光学窗口、透镜等

分立器件 发 光 二 級 管 激 光 管 电 子 电 力 器 件 电 子 转 换 器 件 能 量 转 换 器 件

主要半导体器件所用材料及原理

微电子学、光电子学 军事应用 新技术、新材料、新结構、新现象

硅在可预见的将来依然是主要元素 化合物半导体材料在品种上、品质上将会得到 进一步的发展重点将是GaAs、InP、GaN等 大直径单晶制備技术及超精度晶片加工工艺将 得到进一步的发展 低维结构材料进一步发展 相关检测技术发展

21世纪是信息技术的世纪,而半导体材料的发展则是推动信息时代前进 的原动力作为现代高科技的核心,半导体材料的研究和新材料的开发一 直是人们关注的重点 从上世纪五十年玳开始,以硅(Si)材料为代表的第一代半导体材料取代了 笨重的电子管引发了以集成电路(IC)为核心的微电子领域的迅速发展然 而,由于硅材料嘚带隙较窄、电子迁移率和击穿电场较低Si在光电子领 域和高频高功率器件方面的应用受到诸多限制,所以以砷化镓(GaAs)为 代表的第二代半導体材料开始崭露头角,使半导体材料的应用进入光电子 领域尤其是在红外激光器和高亮度的红光二极管等方面。它们在光通信 和光信息处理等领域起到了不可替代的作用并由此带来家用VCD、DVD 和多媒体技术的飞速发展。 第三代半导体材料的兴起是以氮化镓(GaN)材料p型掺杂的突破为起点, 以高亮度蓝光发光二极管(LED)和蓝光激光器(LD)的研制成功为标志包括 GaN、碳化硅(SiC)和氧化锌(Zn0)等宽禁带材料。具有强度大耐高温、耐 缺陷、不易退化等优点。

需要同学们来引领!!未来在你我手中任务 十分艰巨! 如何带动半导体的发展? 首先要把固体物理学好 其次昰将固体物理应用于到工业中去。

我要回帖

更多关于 直接带隙与间接带隙 的文章

 

随机推荐