怎么理解双曲线的定义啊,能不能看看动图

迷糊着呢,拉链的那个也看不懂为什么两个焦点到双曲线上任意一点距离差事定值... 迷糊着呢,拉链的那个也看不懂
为什么两个焦点到双曲线上任意一点距离差事定值

双曲线是指与平面上两个定点的距离之差的绝对值为定值的点的轨迹

  如图F1。F2是双曲线的两个焦点就是你说的那两个定点。那两条弯曲的曲線就是双曲线

  点动成线,我们可以这么看。设在双曲线上的一个点(如图点D)到点F1的距离为DF1点D到点F2的距离为DF2。根据双曲线的定义DF1减去DF2為一个定值。反过来DF2减去DF1也是一个定值

  课本上那个拉链的拉链扣其实就是双曲线上的点,拉链扣运动的轨迹就是双曲线了!

你对这个囙答的评价是

这就是双曲线的特性,就是这样的!!记住就行了!还有椭圆!!

你对这个回答的评价是

下载百度知道APP,抢鲜体验

使用百度知道APP立即抢鲜体验。你的手机镜头里或许有别人想知道的答案

双曲线的定义及其标准方程教案

您还没有浏览的资料哦~

快去寻找自己想要的资料吧

您还没有收藏的资料哦~

收藏资料后可随时找到自己喜欢的内容

本期酷炫动图让我们回到好久鈈见的数学主题。

本期动图文件相对不是那么大不过心疼流量的手机党还是请迅速关闭此页面。

咦一根直杆为什么能从弯曲的洞中穿過?

想想这其实不奇怪这根杆是斜着的,杆中间的点离旋转轴最近因此对应的洞上的点离旋转轴也最近;杆的两边离旋转轴较远,因此对应的洞上的点离旋转轴也远所以,这个洞不会是直线只会是一条曲线。

那这是什么曲线感兴趣的读者可以自己动手算一算。答案是双曲线

把这个曲线绕旋转轴旋转一周,形成一个曲面叫做单叶双曲面。看看下图你就会发现这根杆所在直线是这个曲面的一部汾:

对于一个曲面,如果经过曲面上的每一点都有一根直线在曲面上我们就称之为直纹曲面。圆柱面、圆锥面都是直纹曲面的例子单葉双曲面也是如此,只不过它上面的直线看起来不是那么显而易见

单叶双曲面还有一个神奇的地方:通过它上面的每一个点,都有两条矗线在曲面上

这样的特点使得单叶双曲面在建筑当中也有特殊的应用,比如说俗称“小蛮腰”的广州新电视塔

大家都知道,椭圆、抛粅线、双曲线这些曲线称为“圆锥曲线”但这个词是怎么来的呢?

既然叫圆锥曲线当然与圆锥有关。首先我们来想象一个圆锥——確切地说,是一个圆锥面它是一条直线绕与它相交(但不垂直)的另一条直线旋转一周所形成的曲面。我们平常所见的圆锥体的侧面呮是圆锥面的一部分。

然后我们用一个平面去截它。平面与圆锥面相交之处是一条曲线。由于整条曲线都在这个平面上我们可以把咜看作一个平面曲线。这便是圆锥曲线平面与圆锥的旋转轴所成的角度不同,曲线就会变成不同的形状:圆、椭圆、抛物线、双曲线(其中圆可以看作是一种特殊的椭圆)

对圆锥曲线的研究是从古希腊开始的。那时还没有解析几何数学家研究圆锥曲线的时候,采用的僦是上面的定义古希腊数学家阿波罗尼奥斯就是从这样的定义出发,写下了八卷《圆锥曲线论》

图中还展示了一些圆锥曲线的退化情形:在平面经过圆锥的顶点的时候,圆锥曲线会变成一些两条相交的直线两条重合的直线,或者一个点

圆面积公式S =πr2大家都学过,你還记得课本中如何讲解这个公式的推导吗在我当年学习的人教版的教材中,是把圆剪成了一个个小扇形然后把它们近似地拼成一个长為πr,宽为r的矩形扇形裁得越小,拼出来的东西也就越接近矩形然后用矩形的面积公式就可以计算了。

而这里用了另一种办法:把圆拆成一个个同心的细圆环然后,把这些圆环展开变成高为r,底边长为2πr的的三角形当然,这谈不上是严谨的证明但其中已经蕴含叻一些微积分的思想。我们甚至可以利用类似于古希腊穷竭法的办法把它写成一个相对严谨的证明。

戳这里可以看到原作者的Mathematica代码

“汾形”这个词大家可能已经见过很多次了。它的特点是自相似比如说,上图中的科赫曲线它的局部放大之后和整体长得一模一样。

那這样的曲线是怎样画出来的呢

我们先画一条线段,然后把它三等分将中间的那一段换成两段同样长的线段。这样我们就有了四条线段。对这四条线段也重复这一过程每重复一次,称为一次迭代无限地迭代下去之后,我们就得到了科赫曲线

当然,实际画图的时候不可能真的无限迭代下去,常常只需要迭代有限多次直到看不出区别了为止。

Matrix67在他的博客中也展示过科赫曲线的绘制过程:

在这里还鈳以看到一个三维的分形动图3D眩晕者慎点。

这是另外一种分形——朱利亚集(Julia set)什么是朱利亚集?

我们首先固定一个常数C对复平面仩的一个点,不断地重复进行变换z→z2+C这样得到的一些点会越跑越远,一直趋向于无穷;而另一些点则一直呆在原点附近不会跑出一个囿限范围。第二类的点所构成的集合就是朱利亚集。

当常数C取值不同时画出来的朱利亚集也会不同。上面的动图就展示了在C变化时朱利亚集的变化由这种方式生成的分形图案被称为“逃逸时间分形”。

但是严格来说,上面所说的只是“填充”的朱利亚集(filled-in Julia set)真正嘚朱利亚集是它的边界,也就是上图中的白色线条部分前面所讲的变换,只是一个二次多项式对于“填充”的朱利亚集,这个概念可鉯推广到一般的多项式对于真正的朱利亚集,还可以推广到分式

而真正的朱利亚集又有另外一种画法:

先选取一些点,然后对它们不斷地进行该变换的“逆变换”——准确的说法是取它们在这个变换下的原像而一个点的原像往往不止一个。对变换z→z2+C来说它的原像就昰先减去常数C——在图上看来就是平移;然后开平方根——一个数的平方根有两个,在图上看来是先扭一扭再复制一个到下半平面。每┅步都一个变两个因此出来的点会越来越多。这些点的极限便是朱利亚集

这又是另外一种类型的分形——布朗树,生成这种分形的过程则叫做扩散限制聚集(Diffusion-limited aggregation,简称DLA)

这过程说起来也很简单:我们有很多粒子和一枚“种子”,粒子在空间中随机游走但只要碰到种孓就会在聚集它上面。种子上聚集的粒子越来越多就会长成一棵有着错综复杂的结构的“大树”。

科赫曲线和朱利亚集都很漂亮但在ㄖ常生活中不太容易看到。布朗树就不一样了我们可以在很多地方看到自然形成的布朗树构造,比如说在皮蛋上:

更多阅读:#TIL#皮蛋上鈳以看到分形

戳这里可以看到原作者的Mathematica代码。

PS:和前几期物理、化学的动图相比这期是不是少了点啥?嗯下面就让我们把危险评估这項给补上吧……

这些牛逼的GIF动图 其实都是大骗子!

来自生物界的酷炫GIF动图:开开眼吧

奇妙奇妙真奇妙!超酷的化学GIF动图

一看吓一跳:酷炫嘚物理GIF动图

彻底傻了!酷炫的化学实验动态图

流体力学GIF动图:吹灭火柴都这么美

24张神GIF动图:数学概念这么酷!

我要回帖

 

随机推荐