五分之π所有的分数都不是无理数吗,那么为什么所有分数都是有理数

不是无理数是无限不循环小数。所有的分数都是有理数因为有理数的定义就是整数和分数的统称,因此分数一定是有理数数学上,有理数是一个整数a和一个正整数b嘚比例如3/8,通则为a/b

有理数是整数和分数的集合,整数也可看做是分母为一的分数有理数的小数部分是有限或为无限循环的数。不是囿理数的实数称为无理数即无理数的小数部分是无限不循环的数。

无理数是所有不是有理数字的实数后者是由整数的比率(或分数)構成的数字。当两个线段的长度比所有的分数都不是无理数吗时线段也被描述为不可比较的,这意味着它们不能“测量”即没有长度(“度量”)。

常见的无理数有:圆周长与其直径的比值欧拉数e,黄金比例φ等等。

无理数也可以通过非终止的连续分数来处理

无理數是指实数范围内不能表示成两个整数之比的数。简单的说无理数就是10进制下的无限不循环小数,如圆周率

而有理数由所有分数,整數组成总能写成整数、有限小数或无限循环小数,并且总能写成两整数之比如21/7等。

你对这个回答的评价是

整数和分数,统称为有理數

你对这个回答的评价是

不是,无理数是无限不循环小数分数是无限循环小数

你对这个回答的评价是?

你对这个回答的评价是

下载百度知道APP,抢鲜体验

使用百度知道APP立即抢鲜体验。你的手机镜头里或许有别人想知道的答案

日前一份新鲜出炉的证明了近80姩悬而未决的达芬-谢弗(Duffin-Schaeffer)猜想,让数轴上讳莫如深的部分再也不如表面看来那么遥不可及

达芬-谢弗猜想的证明完美解答了从远古时代僦困扰着数学家们的一个问题:类似 这样的无理数在什么情况下可以用例如 这样的简单分数来近似表达?此证明显示这一非常笼统的问题答案完全取决于一个公式计算的结果

这篇论文的两个作者为牛津大学的教授以及蒙特利尔大学的教授。梅纳德教授是这么描述该猜想的:“存在一个简单的判定条件可以判断你能找出几乎所有数的近似值,或几乎找不到任何数的近似值”

数学家几十年来一直怀疑这一簡单判定条件是理解高精度近似值存在与否的关键,但是这一猜想始终无人能够证明科科洛博罗斯和梅纳德证明的关键在于他们将这一數论问题成功转变成关于点线连接的图论问题来研究。

德州大学奥斯汀分校的教授之前曾在这一猜想上贡献过很多成果关于这份证明,怹是这么说的:“选择这个研究方向在我看来需要很巨大的自信心当然,他们完全有资格拥有那份自信他们的证明非常美。”

有理数昰很容易理解的它们包括所有整数和所有可以写成分数的数。

这种易于书写的特点意味着人类对有理数的了解要超过其它所有数但实際上有理数是很稀有的存在。绝大多数的实数都所有的分数都不是无理数吗有着无限不循环的小数,不能表达为分数形式在历史上,┅些重要的无理数获得了属于自己的符号如 、 及 等。剩下的甚至都不能被冠以名称它们无处不在、但又无法触摸,就好像数学中的以呔一样

因此,“如果我们不能精确表达无理数那么我们能近似到什么程度?“这样的问题就变得非常自然这种数学技巧就是所谓的囿理近似。例如古代数学家发现圆周长和直径的虚幻比例可以用分数 来近似表达。之后的数学家又发现了一个同样简便但同时又更为精確的近似值

牛津大学的教授解释:“很难写下 的定义,人们通常取而代之的是寻找 的特定近似值一种常见方法就是利用有理数来近似。”

1837年数学家古斯塔夫·勒热纳·狄利克雷发现了无理数用有理数近似时的误差大小法则。当然,只要你对于误差不是太在意,要找到各种近似值并不难,但狄利克雷的结果成功在分数、无理数和两者的误差之间建立起了直接的数学关系。

他的证明显示对于每一个无理数都存在无限多个分数可以越来越精确地近似表达该无理数更确切来说,每个近似分数和无理数之间的误差不超过1除以分数分母的平方例洳,分数 和 之间的误差不到 分数 和 之间的误差不到 。狄利克雷成功证明了随着分母越来越大存在无限多的分数值和 越来越接近。

拉马努金1913年的手稿内用355/113作为圆周率的近似值

蒙特利尔大学的尔教授解释:“总可以找到分数近似表达任一实数使得误差不超过1除以分母平方。这是一个非凡优美的结果”

在一定程度上,狄利克雷的发现是有理近似的一个狭义结果它告诉你对于每个无理数,如果你允许任何整数做分母且能容忍1除以该分母平方的误差值,那么你可以找到无数个近似分数值但是如果你希望只从某些特定整数(无限)子集里取分母,例如只看所有质数或是所有完全平方数?如果你希望误差小于 或任何你选择的数在这些条件下你是否依然能找出无限个近似汾数?

达芬-谢弗猜想试图在有理近似中构建一个尽可能基本的框架1941年,数学家R·J·达芬和A·C·谢弗想象了下列步骤。首先,选出一个无限長的整数数列包括所有可能的分母这个数列可以包括任何你想要的整数:所有的奇数,所有10的倍数或是任选无限个质数等等。

然后對数列上的每一个分母你都可以定义一个相应的误差值。直觉告诉你如果这个误差定义得越松就越可能找到符合条件的近似值,反之则樾难科科洛博罗斯解释说:“只要误差不是太小随便怎么定义都没差。”

最后在选定分母数列以及相应的误差数列后,你想要知道的昰:随便取一个无理数能不能找到无限多个符合条件的近似分数?

达芬-谢弗猜想提供了一个数学函数来进行判断把你选择的参数丢进詓,这个函数会出现两种结果达芬和谢弗猜测这两种结果恰好对应于两种可能:或者你的数列可以在给出的误差值内得出几乎所有无理數的近似分数,或者你的数列几乎不能近似表达任何无理数(这里的“几乎”非常关键,对于任何一组分母总有可忽略的少量无理数能被近似表达,同样也总有可忽略的少量无理数无法被近似表达)

梅纳德表示:“你要么成功得到几乎所有数的近似值,要么几乎得不箌任何数的近似值没有折中的选择。”

这个猜想的表达极为广义概括了有理近似的一切细节。数学家们一直觉得达芬和谢弗提出的判萣条件是正确的但是,只确定这个函数的结果是两种情况的哪一种就能完全确定是否能找到近似值的完整证明相当困难。

迪米特利斯·科科洛博罗斯(左)和詹姆斯·梅纳德(右)在今年7月意大利举办的一次学会上公布了他们的达芬·谢弗猜想证明

证明达芬-谢弗猜想其實在于理解你选出的每一个分母有多大覆盖力为了看清这一点,可以思考一个简易版的问题

假设你要计算0和1之间所有无理数的近似值,并可以用1到10做为分母可能的分数很多:首先是 ,然后是 、 然后是 、 、 等,最后一直到 和 但是这些分数并不都有用。

例如分数 和汾数 是相等的,而分数 则和 、 、 、 一样在达芬-谢弗猜想之前,数学家亚历山大·辛钦已经提出了一个关于有理近似的一般性猜想。但是他的定理并没有考虑这些相等分数每个只能算一次这个问题

格兰维尔评论道:“通常一年级数学不应该影响问题的结果,但是在这个情况丅影响确确实实存在“

因此,达芬-谢弗猜想增加了一个系数来表达每个分母可以获得的独特分数(或最简分数)数目这个系数即以18世紀数学家莱昂哈德·欧拉命名的欧拉 函数。10的欧拉 函数值为4因为0到1之间以10为分母的分数只有4个最简分数: 、 、 、

下一步就是找出每个最簡分数可以近似表达多少个无理数。这当然取决于你愿意承受的误差大小达芬-谢弗猜想允许你为每一个分母选择一个误差值。例如你可能要求分母为7的分数误差为0.02或者你对于分母为10的分数要求严格一点,允许误差0.01

一旦选好分数和误差,是时候开始撒网捕无理数了在數轴上0和1之间标出你的所有分数,将误差想象为在每个分数两边张开的网那些被网罩住的无理数都是可以被你的分母成功近似表达的数。剩下的最重要问题就是:你到底能抓到几个无理数

在数轴上任一区间内都存在无限个无理数,因此被抓到的无理数个数是不能精确定義的数学家们更关心每个分数捕捉到的无理数占全部无理数的比例。他们用一种称为数集“测度”的概念来量化此类比例打个比方,這就好像用总重量而不是数目来量化捕鱼总量

达芬-谢弗猜想让你将所有近似分数捕捉到的无理数集测度加起来,并将其表达为一个无限項求和的公式该猜想的核心提议就是:如果这个和趋向于无穷,那么你的近似值将捕捉到几乎所有的无理数如果这个和有限,不管多夶你的近似值几乎没有抓住任何无理数。

讨论无限项求和是“发散”至无穷或是“收敛”于有限的问题在数学中经常出现达芬-谢弗猜想的关键之处在于如果你想要知道一组分母和相应误差值是否能近似表达几乎所有的无理数,你唯一需要知道的就是这组分母相应的测度囷到底发散还是收敛

瓦勒对此是这么评论的:“说到底,不管你是用什么方法决定每个分母相应的精确程度最终你成功与否完全取决於这个无穷数列求和是否发散。”

你也许会想到:如果一个分数的误差区间和另一个分数的误差区间重叠呢这种情况下把区间的测度相加不是重复计算了吗?

对于某些分母数列来说这种重复计算的问题并不大。例如数学家几十年前就证明了达芬-谢弗猜想对于所有质数組成的数列成立。但是对于很多其它可能的数列重复计算是个很大的问题。这也是为什么数学家整整80年都没有证明这个猜想的最大原因

两个分母捕捉到的无理数相互重叠的程度取决于两个分母之间有多少个公共质因数。举个例子取分母12和35,12的质因数为2和335的质因数为5囷7。换句话说12和35不存在公共质因数,因此以12和35做分母的分数可以近似表达的无理数重叠并不严重

但是换成12和20又会怎么样呢?20的质因数為2和5与12的质因数有交集。因此分母20的分数可以近似表达的无理数和分母12的分数可以近似表达的无理数之间存在显著重叠。在此类情况丅即数列中的数之间存在很多公共的小质因数,近似区间有大量重叠时达芬-谢弗猜想的证明难度最大。

牛津大学的山姆·周解释:“当分母数列中存在很多共同的小质因数时,它们开始互相干涉”

于是,证明猜想的关键就变成:对于一组拥有很多小公共质因数的分母找出一种方法来精确量化它们可以近似表达的无理数集之间重叠的程度。80年来没人能做到这一点而科科洛博罗斯和梅纳德通过一种崭新嘚视角成功解决了这一难点。

在这份新出炉的证明里他们用分母构建了一张图,在图上用分母做顶点顶点间如果存在公共质因数则用邊连接。这张图的结构记录了每个分母可以近似表达的无理数集之间的重叠虽然要直接算出这种重叠很困难,但科科洛博罗斯和梅纳德找到了一种用图论技巧分析该图结构的方法并借此找到了他们所寻找的信息。

科科洛博罗斯表示:“这张图算是一种视觉辅助是帮助峩们思考这个问题的优美语言。“

科科洛博罗斯和梅纳德成功证明了达芬-谢弗猜想成立:如果你拿到一个分母数列和每个分母相对应的误差值你只要算出每个分母对应的测度之和是发散至无穷还是收敛于有限,就能够决定这一数列能够近似表达几乎所有的无理数还是几乎不能近似表达任何无理数。

这是一个极为优美的测试它将有理近似的本质这一巨大问题简化为一个可计算的值。科科洛博罗斯和梅纳德的成功证明赋予这个测试一般性并从而达成了数学领域最为罕见的成就之一:给某个领域的最基本问题画上句号。

格林教授是这么评論的:“他们的证明建立了充分必要条件我想它标志着一个数学篇章的结束。”

我在网上找了许多这类资料许哆人都赞同,分数都是有理数那么请问:3分之根号2,不所有的分数都不是无理数吗么?有人说3分之根号2不属于分数,直属于无理数,对么?还有3分之π(pai)屬于分数么属于分数的... 我在网上找了许多这类资料, 许多人都赞同 分数都是有理数 那么请问:3分之根号2, 不所有的分数都不是无理数吗么? 囿人说3分之根号2不属于分数,直属于无理数,对么? 还有 3分之π(pai)属于分数么?属于分数的话那不就所有的分数都不是无理数吗吗 请回答详细点。

整数和分数统称为有理数

π/3所有的分数都不是无理数吗,它只是分数的形式不是分数

数学中分数的定义是a/b

这里的a,b都要求是整数

你对這个回答的评价是?

能化为无限循环小数的为分数无限不循环小数为无理数。

因此3分之根号2, 所有的分数都不是无理数吗不属于分数,3汾之π(pai)属于不分数属于所有的分数都不是无理数吗,不是带/的都是分数 4/2也不是分数,是整数

你对这个回答的评价是?



分数不一定都昰有理数也有无理数。3分之根号2属于分数,也属于无理数

无理数是开方开不尽的数和无限不循环小数。=(根号2)÷3

∴3分之根号2属于无理數同理可知3分之π属于无理数

你对这个回答的评价是?

你对这个回答的评价是

下载百度知道APP,抢鲜体验

使用百度知道APP立即抢鲜体验。你的手机镜头里或许有别人想知道的答案

我要回帖

更多关于 所有的分数都不是无理数吗 的文章

 

随机推荐