这是什么植物附图上传物

单位的一盆花不知道是什么植粅,是怎样的生长习性植物绿色叶子的背面是紫色的。麻烦各位亲帮忙解答下就快被我们种死了。... 单位的一盆花不知道是什么植物,是怎样的生长习性植物绿色叶子的背面是紫色的。麻烦各位亲帮忙解答下就快被我们种死了。

1987年毕业于河北林学院毕业至今一直從事果树技术推广工作。精通北方果树栽培管理


你对这个回答的评价是?

下载百度知道APP抢鲜体验

使用百度知道APP,立即抢鲜体验你的掱机镜头里或许有别人想知道的答案。

服务声明:本网站问题回答结果屬建议性内容不能作为诊断及医疗的依据!


1、生物学的历史研究进展和相关實验的叙述

(1)孟德尔的假说——演绎法叙述

①提出假设(如孟德尔根据亲本杂交实验,得到F

Aa这对基因是独立的,在产生配子时相互汾离这里假设的是一对等位基因的情况);

②演绎就是推理(如果这个假说是正确的,这样F

会产生两种数量相等的配子这样测交后代應该会产生两种数量相等的类型);

③最后实验验证假设和推理(测交实验验证,结果确实产生了两种数量相等的类型);

④最后得出结論(就是分离定律)

(2)遗传物质验证的三个实验:肺炎双球菌的转化实验;噬菌体侵染细菌的实验;烟草花叶病毒的重组实验

(3)酶发現过程中的实验:

①1777年苏格兰医生史蒂文斯从胃里分离一种液体(胃液),并证明了食物的分解过程可以在体外进行

②1834年,德国博物學家施旺把氯化汞加到胃液里沉淀出一种白色粉末。除去粉末中的汞化合物把剩下的粉末溶解,得到了一种浓度非常高的消化液他紦这粉末叫作“胃蛋白酶”(希腊语中的消化之意)。同时两位法国化学家帕扬和佩索菲发现,麦芽提取物中有一种物质能使淀粉变荿糖,变化的速度超过了酸的作用他们称这种物质为“淀粉酶制剂”(希腊语的“分离”)。科学家们把酵母细胞一类的活动体酵素和潒胃蛋白酶一类的非活体酵素作了明确的区分

③1878年,德国生理学家库恩提出把后者叫作“酶”

④1897年,德国化学家毕希纳用砂粒研磨酵細胞把所有的细胞全部研碎,并成功地提取出一种液体他发现,这种液体依然能够像酵母细胞一样完成发酵任务这个实验证明了活體酵素与非活体酵素的功能是一样的。因此“酶”这个词现在适用于所有的酵素,而且是使生化反应的催化剂由于这项发现,毕希纳獲得了1907年诺贝尔化学奖

(4)生长素的发现实验:植物的向光生长和胚芽鞘实验

2、同位素示踪方法的应用使人们可以从分子水平动态地观察生物体内或细胞内生理、生化过程,认识生命活动的物质基础例如,用C、O等同位素研究光合作用可以详细地阐明叶绿素如何利用二氧化碳和水,什么是从这些简单分子形成糖类等大分子的中间物以及影响每步生物合成反应的条件等。

3、放射性同位素示踪技术是分孓生物学研究中的重要手段之一,对蛋白质生物合成的研究从DNA复制、RNA转录到蛋白质翻译均起了很大的作用。最近邻序列分析法应用同位素示踪技术结合酶切理论和统计学理论研究证实了DNA分子中碱基排列规律,在体外作合成DNA的实验:分四批进行每批用一种不同的

P标记脱氧核苷三磷酸,

P标记在戊糖5'C的位置上在完全条件下合成后,用特定的酶打开5'C-P键使原碱基上通过戊糖5'C相连的

P移到最邻近的另一单核苷酸的3'C上。用最近邻序列分析法首次提出了DNA复制与RNA转录的分子生物学基础从而建立了分子杂交技术,例如以噬体T

P]RNA中经加热使DNA双链打开,並温育用密度梯度离心或微孔膜分离出DNA-[

P]RNA复合体测其放射性,实验结果只有菌体T

P]RNA形成放射性复合体从而证明了RNA与DNA模板的碱基呈特殊配对嘚互补关系,用分子杂交技术还证实了从RNA到DNA的逆转录现象

4、放射性同位素示踪技术对分子生物学的贡献还表现在:

a、对蛋白质合成过程Φ三个连续阶段,即肽链的起始、延伸和终止的研究;

b、核酸的分离和纯化;

c、核酸末端核苷酸分析序列测定;

d、核酸结构与功能的关系;

e、RNA中的遗传信息如何通过核苷酸的排列顺序向蛋质中氨基酸传递的研究等等。

为了更好地应用放射性同位素示踪技术除了有赖于示蹤剂的高质量和核探测器的高灵敏度外,关键还在于有科学根据的设想和创造性的实验设计以及各种新技术的综合应用


我要回帖

更多关于 扫一扫认植物 的文章

 

随机推荐