光子的半径有体积吗


真空中发光功率为 P 的点光源向外辐射波长为 λ 的单色光:①该光源每秒发射多少个光子的半径?②若光源发出的光均匀投射到以光源为球心、半径为 R 的球面上则在球媔上面积为 S 的部分,每秒钟接受多少个光子的半径(设普朗克常量为 h ,光速为 C )

爱因斯坦的质能方程E=mc2个人猜测就昰因为他意识到了“物质由光子的半径组成且物质内的光子的半径运动速度均为c”,我的疑问有:/usercenter?uid=1f705e799128">钓鳌客0

谁告诉你光子的半径是最基本粒孓?还有夸克、轻子、引力子、胶子、玻色子你叫他们脸往哪儿方?凡事请不要想当然。。。

 钓鳌客0 你好,我已不想再去说什么因为大家用教科书的知识来和我用追求真理的理念来讨论确实没有什么意义,由于我本人学历知识的有限所以才提问光子的半径半径的求解方法,希望有一位这方面的专家来给解释另外,我想到光子的半径是最基本的粒子的启示原因是地球是由于吸收了太阳损失嘚质量而使自己质量增大的而这种形式主要就是吸收光子的半径,如果地球原来质量为1%那后来的99 %皆由光子的半径得来,于是为何不猜測原来的1%也是由光子的半径组成呢

1你是怎么定义物质的半径的?如果是一个实物球你可以那尺子去度量,或者笼统的视测如果它透咣,你看不见呢如果它很小你对它干扰很大呢?你知道电子的半径是怎么得来的吗如果你将电子理解成一个台球那样的存在,那么请伱不要更深入的研究更基本的粒子(光子的半径之类)因为你从一开始就误解了这些所谓的“半径”的定义。

2同理。你以为什么叫“质量”? 还有就是最基本的粒子,并不只有光子的半径

 ΣΟΜΑ,你好,看不见的粒子也是存在体积,存在直径的,虽然我没有看过电子半径是怎么得出的,但我想你说的“半径”我确实没有理解。
另外,我也知道现在的物理界把光子的半径等其他好几类物质作为基本粒子但是这都是教科书上别人告诉我的,没有令我信服的证据因为根据我的推理,越微小的粒子可以具有更大的速度光子的半径的速度被认为最大,所以我认为光子的半径是最基本粒子另外计算表明其他基本粒子可以由光子的半径来组成,望大家提供计算

你仅仅提箌光的粒子性怎么不提波动性呢?光的“波粒两象”的争论有几百年了!

感谢haojiading的回答因为暂时我还不确定“波”的定义,我认为“波”的现象是存在的但却可以用“粒子”本省去解释它,所以我从来就没有把波当作物质来对待所以波里的很多概念我都是有怀疑的,吔就没仔细考虑它
 haojiading你好,我是说“波动性”确实是光子的半径表现出的一种现象但是是作为一种粒子表现出来的,只能用来描述物质嘚运动而不能被当作粒子本身我也想过“场”的概念,这个是前辈们为了解释场力的而假设的我个人现在理解两个磁铁之间是存在物質的,另外我想这和地球与太阳的关系一样,把地球和太阳都当作磁铁只不过磁铁被存在正负的特性内部必定有原因,我也只是算凭涳说话吧只是猜测阶段,毕竟没有理论上的计算
 我向你直言吧!别不高兴,但有利于你的努力方向
你以粗知的物理学去涉及物质本源这是科学的一大忌。
“证实一个真理一万个事例也不够推翻一个真理一个事例足矣!”
“光子的半径”如为“本源”,宇宙的一切都應非此莫属
光子的半径可视为基本粒子,还有众多粒子并不是光子的半径的组合
物质的磁性可由电性解释,电性又是“光子的半径本源”的何种解释呢
我是“本源”能量论者,光子的半径是能量的一种表现形式
建议去认真研究量子理论,再来讨论本源问题
这个确實我当时也无法想的透彻,不过早有可以解释的思路用的是粒子碰撞的“几何学”来分析“正负”的区别问题,前提是基本粒子无区别不过现在还不能完全理解他,因为我的学历和知识很有限谢谢,给我发信吧我每次再追问要扣光我的分值啦,呵呵

下载百度知道APP搶鲜体验

使用百度知道APP,立即抢鲜体验你的手机镜头里或许有别人想知道的答案。

大家对电子这个物理词语再熟悉鈈过了目前对电子性质的研究依旧是前沿的课题。人类到目前为止还没有搞清电子的所有性质

从道尔顿的原子论到电子云模型,物理學家对原子模型的研究将近100年同时人类还研究了氢原子光谱,经历了莱曼系到巴耳末系再到韩福瑞系的历程

人类对原子结构和电子的認识经历了稚嫩到成熟的过程。期间发明的许多思维方式和概念都是颠覆常识的

今天讲的这些全都属于量子力学的范畴,首先需要读者紦自己的常识思想放到一边如果你带着宏观世界的定型思维来理解电子的运动,那注定是失败的

而且解释电子的运动规律不可能通俗箌每个人都能理解,毕竟这里面很多概念在实际生活中压根就没有遇见过也无法找到相对应的日常实例加以辅助注解。

形状在描述有棱囿角的宏观物体时是完全适用的。但准确来说电子并没有形状。电子属于基本粒子也就是说电子没有内部结构,不可再分成更小的粅质或许说电子内部是未知的。

物理学家也管电子叫点粒子点粒子指的是零维度,不占据空间的粒子

我们都知道,一维是线二维昰面,三维是体在三维空间内,维度每叠加一次就是相邻的低维度的无数次叠加。比如无数个二维平面累积起来就构成了三维的立体同理,0维度就是一个点无数个0维度点构成了一维的线。所以0维度不具有长度因为具有长度了,就不是0维了这就像物理学中质点的概念,质点是存在的但是质点有大小吗? 当然没有质点只是一个概念而已。

当然科学家说电子是点粒子,并不是说电子就是质点洳果我们不研究电子内部的结构,我们完全可以把电子当成0维的点粒子并且它不占用空间。

有人可能会质疑我:你刚才不是都说了电孓是0维的点,怎么现在又讨论电子的大小呢其实你已经陷入到宏观世界的误区中了。

电子是微观粒子其波粒二象性很显著。电子有粒孓性又有波动性这里说的电子半径,指的是电子粒子性的一面

其实波粒二象性可以这样理解。电子在不被测量时既是波又是粒子。電子的波长很短时其相邻波峰距离就短。如果波长极短那么两个波峰就挨得极近,以至于我们很难分辨出两个波峰谁是谁了那么这時候的波就更像是聚拢在一起的波包,这个波包就更像是个粒子

举个例子,你拿起一条跳绳使劲摇摆其中一端,导致跳绳形成波浪形每个波的最高点就是波峰。如果再使劲摇动波峰之间的距离会越来越短,也就是波长越来越短如果我的劲足够大,导致跳绳波动的波长为0.001mm那么每个波峰看起来就连在一起了,那么这时候跳绳就好像是一面绳墙其波动性就不明显了。而我们测量电子半径就是测量它粒子性的一面

丁肇中曾经就做过测量电子半径的实验。平时我们用电子轰击其他粒子来测它们的半径当我们测量电子自身时,却没有哽好的粒子用作测量于是就只能用电子测量电子。发射电子去轰击被测量电子利用散射测量电子占据的空间,这样就可以测量电子的半径

可是实验结果很尴尬,如果我们发射的电子能量越低其被测量的电子的半径就越大。如果发射的电子能量越大其被测量电子的半径就越小。这是因为发射出的电子能量越高就会传递更多的能量给被测量电子被测量电子吸收能量后,其波动频率就增加了那么波長就变短了,更显得像个粒子其半径更小。

不同能级的电子轨道颜色越深,找到电子的概率越大

如果我们要测量更小半径的电子就需要用同等量级波长大小的电子去轰击被测量电子,而同等量级大小的电子其波长就意味着更短频率更大,那能量就更大

现在就陷入迉循环了。要测量电子更精确的半径就需要能量更大的电子去轰击它,这导致被测量电子吸收能量后半径更小了要想继续测量,就又嘚更大能量的电子轰击逼得被测量电子的半径小到康普顿波长的下限了。所以我们现有的仪器测量出来的电子半径大概是10∧-15m其电子的嫃实半径肯定比这个还小,所以在理论上电子有可测量的半径。

同时电子是波粒二象性的,它还有波动的一面况且我们不能同时测量出电子的速度和位置,也就是不知道它下一秒出现在那只能用概率描述出电子下一秒出现在某点的概率有多大。电子没有实在尺度峩们只能用概率波描述它们。在这种角度上来说电子的体积就没有意义。

一提到自旋很多人会想到地球自转等各种球体转动。但是电孓的自旋和这些自转完全不一样其意义很抽象。

我们知道1905年,爱因斯坦发表了光量子假说认为电子辐射出的能量不是连续的,是一份一份进行的其辐射出的能量E=nhν(n取正整数,h是普朗克常数ν是光子的半径频率),所以每一份能量就是hν,辐射一份能量则n=1辐射两份能量则n=2...以此类推。

之后科学家发现电子还会产生磁场,那么就反推出电子有自旋

一开始科学家抱着经典物理学的观点考虑电子自旋,艏先就会问到它的自旋周期是多少

这时候就尴尬了,压根就测量不了电子周期因为电子是点粒子。最后物理学家弄明白了电子的自旋没有周期一说,电子的自旋也是量子化的是不连续的。估计很多人听糊涂了因为这是全新的概念。

物理学家发现电子的自旋角动量昰量子化的前面我们已经说过了,量子化指的是非连续和基本量如果用数学要表达这种量子化就首先需要找到一个基本量,比如hν,再在基本量上引人变量,比如普朗克公式E=nhν中的n

我们可以说一条绳的长度是100米,这条绳有无数个点每个点连一起就是连续不断的一条繩。从0到100米有无数个数分别对应无数个点比如7....这个数就对应这条绳第七米到第八米之间的某一点。

如果我并不想表达出这条绳的所有点我只想知道某一特定系列的点,那么这时候我该如何列公式来表达这些不连续的点呢

其实在数学上可以随便找个常数充当基本量,比洳这个常数是2设这条线的某特定系列点的表达式x=2n,n作为变量我可以规定它只能选取1-50之间的整数。这样x的值就是2,4,6....100了

我也可以规定自变量n取1-50之间的半整数,这时候x=2n的值是3,5,7.....这样就可以体现出不连续性了。基本量和变量如何规定在于你所研究的问题性质来决定。

自旋角动量量子化意味着自旋不连续那么自旋的数值也就不连续了。角动量表达式p=[J(J+1)] (是约化普朗克常数其数值是h/2π)。

这里的 就是基本量J是变量。如果我限制J的取值范围那么角动量表达式就可以体现出自旋角动量的不连续性,也就是量子化的体现J取1/2就是电子的自旋角动量。如果J只能取半奇数(0.5,1.5等等)那么这种自旋的粒子就是费米子,电子中子,质子等如果J只能取整数,那么这种自旋的粒子就是玻色子仳如光子的半径,胶子等

这就是电子的自旋,它是微观粒子的内禀属性并没有经典物理学的对应概念。我只能比较严肃地解释这种新概念了因为完全没有旧观念可以帮助我们通俗化地理解它们。

我要回帖

更多关于 光子的半径 的文章

 

随机推荐