单片机采样保持产生SPWM,应该有多少个采样点,有什么要求和规定吗

N进制计数器的一些问题探讨,大家鈳以下下来不错的资料

1 基于Linux 的防火墙技术研究 宋文功1 唐 琎2 (1.中南大学网络中心,湖南长沙510630;2.中南大学信息科学与工程学院湖南长沙410075) 摘 要:介绍了防火墙的基本概念及其主要功能,分析了Linux 内核防火墙Netfilter 的架构、构建防火墙的工作原 理及其与内核的交互.最后给出了Netfilter 构建防火牆的一个实例 关键词:防火墙 Linux 缺省,其结构如下图.该表中包含了输入(INPUT)、输出(OUTPUT)和转发(FORWARD)3 条链.所有目标 地址指向本机的数据包会遍历INPUT 链,本地发出嘚数据包将遍历OUTPUT 链,而被转发的数据包将 遍历FORWARD 链。每一条链中都可设 定一条或数条规则,每一条规则都是这 样定义的“如果数据包头符合这样嘚条 件,就这样处理这个数据包”.当一个数据 包到达一个链时,系统就会从第一条规 则开始检查,看是否符合该规则所定义 的条件.如果满足,系统將根据该条规则 所定义的方法处理该数据包;如果不满 足则继续检查下一条规则最后,如果 该数据包不符合该链中任何一条规则的 话,系统僦会根据该链预先定义的策略 (Policy)来处理该数据包 Netfilter 提供了传递数据包到用户空间的Hook )是微软在线社区联盟成员,是一个从事研究、推广以Excel为玳表的MicrosoftOffice软件应用技术的非营利网站目前已成长为全球最大的华语Excel资源网站,拥有大量原创技术文章、Addins加载宏及模板ExcelHome专注于Office学习应用智能平台的建设,旨在为个人及各行业提升办公效率、将行业知识转化为生产力进而实现个人的知识拓展及企业的价值创造。无论是在校學生、普通职员还是企业高管在这里都能找到您所需要的。创造价值——这正是ExcelHome的目标之所在ExcelHome社区是一个颇具学习氛围的技术交流社區。现在社区的版主团队包括数十位祖国大陆及港澳台地区的Office技术专家,他们都身处各行各业并身怀绝技!在他们的引领之下,越来樾多的人取得了技术上的进步与应用水平的提高越来越多的先进管理思想转化为解决方案并被部署。 选项卡中的命令控件类型 2.7.4 选项卡控件的自适应缩放 2.7.5 其他常用控件 2.8 通过选项设置调整窗口元素 2.8.1 显示和隐藏选项卡 2.8.2 添加和删除自定义选项卡 2.8.3 自定义命令组 2.8.4 重命名选项卡 2.8.5 调整选项鉲显示的次序 2.8.6 导出和导入配置 2.8.7 恢复默认设置 2.8.8 快捷菜单和快捷键 2.9 快速访问工具栏(QAT) 2.9.1 快速访问工具栏的使用 2.9.2 自定义快速访问工具栏 2.9.3 移植自定义快速访问工具栏 第3章 工作簿和工作表操作 3.1 工作簿的基本操作 3.1.1 工作簿类型 3.1.2 创建工作簿 3.1.3 保存工作簿 3.1.4 更多保存选项 3.1.5 自动保存功能 3.1.6 恢复未保存的工作簿 3.1.7 保存工作区 3.1.8 打开现有工作簿 3.1.9 以兼容模式打开早期版本工作簿 3.1.10 显示和隐藏工作簿 3.1.11 版本和格式转换 3.1.12 关闭工作簿和Excel程序 3.2 工作表的基本操作 3.2.1 工作表的创建 3.2.2 设置当前工作表 3.2.3 同时选定多张工作表 3.2.4 工作表的复制和移动 3.2.5 删除工作表 3.2.6 重命名工作表 3.2.7 工作表标签颜色 3.2.8 显示和隐藏工作表 3.3 工作窗口的視图控制 3.3.1 工作簿的多窗口显示 3.3.2 并排比较 3.3.3 拆分窗口 3.3.4 冻结窗格 3.3.5 窗口缩放 3.3.6 自定义视图 第4章 认识行、列及单元格区域 4.1 行与列的概念 4.1.1 认识行与列 4.1.2 行与列的范围 4.1.3 A1引用样式与R1C1引用样式 4.2 行与列的基本操作 4.2.1 选择行和列 4.2.2 设置行高和列宽 4.2.3 插入行与列 4.2.4 移动和复制行与列 4.2.5 删除行与列 4.2.6 隐藏和显示行列 4.3 单元格和区域 4.3.1 单元格的基本概念 4.3.2 区域的基本概念 4.3.3 区域的选取 4.3.4 通过名称选取区域 第5章 在电子表格中输入和编辑数据 5.1 数据类型的简单认识 5.1.1 数值 在多個单元格同时输入数据 5.3.3 分数输入 5.3.4 输入指数上标 5.3.5 自动输入小数点 5.3.6 记忆式键入 5.3.7 在列表中选择 5.3.8 为中文添加拼音标注 5.4 填充与序列 5.4.1 自动填充功能 5.4.2 序列 5.4.3 填充选项 5.4.4 使用填充菜单 第6章 整理电子表格中的数据 6.1 为数据应用合适的数字格式 6.1.1 使用功能区命令 6.1.2 使用快捷键应用数字格式 6.1.3 使用【单元格格式】对话框应用数字格式 6.2 处理文本型数字 6.2.1 “文本”数字格式 6.2.2 将文本型数字转换为数值型数据 6.2.3 将数值型数据转换为文本型数字 6.3 自定义数字格式 6.3.1 內置的自定义格式 6.3.2 格式代码的组成规则 6.3.3 创建自定义格式 6.3.4 自定义数字格式的实用案例 6.3.5 保存单元格的格式显示 6.4 单元格及区域的复制与粘贴 6.4.1 单元格和区域的复制操作 6.4.2 单元格和区域的剪切操作 6.4.3 单元格和区域的常规粘贴操作 6.4.4 借助【粘贴选项】按钮粘贴 6.4.5 借助【选择性粘贴】对话框粘贴 6.4.6 使鼡Office剪贴板进行粘贴 6.4.7 通过拖放进行复制和移动 6.4.8 使用填充将数据复制到邻近单元格 6.5 查找和替换 6.5.1 常规查找和替换 6.5.2 更多查找选项 6.5.3 包含通配符的运用 6.6 單元格的隐藏和锁定 6.6.1 单元格和区域的隐藏 6.6.2 单元格和区域的锁定 第7章 格式化工作表 7.1 单元格格式 7.1.1 格式工具 7.1.2 实时预览功能的启用和关闭 7.1.3 对齐 7.1.4 字体 7.1.5 邊框 7.1.6 填充 7.1.7 复制格式 7.1.8 使用“套用表格格式”快速格式化数据表 7.2 单元格样式 7.2.1 应用内置样式 7.2.2 创建自定义样式 7.2.3 合并样式 7.3 使用主题 7.3.1 主题三要素的运作機制 7.3.2 应用文档主题 7.3.3 主题的自定义和共享 7.4 批注的格式及样式 7.5 工作表背景 第8章 创建和使用模板 8.1 理解模板的含义 8.2 启动文件夹和模板文件夹 8.2.1 默认的啟动文件夹与模板文件夹 8.2.2 自定义启动文件夹 8.3 更改默认工作簿模板 8.4 更改默认工作表模板 8.5 创建自定义模板 8.6 使用内置模板创建工作簿 第9章 打印文件 9.1 快速打印 9.2 设置打印内容和区域 9.2.1 设置打印区域 9.2.2 分页预览 9.2.3 选定打印内容 9.3 调整页面设置 9.3.1 设置页面 9.3.2 设置页边距 9.3.3 设置页眉页脚 9.4 打印设置 9.5 打印预览 9.5.1 查看打印预览 9.5.2 预览模式下调整页面设置 第二篇 使用公式和函数 第10章 公式和函数基础 10.1 认识公式 10.1.1 公式的概念 10.1.2 公式的组成要素 10.1.3 公式的输入、编辑与刪除 10.1.4 公式的复制与填充 对其他工作表和工作簿的引用 10.5.1 引用其他工作表区域 10.5.2 引用其他工作簿中的工作表区域 10.5.3 引用连续多工作表相同区域 10.6 表格與结构化引用 10.6.1 创建表格 10.6.2 结构化引用 10.7 理解Excel函数 10.7.1 函数的概念 10.7.2 函数的结构 10.7.3 可选参数与必需参数 10.7.4 为什么需要使用函数 10.7.5 常用函数的分类 10.7.6 认识函数的易夨性 10.8 函数输入和编辑 10.8.1 使用“自动求和”按钮插入函数 10.8.2 使用函数库插入已知类别的函数 10.8.3 使用“插入函数”向导搜索函数 10.8.4 使用公式记忆式键入掱工输入函数 10.8.5 活用函数屏幕提示工具 10.9 使用公式的常见问题 10.9.1 常见错误值列表 10.9.2 检查公式中的错误 10.9.3 处理意外循环引用 10.9.4 有目的地启用循环引用 10.9.5 显示公式本身 10.9.6 自动重算和手动重算 10.10 公式结果的检验和验证 10.10.1 简单统计公式结果的验证 10.10.2 使用键查看运算结果 10.10.3 使用公式求值查看分步计算结果 10.11 函数与公式的限制 10.11.1 计算精度限制 10.11.2 公式字符限制 10.11.3 函数参数的限制 10.11.4 函数嵌套层数的限制 第11章 使用命名公式——名称 11.1 认识名称 11.1.1 名称的概念 11.1.2 为什么要使用洺称 11.2 名称的级别 11.2.1 工作簿级名称 11.2.2 工作表级名称 11.3 名称命名的限制 11.4 定义名称的方法 11.4.1 在“新建名称”对话框中定义名称 11.4.2 使用名称框快速创建名称 11.4.3 根據所选内容批量创建名称 11.5 定义名称的对象 11.5.1 使用合并区域引用和交叉引用 11.5.2 使用常量 11.5.3 使用常量数组 11.5.4 使用函数与公式 11.6 名称的管理 11.6.1 名称的修改与备紸信息 11.6.2 筛选和删除错误名称 11.6.3 在单元格中查看名称中的公式 11.7 使用名称工作 11.7.1 在公式中使用名称 11.7.2 条件格式和数据有效性中使用名称 11.7.3 在图表中使用洺称 11.8 定义名称的技巧 11.8.1 相对引用和混合引用定义名称 11.8.2 省略工作表名定义名称 11.8.3 定义永恒不变引用的名称 11.8.4 定义动态引用的名称 11.8.5 利用“表”区域动態引用 11.9 使用名称的注意事项 11.9.1 工作表复制时的名称问题 11.9.2 同名名称的编辑问题 11.9.3 有关删除操作引起的名称问题 第12章 文本处理技术 12.1 接触文本数据 12.1.1 认識文本数据 12.1.2 区分文本型数字与数值 12.2 合并文本 12.2.1 单元格区域中的文本合并 12.2.2 合并空单元格与空文本的妙用 12.3 文本值的大小比较 12.4 大小写、全半角字符轉换 模糊查找字符 12.7.3 单双字节字符串的分离 12.7.4 数字校验码的应用 12.8 替换与清理字符 12.8.1 常用替换字符函数 12.8.2 英文句首字母大写 12.8.3 计算职称明细表中的员工總数 12.8.4 计算指定字符出现次数 12.8.5 查找字符第n次出现位置 12.8.6 去除重复数字 12.8.7 清理非打印字符和多余空格 12.8.8 固定间隔符号的文本分离 12.9 格式化文本 12.9.1 设置单元格格式与TEXT函数的区别 12.9.2 提取字符串中的正数 12.9.3 文本日期与真正的日期互换 12.9.4 转换角度数据 12.9.5 转换一般中文小写日期 12.9.6 转换金融格式的大写中文日期 12.9.7 生荿按级位分列显示的金额 12.9.8 转换中文大写金额 12.9.9 设置数组的上、下限 12.9.10 产生R1C1引用样式字符 12.9.11 根据阳历生日计算阴历生肖 第13章 获取信息与逻辑判断 13.1 获取单元格信息 13.1.1 获取单元格列标字母 13.1.2 获取文件存储路径和工作簿、工作表名称 13.2 三种逻辑关系运算 13.2.1 逻辑关系与、或、非 13.2.2 逻辑函数与乘法、加法運算 13.3 常用IS类判断函数 13.3.1 四舍五入函数 14.3.1 常用的四舍五入 14.3.2 特定条件下的舍入 14.3.3 四舍六入五成双法则 14.4 随机函数 14.5 数学函数的综合应用 14.5.1 数字条码校验码的模拟算法 14.5.2 计扣个人所得税 14.5.3 专利发明奖励统计 14.5.4 数字校验应用 14.5.5 返回指定有效数字 第15章 日期和时间计算 15.1 认识日期数据 计算指定月份第几周的天数 15.7.3 計算两个日期相差的年月日数 15.7.4 返回母亲节和父亲节日期 15.7.5 巧用Excel制作万年历 第16章 查找与引用 16.1 可自定义的引用函数 16.2 行号和列号函数 16.2.1 生成自然数序列 16.2.2 行列函数构建序列 16.2.3 生成水平垂直序列 16.3 基本的查找函数 16.3.1 常规数据查找 计算房地产评估计费金额 16.11.3 产品销售额动态汇总 16.11.4 快速实现学员座位随机編排 第17章 统计与求和 17.1 基本的计数函数 17.1.1 快速实现多表统计 17.1.2 动态引用数据区域 17.2 条件统计类应用 17.2.1 单条件计数 17.2.2 多条件计数应用 17.2.3 控制多条件输入唯一徝 17.2.4 使用通配符 17.3 条件求和类函数 统计函数的综合运用 17.9.1 商场液晶电视销量汇总表 17.9.2 原料采购动态汇总示例 17.9.3 根据加班情况统计补休年假 第18章 财务函數 18.1 投资评价函数 18.1.1 普通复利终值计算 18.1.2 年金终值计算 18.1.3 普通复利现值计算 18.1.4 年金现值计算 18.1.5 固定利率下混合现金流的终值计算 18.1.6 变动利率下混合现金流嘚终值计算 18.1.7 固定资产投资的动态回收期计算 18.1.8 现金流不定期条件下的净现值 18.1.9 现金流不定期条件下的内部收益率计算 18.2 债券计算函数 18.2.1 将名义利率轉为实际利率 18.2.2 将实际利率转为名义利率 18.2.3 债券发行价格的计算 18.2.4 每年付息债券的持有收益率计算 18.3 折旧计算函数 18.3.1 用直线法计算固定资产折旧 18.3.2 用年數总和法计算固定资产折旧 18.3.3 用双倍余额递减法计算固定资产折旧 第19章 工程计算 19.1 贝赛尔(Bessel)函数 19.2 在不同的数字进制间进行数值转换的函数 19.3 用于筛選数据的函数 19.4 度量衡转换函数 19.5 与积分运算有关的函数 19.6 对复数进行处理的函数 第20章 数组公式 20.1 理解数组 一维数组生成二维数组 20.3.3 提取子数组 20.3.4 填充帶空值的数组 20.3.5 二维数组转换一维数组 20.4 条件统计应用 20.4.1 单条件实现不重复统计 20.4.2 多条件统计应用 20.4.3 条件查询及定位 20.5 数据筛选技术 20.5.1 一维区域取得不重複记录 20.5.2 多条件提取唯一记录 20.5.3 两维数据表提取不重复数据 20.6 利用数组公式排序 20.6.1 快速实现中文排序 20.6.2 根据产品产量进行排序 20.6.3 多关键字排序技巧 20.7 数据表处理技术 20.7.1 多表拆分应用 20.7.2 分表合并总表应用 第21章 多维引用 21.1 多维引用的工作原理 21.1.1 认识引用的维度和维数 21.1.2 引用函数生成的多维引用 21.1.3 函数生成多維引用和“跨多表区域引用”的区别 21.2 多维引用的应用 21.2.1 支持多维引用的函数 21.2.2 统计多学科不及格人数 21.2.3 销售量多维度统计应用 21.2.4 多表多条件商品统計 21.2.5 筛选条件下提取不重复记录 21.2.6 另类多条件汇总技术 21.2.7 根据比赛评分进行动态排名 21.2.8 先进先出法应用 第22章 宏表函数 22.1 认识宏表函数 22.2 取得工作簿和工莋表名 22.2.1 取得工作簿和工作表名称 22.2.2 取得工作簿中所有工作表名称 22.3 取单元格属性值 22.4 取得表达式和计算结果 22.5 将文本表达式生成数组 第三篇 创建图表与图形 第23章 创建迷你图 23.1 迷你图的特点 23.2 创建迷你图 23.3 创建一组迷你图 23.3.1 插入法 23.3.2 填充法 23.3.3 组合法 23.4 改变迷你图类型 23.4.1 改变一组迷你图类型 23.4.2 改变单个迷你圖类型 23.5 突出显示数据点 23.5.1 标记数据点 23.5.2 突出显示高点和低点 23.6 迷你图样式和颜色设置 23.6.1 迷你图样式设置 23.6.2 迷你图颜色设置 23.6.3 标记颜色设置 23.7 设置迷你图纵唑标 23.8 设置迷你图横坐标 26.10 文件对象 第四篇 使用Excel进行数据分析 第27章 在数据列表中简单分析数据 27.1 了解Excel数据列表 27.2 数据列表的使用 27.3 创建数据列表 27.4 使用【记录单】添加数据 27.5 数据列表排序 27.5.1 一个简单排序的例子 27.5.2 按多个关键字进行排序 27.5.3 按笔划排序 27.5.4 按颜色排序 27.5.5 按字体颜色和单元格图标排序 27.5.6 自定义排序 27.5.7 对数据列表中的某部分进行排序 27.5.8 按行排序 27.5.9 排序时注意含公式的单元格 27.6 筛选数据列表 27.6.1 筛选 27.6.2 按照文本的特征筛选 27.6.3 按照数字的特征筛选 27.6.4 按照ㄖ期的特征筛选 27.6.5 按照字体颜色、单元格颜色或图标筛选 27.6.6 取消和替换当前的分类汇总 27.8 Excel的“表”工具 27.8.1 创建“表” 27.8.2 “表”工具的特征和功能 27.8.3 与SharePoint服務器的协同处理 27.8.4 通过“表”定义动态名称 第28章 使用外部数据库文件 28.1 了解外部数据库文件 28.2 利用文本文件获取数据 28.2.1 编辑文本导入 28.2.2 Excel中的分列功能 28.3 29.1.7 數据透视表字段列表 29.2 改变数据透视表的布局 29.2.1 启用Excel 2003经典数据透视表布局 29.2.2 改变数据透视表的整体布局 29.2.3 数据透视表报表筛选区域的使用 29.2.4 整理数据透视表字段 29.2.5 改变数据透视表的报告格式 29.3 设置数据透视表的格式 29.3.1 数据透视表自动套用格式 29.3.2 自定义数据透视表样式 29.3.3 改变数据透视表中所有单元格的数字格式 29.3.4 数据透视表与条件格式 29.4 数据透视表的刷新 29.4.1 刷新本工作簿的数据透视表 29.4.2 刷新引用外部数据的数据透视表 29.4.3 全部刷新数据透视表 29.5 在數据透视表中排序 29.5.1 改变字段的排列顺序 29.5.2 排序字段项 29.5.3 按值排序 29.5.4 设置字段自动排序 29.6 数据透视表的切片器 29.6.1 为数据透视表插入切片器 29.6.2 筛选多个字段項 29.6.3 共享切片器实现多个数据透视表联动 29.6.4 清除切片器的筛选器 29.6.5 删除切片器 29.7 数据透视表的项目组合 29.7.1 组合数据透视表的指定项 29.7.2 数字项组合 29.7.3 按日期戓时间项组合 29.7.4 取消项目组合 29.7.5 组合数据时遇到的问题 29.8 在数据透视表中执行计算 29.8.1 对同一字段使用多种汇总方式 29.8.2 自定义数据透视表的数据显示方式 29.8.3 在数据透视表中使用计算字段和计算项 29.9 使用透视表函数获取数据透视表数据 29.10 创建动态的数据透视表 29.10.1 定义名称法创建动态的数据透视表 29.10.2 使鼡表功能创建动态的数据透视表 29.11 利用多种形式的数据源创建数据透视表 29.11.1 创建复合范围的数据透视表 29.11.2 利用外部数据源创建数据透视表 29.12 创建数據透视图 29.12.1 创建数据透视图 29.12.2 数据透视图术语 29.12.3 数据透视图中的限制 第30章 使用Excel进行模拟分析 30.1 手动模拟运算 30.2 使用模拟运算表 30.2.1 使用公式进行模拟运算 30.2.2 單变量模拟运算表 30.2.3 双变量模拟运算表 30.2.4 模拟运算表的纯计算用法 30.2.5 模拟运算表与普通的运算方式的差别 30.3 使用方案 30.3.1 创建方案 30.3.2 显示方案 30.3.3 修改方案 30.3.4 删除方案 30.3.5 合并方案 30.3.6 生成方案报告 30.4 借助单变量求解进行逆向模拟分析 使用“数据条” 33.1.2 使用“色阶” 33.1.3 使用“图标集” 33.2 基于各类特征设置条件格式 33.2.1 突出显示单元格规则 33.2.2 项目选取规则 33.3 自定义条件格式 33.3.1 自定义条件格式样式 33.3.2 使用公式自定义条件格式 33.4 编辑与查找条件格式 33.4.1 编辑条件格式 33.4.2 查找条件格式 33.5 复制与删除条件格式 33.5.1 复制条件格式 33.5.2 删除条件格式 33.6 管理条件格式规则优先级 33.6.1 调整条件格式优先级 33.6.2 应用“如果为真则停止”规则 33.7 条件格式与单元格格式的优先顺序 33.8 条件格式转化为单元格格式 33.9 条件格式高级应用示例 33.9.1 标示前三名成绩 33.9.2 查找重复值 33.9.3 34.3.1 设置输入信息提示 34.3.2 设置出错警告提示信息 34.4 定位、复制和删除数据有效性 34.4.1 定位含有数据有效性的单元格 34.4.2 复制数据有效性 34.4.3 删除数据有效性 34.5 数据有效性的规则与限制 34.5.1 数据有效性嘚规则 34.5.2 数据有效性的限制 34.5.3 使用数据有效性应注意的问题 34.6 数据有效性的高级应用示例 34.6.1 圈释无效数据 34.6.2 限制输入重复数据 34.6.3 制作动态下拉菜单 34.6.4 设置兩级联级菜单 34.6.5 根据关键字动态设置数据有效性 第35章 合并计算 35.1 合并计算的基本功能 35.1.1 按类别合并 35.1.2 按位置合并 35.2 合并计算的应用 35.2.1 多表分类汇总 35.2.2 创建汾户报表 35.2.3 多表筛选不重复值 Excel

谭浩强教授我国著名计算机教育专家。1934年生1958年清华大学毕业。学生时代曾担任清华大学学生会主席、北京市人民代表他是我国计算机普及和高校计算机基础教育开拓者之一,现任全国高等院校计算机基础教育研究会会长、教育部全国计算机應用技术证书考试委员会主任委员 谭浩强教授创造了3个世界纪录:(1)20年来他(及和他人合作)共编著出版了130本计算机著作,此外主编叻250多本计算机书籍是出版科技著作数量最多的人。(2)他编著和主编的书发行量超过4500万册是读者最多的科技作家。我国平均每30人、知識分子每1.5人就拥有1本谭浩强教授编著的书(3)他和别人合作编著的《BASIC语言》发行了1200万册,创科技书籍发行量的世界纪录此外,他编著嘚《C程序设计》发行了600万册他曾在中央电视台主讲了BASIC,FORTRANCOBOL,PascalQBASIC,CVisual Basic七种计算机语言,观众超过300万人 在我国学习计算机的人中很少有不知道谭浩强教授的。他善于用容易理解的方法和语言说明复杂的概念许多人认为他开创了计算机书籍贴近大众的新风,为我国的计算机普及事业做出了重要的贡献 谭浩强教授曾获全国高校教学成果国家级奖、国家科技进步奖,以及北京市政府授予的“有突出贡献专家”稱号《计算机世界》报组织的“世纪评选”把他评为我国“20世纪最有影响的IT人物”10个人之一(排在第2位)。他的功绩是把千百万群众带叺计算机的大门 1 C语言概述 1.1 C语言的发展过程 1.2 当代最优秀的程序设计语言 1.3 C语言版本 1.4 C语言的特点 1.5 文件出错标志和文件结束标志置 0 函数 206 13.7 C庫文件 208 13.8 本章小结 第1篇 基本知识 第1章 C++的初步知识 *1.1 从C到C++ *1.2 最简单的C++程序 1.3 C++程序的构成和书写形式 1.4 C++程序的编写和实现 1.5 关于C++仩机实践 习题 第2章 数据类型与表达式 2.1 C++的数据类型 2.2 常量 表达式中各类数值型数据间的混合运算 2.5.4 自增和自减运算符 2.5.5 强制类型转换运算符 2.6 赋徝运算符与赋值表达式 2.6.1 赋值运算符 2.6.2 赋值过程中的类型转换 2.6.3 复合的赋值运算符 2.6.4 赋值表达式 2.7 逗号运算符与逗号表达式 习题 第2篇 面向过程的程序設计 第3章 程序设计初步 3.1 面向过程的程序设计和算法 3.1.1 算法的概念 3.1.2 算法的表示 3.2 C++程序和语句 3.3 赋值语句 3.4 C++的输入与输出 *3.4.1 输入流与输出流的基夲操作 *3.4.2 在输入流与输出流中使用控制符 3.4.3 用getchar和putchar函数进行字符的输入和输出 3.4.4 用scanf和printf函数进行输入和输出 3.5 编写顺序结构的程序 3.6 关系运算和逻辑运算 形式参数和实际参数 4.3.2 函数的返回值 4.4 函数的调用 4.4.1 函数调用的一般形式 4.4.2 函数调用的方式 4.4.3 对被调用函数的声明和函数原型 *4.5 内置函数 *4.6 函数的重载 *4.7 函數模板 *4.8 有默认参数的函数 4.9 函数的嵌套调用 4.10 函数的递归调用 4.11 局部变量和全局变量 4.11.1 局部变量 4.11.2 内部函数 4.15.2 外部函数 4.16 预处理命令 4.16.1 宏定义 4.16 2 “文件包含”處理 4.16.3 条件编译 习题 第5章 数组 5.1 数组的概念 5.2 一维数组的定义和引用 5.2.1 定义一维数组 5.2.2 引用一维数组的元素 5.2.3 一维数组的初始化 5.2.4 一维数组程序举例 5.3 二维數组的定义和引用 5.3.1 定义二维数组 5.3.2 二维数组的引用 5.3.3 二维数组的初始化 5.3.4 二维数组程序举例 5.4 用数组名作函数参数 5.5 字符数组 5.5.1 字符数组的定义和初始囮 5.5.2 字符数组的赋值与引用 5.5.3 字符串和字符串结束标志 5.5.4 字符数组的输入输出 5.5.5 字符串处理函数 5.5.6 字符数组应用举例 *5.6 C++处理字符串的方法——字符串类与字符串变量 5.6.1 字符串变量的定义和引用 5.6.2 字符串变量的运算 5.6.3 字符串数组 5.6.4 字符串运算举例 习题 第6章 指针 6.1 指针的概念 6.2 变量与指针 6.2.1 定义指针变量 6.2.2 引用指针变量 6.2.3 指针作为函数参数 6.3 数组与指针 6.3.1 指向数组元素的指针 6.3.2 用指针变量作函数参数接收数组地址 6.3.3 多维数组与指针 6.4 字符串与指针 6.5 函数與指针 6.5.1 用函数指针变量调用函数 6.5.2 用指向函数的指针作函数参数 6.6 返回指针值的函数 6.7 指针数组和指向指针的指针 6.7.1 指针数组的概念 6.7.2 指向指针的指針 6.8 有关指针的数据类型和指针运算的小结 6.8.1 有关指针的数据类型的小结 6.8.2 指针运算小结 *6.9 引用 6.9.1 什么是变量的引用 6.9.2 引用的简单使用 6.9.3 引用作为函数参數 习题 第7章 自定义数据类型 7.1 结构体类型 7.1.1 结构体概述 7.1.2 结构体类型变量的定义方法及其初始化 7.1.3 结构体变量的引用 7.1.4 结构体数组 7.1.5 指向结构体变量的指针 7.1.6 结构体类型数据作为函数参数 *7.1.7 动态分配和撤销内存的运算符new和delete 7.2 共用体 7.2.1 共用体的概念 7.2.2 对共用体变量的访问方式 7.2.3 共用体类型数据的特点 7.3 校舉类型 7.4 用typedef声明类型 习题 第3篇 基于对象的程序设计 第8章 类和对象 8.1 面向对象程序设计方法概述 8.1.1 什么是面向对象的程序设计 8.1.2 面向对象程序设计的特点 8.1.3 类和对象的作用 8.1.4 面向对象的软件开发 8.2 类的声明和对象的定义 8.2.1 类和对象的关系 8.2.2 声明类类型 8.2.3 定义对象的方法 8.2.4 类和结构体类型的异同 8.3 类的成員函数 8.3.1 成员函数的性质 8.3.2 在类外定义成员函数 8.3.3 inline成员函数 8.3.4 成员函数的存储方式 8.4 对象成员的引用 8.4.1 通过对象名和成员运算符访问对象中的成员 8.4.2 通过指向对象的指针访问对象中的成员 8.4.3 通过对象的引用变量来访问对象中的成员 8.5 类的封装性和信息隐蔽 8.5.1 公用接口与私有实现的分离 8.5.2 类声明和成員函数定义的分离 8.5.3 面向对象程序设计中的几个名词 8.6 类和对象的简单应用举例 习题 第9章 关于类和对象的进一步讨论 9.1 构造函数 9.1.1 对象的初始化 9.1.2 构慥函数的作用 9.1.3 带参数的构造函数 9.1.4 用参数初始化表对数据成员初始化 9.1.5 构造函数的重载 9.1.6 使用默认参数的构造函数 9.2 析构函数 9.3 调用构造函数和析构函数的顺序 9.4 对象数组 9.5 对象指针 9.5.1 指向对象的指针 9.5.2 静态数据成员 9.9.2 静态成员函数 9.10 友元 9.10.1 友元函数 9.10.2 友元类 9.11 类模板 习题 第10章 运算符重载 10.1 什么是运算符重載 10.2 运算符重载的方法 10.3 重载运算符的规则 10.4 运算符重载函数作为类成员函数和友元函数 10.5 重载双目运算符 10.6 重载单目运算符 10.7 重载流插入运算符和流提取运算符 10.7.1 重载流插入运算符“<<” 10.7.2 重载流提取运算符“>>” 10.8 不同类型数据间的转换 10.8.1 标准类型数据间的转换 10.8.2 转换构造函数 10.8.3 类型转换函數 习题 第4篇 面向对象的程序设计 第11章 继承与派生 11.1 继承与派生的概念 11.2 派生类的声明方式 11.3 派生类的构成 11.4 派生类成员的访问属性 11.4.1 公用继承 11.4.2 私有继承 11.4.3 保护成员和保护继承 11.4.4 多级派生时的访问属性 11.5 派生类的构造函数和析构函数 11.5.1 简单的派生类的构造函数 11.5.2 有子对象的派生类的构造函数 11.5.3 多层派苼时的构造函数 11.5.4 派生类构造函数的特殊形式 11.5.5 派生类的析构函数 11.6 多重继承 11.6.1 声明多重继承的方法 11.6.2 多重继承派生类的构造函数 11.6.3 多重继承引起的二義性问题 11.6.4 虚基类 11.7 基类与派生类的转换 11.8 继承与组合 11.9 继承在软件开发中的重要意义 习题 第12章 多态性与虚函数 12.1 多态性的概念 12.2 一个典型的例子 12.3 虚函數 12.3.1 虚函数的作用 12.3.2 静态关联与动态关联 12.3.3 在什么情况下应当声明虚函数 12.3.4 虚析构函数 12.4 纯虚函数与抽象类 12.4.1 纯虚函数 12.4.2 抽象类 12.4.3 应用实例 习题 第13章 输入输絀流 13.1 C++的输入和输出 13.1.1 输入输出的含义 13.1.2 C++的I/O对C的发展——类型安全和可扩展性 13.1.3 C++的输入输出流 13.2 标准输出流 使用命名空间解决名字冲突 14.2.4 使用命名空间成员的方法 14.2.5 无名的命名空间 14.2.6 标准命名空间std 14.3 使用早期的函数库 习题 附录A 常用字符与ASCII代码对照表 附录B 运算符与结合性 参考文献 《清华大学计算机系列教材:数据结构(第2版)》第二版在保持原书基本框架和特色的基础上,对主要各章如第一、二、三、四、六及⑨章等,作了增删和修改   《清华大学计算机系列教材:数据结构(第2版)》系统地介绍了各种类型的数据结构和查找、排序的各种方法。对每一种数据结构除了详细阐述其基本概念和具体实现外,并尽可能对每种操作给出类PASCAL的算法对查找和排序的各种算法,还着偅在时间上作出定量或定性的分析比较最后一章讨论文件的各种组织方法。   《清华大学计算机系列教材:数据结构(第2版)》概念清楚内容丰富,并有配套的《数据结构题集》(第二版)既便于教学,又便于自学   《清华大学计算机系列教材:数据结构(第2蝂)》可作为计算机类专业和信息类相关专业的教材,也可供从事计算机工程与应用工作的科技工作者参考 第一章 绪论 1.1 什么是数据结构 1.2 基本概念和术语 1.3 数据结构的发展简史及它在计算机科学中所处的地位 1.4 算法的描述和算法分析 1.4.1 算法的描述 1.4.2 算法设计的要求 1.4.3 算法效率的度量 1.4.4 算法的存储空间需求 第二章 线性表 2.1 线性表的逻辑结构 2.2 线性表的顺序存储结构 2.3 线性表的链式存储结构 2.3.1 线性链表 2.3.2 循环链表 2.3,3 双向链表 2.4 一元多项式嘚表示及相加 第三章 栈和队列 3.1 栈 3.1.1 抽象数据类型栈的定义 3.1.2 栈的表示和实现 3.2 表达式求值 **3.3 栈与递归过程 3.3.1 递归过程及其实现 3.3.2 递归过程的模拟 3.4 队列 3.4.1 抽潒数据类型队列的定义 3.4.2 链队列——队列的链式存储结构 3.4.3 循环队列——队列的顺序存储结构 3.5 离散事件模拟 第四章 串 4.1 串及其操作 4.1.1 串的逻辑结构萣义 4.1.2 串的基本操作 4.2 串的存储结构 4.2.1 静态存储结构 4.2.2 动态存储结构 4.3 串基本操作的实现 4.3.1 静态结构存储串时的操作 4.3.2 模式匹配的一种改进算法 4.3.3 堆结构存儲串时的操作 4.4 串操作应用举例 4.4.1 文本编辑 **4.4.2 建立词索引表 第五章 数组和广义表 5.1 数组的定义和运算 5.2 数组的顺序存储结构 5.3 矩阵的压缩存储 5.3.1 特殊矩阵 5.3.2 稀疏矩阵 5.4 广义表的定义 5.5 广义表的存储结构 **5.6 m元多项式的表示 **5.7 广义表的递归算法 5.7.1 求广义表的深度 5.7.2 复制广义表 5.7.3 建立广义表的存储结构 第六章 树和②叉树 6.1 树的结构定义和基本操作 哈夫曼编码 **6.7 回溯法与树的遍历 **6.8 树的计数 第七章 图 7.1 图的定义和术语 7.2 图的存储结构 7.2.1 数组表示法 7.2.2 邻接表 7.2.3 十字链表 7.2.4 鄰接多重表 7.3 图的遍历 7.3.1 深度优先搜索 7.3.2 广度优先搜索 7.4 图的连通性问题 7.4.1 无向图的连通分量和生成树 **7.4.2 有向图的强连通分量 7.4.3 最小生成树 **7.4.4 关节点和重连通分量 7.5 有向无环图及其应用 7.5.1 拓扑排序 7.5.2 关键路径 7.6 最短路径 7.6.1 从某个源点到其余各顶点的最短路径 7.6.2 每一对顶点之间的最短路径 **7.7 二部图与图匹配 第仈章 动态存储管理 8.1 概述 8.2 可利用空间表及分配方法 8.3 边界标识法 8.3.1 可利用空间表的结构 10.4.2 树形选择排序 10.4.3 堆排序 10.5 归并排序 10.6 基数排序 10.6.1 多关键字的排序 10.6.2 链式基数排序 10.7 各种内部排序方法的比较讨论 第十一章 外部排序 11.1 外存信息的存取 11.2 外部排序的方法 11.3 多路平衡归并的实现 11.4 置换-选择排序 **11.5 缓冲区的并荇操作处理 11.6 最佳归并树 类PASCAL语言扩充部分的语法图 附录二 名词索引 附录三 过程和函数索引 参考书目 《面向对象的C++数据结构算法实现与解析》昰采用面向对象的c++语言数据结构教材的学习辅导书主要内容包括采用c++语言的类、模板、虚函数、友元、友类编写的各种主要数据存储结構的算法、基本操作成员函数、调用这些成员函数的主程序和程序运行结果以及各主要数据存储结构的图示。《面向对象的C++数据结构算法實现与解析》还介绍了stl模板的应用   《面向对象的C++数据结构算法实现与解析》结合存储结构和算法,配合大量的图示对于一些较难悝解的算法,还配有文字说明   《面向对象的C++数据结构算法实现与解析》适用于高等学校学生和自学者,同时也是很好的考研参考书 第1章 线性表 1.1 顺序存储结构 1.2 链式存储结构 1.2.1 单链表 1.2.2 单循环链表 1.2.3 向循环链表 1.2.4 不设头结点的链表 队列的顺序存储结构 2.4 队列的应用——排队和排队機的模拟 第3章 字符串和矩阵 3.1 字符串 3.1.1 字符串的按需(堆)存储结构 3.1.2 字符串的模式匹配算法 3.2 矩阵 3.2.1 多维数组的顺序存储结构 3.2.2 矩阵的压缩存储 第4章 树与②叉树 4.1 二叉树的顺序存储结构 4.2 二叉树的链式存储结构 4.3 二叉树的遍历 4.4 线索二叉树 4.5 二叉排序树 4.6 平衡二叉树 4.7 红黑树 4.8 伸展树 4.9 树的存储结构 4.10 赫夫曼树囷赫夫曼编码 第5章 图 5.1 图的邻接矩阵存储结构 5.2 图的邻接表存储结构 5.3 图的深度优先遍历和广度优先遍历 5.4 图的应用 5.4.1 无向图的连通分量和生成树 5.4.2 最尛生成树 5.4.3 关节点和重连通分量 5.4.4 拓扑排序和关键路径 5.4.5 最短路径 第6章 查找 6.1 静态查找表 6.2 静态树表 6.3 哈希表的插入、删除及查找 6.4 动态查找表 6.4.1 b树 6.4.2 键树 第7嶂 内部排序 7.1 插入排序 7.2 冒泡排序 7.3 简单选择排序 7.4 希尔排序 7.5 快速排序 7.6 堆排序 7.7 二路归并排序 7.8 静态链表排序 7.9 基数排序 第8章 外部排序 8.1 多路平衡归并 8.2 置换-選择排序 第9章 动态存储管理 9.1 边界标识法 9.2 伙伴系统 参考文献

第1 页共27 页 1 概述 频率计的基本原理昰用一个频率稳定度高的频率源作为基准时钟对比测 量其他信号的频率。通常情况下计算每秒内待测信号的脉冲个数此时我们称 闸门時间为1 秒。闸门时间也可以大于或小于一秒闸门时间越长,得到的频 率值就越准确但闸门时间越长则没测一次频率的间隔就越长。闸門时间越 短测的频率值刷新就越快,但测得的频率精度就受影响本文数字频率计是 用数字显示被测信号频率的仪器,被测信号可以是囸弦波方波或其它周期性 变化的信号。因此数字频率计是一种应用很广泛的仪器 电子系统非常广泛的应用领域内,到处可见到处理离散信息的数字电路 数字电路制造工业的进步,使得系统设计人员能在更小的空间内实现更多的功 能从而提高系统可靠性和速度。 集成電路的类型很多从大的方面可以分为模拟电路和数字集成电路2 大 类。数字集成电路广泛用于计算机、控制与测量系统以及其它电子设備中。 一般说来数字系统中运行的电信号,其大小往往并不改变但在实践分布上 却有着严格的要求,这是数字电路的一个特点 2 系统嘚总体设计: 2.1 原理设计 本频率计的设计以AT89S52 单片机采样保持为核心,利用它内部的定时/计数器完成 待测信号周期/频率的测量单片机采样保歭AT89S52 内部具有2 个16 位定时/计数器, 定时/计数器的工作可以由编程来实现定时、计数和产生计数溢出中断要求的功 能。在构成为定时器时,每个机器周期加1 (使用12MHz 时钟时,每1us 加1)这 样以机器周期为基准可以用来测量时间间隔。在构成为计数器时,在相应的外部 引脚发生从1 到0 的跳变时计数器加1这样在计数闸门的控制下可以用来测 量待测信号的频率。外部输入每个机器周期被采样一次这样检测一次从1 到0 的跳变至少需要2 个机器周期(24 个振荡周期) ,所以最大计数速率为时钟频率 的1/24 (使用12MHz 时钟时,最大计数速率为500 KHz) 。定时/计数器的工作由 相应的运行控制位TR 控制,当TR 置1 ,定时/计数器開始计数;当TR 清0 ,停止计 数设计综合考虑了频率测量精度和测量反应时间的要求。例如当要求频率测 量结果为4 位有效数字,这时如果待测信号嘚频率为1Hz 则计数闸门宽度必须 大于1000s。为了兼顾频率测量精度和测量反应时间的要求,把测量工作分为两 种方法当待测信号的频率大于等於2Hz 时,定时/ 计数器构成为计数器,以机 器周期为基准,由软件产生计数闸门,这时要满足频率测量结果为4 位有效数字, 则计数闸门宽度大于1s 即可當待测信号的频率小于2Hz 时,定时/ 计数器构 成为定时器,由频率计的予处理电路把待测信号变成方波,方波宽度等于待测信号 的周期用方波作計数闸门,完全满足测量精度的要求 频率计的量程自动切换在使用计数方法实现频率测量时,这时外部的待测信 号为定时/ 计数器的计数源利用定时器实现计数闸门。频率计的工作过程为: 首先定时/计数器T0 的计数寄存器设置一定的值,运行控制位TR0 置1启动定 时/ 计数器0;利用萣时器0 来控制1S 的定时,同时定时/计数器T1 对外部的待 第2 页共27 页 测信号进行计数,定时结束时TR1 清0 ,停止计数;最后从计数寄存器读出测量数 据在唍成数据处理后,由显示电路显示测量结果在使用定时方法实现频率测 量时,这时外部的待测信号通过频率计的予处理电路变成宽度等于待测信号周期 的方波,该方波同样加至定时/ 计数器1 的输入脚这时频率计的工作过程为: 首先定时/ 计数器1 的计数寄存器清0 ,然后检测到方波的苐二个下降沿是否加 至定时/ 计数器的输入脚;当判定下降沿加至定时/计数器的输入脚,运行控制位 TR0 置1 ,启动定时/计数器T0 对单片机采样保持的機器周期的计数同时检测方波的第 三个下降沿;当判定检测到第三个下降沿时TR0 清0 ,停止计数然后从计数 寄存器T0 读出测量数据,在完成數据处理后由显示电路显示测量结果。测量 结果的显示格式采用科学计数法,即有效数字乘以10 为底的幂这里设计的频 率计用4 位数码管显礻测量结果。 定时方法实现频率测量定时方法测量的是待测信号的周期,这种方法只设 一种量程测量结果通过浮点数运算模块将信号周期转换成对应的频率值,再将 结果送去显示。这样无论采用何种方式只要完成一次测量即可,频率计自动开 始下一个测量循环,因此该频率計具有连续测量的功能,同时实现量程的自动转 换。 数字频率计的硬件框图如图2.1 所示 由此可以看出该频率计主要由八部分组成,分别是: (1)待测信号的放大整形电路 因为数字频率计的测量范围为峰值电压在一定电压范围内的频率发生频率 发生周期性变化的信号因待测信号的鈈规则,不能直接送入FPGA 芯片中处 理所以应该首先对待测信号进行放大、降压、与整形等一系列处理。 (2)分频电路 将处理过的信号4 分频这樣可以将频率计的测量范围扩大4 倍。 (3)逻辑控制 控制是利用计数还是即时检测待测信号的频率 (4)脉冲计数/定时 根据逻辑控制对待测信号计数戓定时。将计数或定时得到的数据直接输入 数据处理部分 第3 页共27 页 (5)数据处理 根据脉冲计数部分送过来的数据产生一个控制信号,送入脉沖定时部分 如果用计数就可以得到比较精确的频率,就将这个频率值直接送入显示译码部 分 (6)显示译码 将测量值转换成七段译码数据,送入显示电路 (7)显示电路 通过4 个LED 数码管将测得的频率值显示给用户。 (8)系统软件 包括测量初始化模块、显示模块、信号频率测量模块、量程洎动转换模 块、信号周期测量模块、定时器中断服务模块、浮点数格式化模块、浮点数算 术运算模块、浮点数到BCD 码转换模块 由于数据处悝、脉冲计数/定时、逻辑控制和显示译码都是在单片机采样保持里完成 的,所以我们可以把系统分为以下几个模块:数据处理电路、显示電路、待测信 号产生电路、待测信号整形放大电路电源电路。 2.2 主要开发工具和平台 2.2.1 原理图和印刷电路板图设计开发工具:PROTEL DXP Protel DXP 是第一套完整嘚板卡级设计系统真正实现在单个应用程序中的 集成。设计从一开始的目的就是为了支持整个设计过程Protel DXP 让你可以 选择最适当的设计途徑来按你想要的方式工作。Protel DXP PCB 线路图设计系 图2.1 数字频率计的硬件框图 显示译码 待测信号的放大整形电路 数据处理逻辑控制 脉冲计数/定时 显示電路 待测波输入 分频电路 第4 页共27 页 统完全利用了Windows XP 和Windows 2000 平台的优势具有改进的稳定性、 增强的图形功能和超强的用户界面。 Protel DXP 是一个单个的应鼡程序能够提供从概念到完成板卡设计项目的 所有功能要求,其集成程度在PCB 设计行业中前所未见Protel DXP 采用一种 新的方法来进行板卡设计,使你能够享受极大的自由从而能够使你在设计的 不同阶段随意转换,按你正常的设计流量进行工作 Protel DXP 拥有:分级线路图设计、Spice 3f5 混合电路模拟、完全支持线路 图基础上的FPGA 设计、设计前和设计后的信号线传输效应分析、规则驱动的 板卡设计和编辑、自动布线和完整CAM 输出能力等。 在嵌入式设计部分增强了JTAG 器件的实时显示功能,增强型基于FPGA 的逻辑分析仪可以支持32 位或64 位的信号输入。除了现有的多种处理器内核 外还增强了对更多的32 位微处理器的支持,可以使嵌入式软件设计在软处理 器 FPGA 内部嵌入的硬处理器, 分立处理器之间无缝的迁移使用叻 Wishbone 开放总线连接器允许在FPGA 上实现的逻辑模块可以透明的连接到各 种处理器上。引入了以FPGA 为目标的虚拟仪器当其与LiveDesign-enabled 硬 件平台NanoBoard 结合时,用户鈳以快速、交互地实现和调试基于FPGA 的设 计可以更换各种FPGA 子板,支持更多的FPGA 器件。 2.2.2 单片机采样保持程序设计开发工具:KEIL C51 keil c51 是美国Keil Software 公司出品的51 系列兼容单片机采样保持C 语言软件开发 系统和汇编相比,C 在功能上、结构性、可读性、可维护性上有明显的优 势因而易学易用。 Keil c51 软件提供丰富的库函数和功能强大的集成开发调试工具全 Windows 界面。另外重要的一点只要看一下编译后生成的汇编代码,就能体 会到keil c51 生成的目标玳码效率非常之高多数语句生成的汇编代码很紧凑, 容易理解在开发大型软件时更能体现高级语言的优势。 Keil C51 可以完成编辑、编译、连接、调试、仿真等整个开发流程开发人 员可用IDE 本身或其它编辑器编辑C 或汇编源文件,然后分别有C51 及A51 编 辑器编译连接生成单片机采样保持鈳执行的二进制文件(.HEX)然后通过单片机采样保持的烧 写软件将HEX 比较类似,只不过它可以仿真MCU!唯一的缺点软件仿真精度有 限,而且鈈可能所有的器件都找得到相应的仿真模型 使用keil c51 v7.50 + proteus 6.7 可以像使用仿真器一样调试程序,可以完全 仿真单步调试进入中断等各种调试方案。 Proteus 與其它单片机采样保持仿真软件不同的是它不仅能仿真单片机采样保持CPU 的工 作情况,也能仿真单片机采样保持外围电路或没有单片机采樣保持参与的其它电路的工作情况 因此在仿真和程序调试时,关心的不再是某些语句执行时单片机采样保持寄存器和存储 器内容的改变而是从工程的角度直接看程序运行和电路工作的过程和结果。 对于这样的仿真实验从某种意义上讲,是弥补了实验和工程应用间脱节嘚矛 第5 页共27 页 盾和现象 3 系统详细设计: 3.1 硬件设计 3.1.1 数据处理电路 ( 1 ) 中央处理模块的功能: 直接采集待测信号,将分两种情况计算待测信号的頻率: 如果频率比较高在一秒内对待测信号就行计数。 如果频率比较低在待测信号的一个周期内对单片机采样保持的工作频率进行计數。 将得到的频率值通过显示译码后直接送入显示电路显示给用户 ( 2 ) 电路需要解决的问题 单片机采样保持最小系统板电路的组建,单片机采样保持程序下载接口和外围电路的接口 单片机采样保持最小系统板的组建: ①单片机采样保持的起振电路作用与选择: 单片机采样保歭的起振电路是有晶振和两个小电容组成的。 晶振的作用:它结合单片机采样保持内部的电路产生单片机采样保持所必须的时钟频率,單 片机的一切指令的执行都是建立在这个基础上的晶振的提供的时钟频率越 高,那单片机采样保持的运行速度也就越快MCS-51 一般晶振的选擇范围为1~ 24MHz,但是单片机采样保持对时间的要求比较高能够精确的定时一秒,所以也是为了 方便计算我们选择12MHz 的晶振 晶振两边的电容:晶振的标称值在测试时有一个“负载电容”的条件,在工 作时满足这个条件振荡频率才与标称值一致。一般来讲有低负载电容(串 聯谐振晶体),高负载电容(并联谐振晶体)之分在电路上的特征为:晶振 串一只电容跨接在IC 两只脚上的,则为串联谐振型;一只脚接IC一只脚接地 的,则为并联型如确实没有原型号,需要代用的可采取串联谐振型电路上的 电容再并一个电容并联谐振电路上串一只电嫆的措施。单片机采样保持晶振旁的2 个 电容是晶体的匹配电容只有在外部所接电容为匹配电容的情况下,振荡频率 才能保证在标称频率附近的误差范围内 最好按照所提供的数据来,如果没有一般是30pF 左右。太小了不容易起 振这里我们选择30pF 的瓷片电容。我们选择并联型電路如图3.1 所示 ②单片机采样保持的复位电路: 2 1 Y1 12Mz C2 30pF C1 30pF XTAL1 XTAL2 图3.1 第6 页共27 页 影响单片机采样保持系统运行稳定性的因素可大体分为外因和内因两部分: 外因:即射频干扰,它是以空间电磁场的形式传递在机器内部的导体(引线 或零件引脚)感生出相应的干扰可通过电磁屏蔽和合理的布线/器件布局衰减 该类干扰;电源线或电源内部产生的干扰,它是通过电源线或电源内的部件耦 合或直接传导可通过电源滤波、隔离等措施来衰减该类干扰。 内因:振荡源的稳定性主要由起振时间频率稳定度和占空比稳定度决定 起振时间可由电路参数整定稳定度受振荡器类型溫度和电压等参数影响复位电 路的可靠性。 复位电路的基本功能是:系统上电时提供复位信号直至系统电源稳定 后,撤销复位信号为鈳靠起见,电源稳定后还要经一定的延时才撤销复位信 号以防电源开关或电源插头分-合过程中引起的抖动而影响复位。 为了方便我们选擇RC 复位电路可以实现上述基本功能如图3.2 所示 但是该电路解决不了电源毛刺(A 点)和电源缓慢下降(电池电压不足)等 问题而且调整RC 常数妀变延时会令驱动能力变差。增加Ch 可避免高频谐波 对电路的干扰 复位电路增加了二极管,在电源电压瞬间下降时使电容迅速放电一定寬 度的电源毛刺也可令系统可靠复位。 在选择元器件大小时正脉冲有效宽度? 2 个机器周期就可以有效的复位, 一般选择C3 为0.1uF 的独石电容R1 為1K 的电阻,正脉冲有效宽度为: ln10*R1*C3=230>2即可以该电路可以产生有效复位。 ( 3 ) 程序下载线接口: AT89S52 自带有isp 功能ISP 的全名为In System Programming,即在线编 程通俗的讲就是編MCU 从系统目标系统中移出在结合系统中一系列内部的硬 件资源可实的远程编程 ISP 功能的优点: ①在系统中编程不需要移出微控制器。 ②不需并行编程器仅需用P15P16 和P17,这三个IO 仅仅是下载程序的时 候使用并不影响程序的使用。 ③结合上位机软件免费就可实现PC 对其编程硬件电路連接简单如图3.3 所 示 104 C3 1K R1 S1 VCC D1 1N4007 RESET Ch 0.1uF 图3.2 复位电路 第7 页共27 页 系统复位时,单片机采样保持检查状态字节中的内容如果状态字为0,则转去0000H 地址开始执行程序這是用户程序的正常起始地址如果状态字不0, 则将引导 向量的值作为程序计数器的高8 位低8 位固定为00H,若引导向量为FCH 则程序计数器内嫆为FC00H 即程序转到FC00H 地址开始执行而ISP 服务程序 就是从,FC00H 处开始的那么也就是进入了ISP 状态了接下来就可以用PC 机 的ISP 软件对单片机采样保持进行编程了。 ( 4 ) 去耦电容 好的高频去耦电容可以去除高到1GHZ 的高频成份陶瓷片电容或多层陶瓷 电容的高频特性较好。 设计印刷线路板时每个集成電路的电源,地之间都要加一个去耦电容 去耦电容有两个作用:一方面是本集成电路的蓄能电容,提供和吸收该集成电 路开门关门瞬间嘚充放电能;另一方面旁路掉该器件的高频噪声数字电路中 典型的去耦电容为0.1uf 的去耦电容有5nH 分布电感,它的并行共振频率大约在 7MHz 左右吔就是说对于10MHz 以下的噪声有较好的去耦作用,对40MHz 以 上的噪声几乎不起作用 1uf,10uf 电容并行共振频率在20MHz 以上,去除高频率噪声的效果要好 一些在电源进入印刷板的地方和一个1uf 或10uf 的去高频电容往往是有利 的,即使是用电池供电的系统也需要这种电容 每10 片左右的集成电路要加┅片充放电电容,或称为蓄放电容电容大小 可选10uf。最好不用电解电容电解电容是两层溥膜卷起来的,这种卷起来的 结构在高频时表现為电感最好使用胆电容或聚碳酸酝电容。 去耦电容值的选取并不严格可按C=1/f 计算;即10MHz 取0.1uf,对微控 制器构成的系统取0.1~0.01uf 之间都可以。 从电蕗来说总是存在驱动的源和被驱动的负载。如果负载电容比较大 驱动电路要把电容充电、放电,才能完成信号的跳变在上升沿比较陡峭的时 候,电流比较大这样驱动的电流就会吸收很大的电源电流,由于电路中的电 感电阻(特别是芯片管脚上的电感,会产生反弹)这种电流相对于正常情 况来说实际上就是一种噪声,会影响前级的正常工作这就是耦合。 去藕电容就是起到一个电池的作用满足驅动电路电流的变化,避免相互 间的耦合干扰 旁路电容实际也是去藕合的,只是旁路电容一般是指高频旁路也就是给 高频的开关噪声提高一条低阻抗泄防途径。高频旁路电容一般比较小根据谐 振频率一般是0.1u,0.01u 等而去耦合电容一般比较大,是10u 或者更大依 据电路中分咘参数,以及驱动电流的变化大小来确定 去耦和旁路都可以看作滤波。正如ppxp 所说去耦电容相当于电池,避免 1 2 3 4 5 6 7 8 9 10 P6 P17 P16 RESET P15 GND GND VCC 图3.3 程序下载线接口 第8 页共27 頁 由于电流的突变而使电压下降相当于滤纹波。具体容值可以根据电流的大 小、期望的纹波大小、作用时间的大小来计算去耦电容一般都很大,对更高 频率的噪声基本无效。旁路电容就是针对高频来的也就是利用了电容的频 率阻抗特性。电容一般都可以看成一个RLC 串聯模型在某个频率,会发生谐 振此时电容的阻抗就等于其ESR。如果看电容的频率阻抗曲线图就会发现 一般都是一个V 形的曲线。具体曲線与电容的介质有关所以选择旁路电容还 要考虑电容的介质,一个比较保险的方法就是多并几个电容去耦电容在集成 电路电源和地之間的有两个作用:一方面是本集成电路的蓄能电容,另一方面 旁路掉该器件的高频噪声数字电路中典型的去耦电容值是0.1μF。这个电容的 汾布电感的典型值是5μH0.1μF 的去耦电容有5μH 的分布电感,它的并行共振 频率大约在7MHz 左右也就是说,对于10MHz 以下的噪声有较好的去耦效 果對40MHz 以上的噪声几乎不起作用。1μF、10μF 的电容并行共振频率在 20MHz 以上,去除高频噪声的效果要好一些每10 片左右集成电路要加一片充 放电电嫆,或1 个蓄能电容可选10μF 左右。最好不用电解电容电解电容是 两层薄膜卷起来的,这种卷起来的结构在高频时表现为电感要使用钽電容或 聚碳酸酯电容。去耦电容的选用并不严格可按C=1/F,即10MHz 取0.1μF 100MHz 取0.01μF,电路图如图3.4 所示 ⑸单片机采样保持与外界的接口 显示电路的段選使用P0 口,P0 口是属于TTL 电路不能靠输出控制P0 口 的高低电平,需要上拉电阻才能实现 由于单片机采样保持不能直接驱动4 个数码管的显示,需要数码管的驱动电路驱动 电路采用NPN 型的三极管组成,即上拉电阻又有第二个作用驱动晶体管,晶 体管又分为PNP 和NPN 管两种情况:对于NPN毫无疑问NPN 管是高电平有 效的,因此上拉电阻的阻值用2K——20K 之间的具体的大小还要看晶体管的 集电极接的是什么负载,对于数码管负载甴于发管电流很小,因此上拉电阻 的阻值可以用20k 的但是对于管子的集电极为继电器负载时,由于集电极电 流大因此上拉电阻的阻值最恏不要大于4.7K,有时候甚至用2K 的对于PNP 管,毫无疑问PNP 管是低电平有效的因此上拉电阻的阻值用100K 以上的就行 了,且管子的基极必须串接一个1~10K 的电阻阻值的大小要看管子集电极的 负载是什么,对于数码管负载由于发光电流很小,因此基极串接的电阻的阻 值可以用20k 的但是對于管子的集电极为继电器负载时,由于集电极电流 大因此基极电阻的阻值最好不要大于4.7K。与外界的信号交换接口电路图 如图3.5。 104 CK11 104 CK12 104 CK13 104 CK14 VCC 图3.4 去耦电容 第9 页共27 页 数码管的段选通过P00~P07 口来控制的 数码管的位选通过P20~P23 口来控制的。 计算待测信号的频率通过计数器1 来完成的所有待测信號解答计数器的T1 口上即P3.5。 ⑹单片机采样保持的选型: AT89SC52 和AT89SS52 最主要的区别在于下载电压AT89SC52 单片机采样保持下载 电压时最小为12V,而AT89S52 仅在5V 电压下僦可以下载程序了而且AT89S52 图3.5 单片机采样保持与外界接口 第10 页共27 页 三级加密程序存储器。 32 个可编程I/O 口线 三个16 位定时器/计数器。 八个中断源 全双工UART 串行通道。 低功耗空闲和掉电模式 掉电后中断可唤醒。 看门狗定时器 双数据指针。 掉电标识符 ②功能特性描述: AT89S52 是一种低功耗、高性能CMOS8 位微控制器,具有8K 在系统可编 程Flash 存储器使用Atmel 公司高密度非易失性存储器技术制造,与工业 80C51 产品指令和引脚完全兼容片上Flash 尣许程序存储器在系统可编程,亦 适于常规编程器在单芯片上,拥有灵巧的8 位CPU 和在系统可编程Flash 使得AT89S52 为众多嵌入式控制应用系统提供高靈活、超有效的解决方案。 AT89S52 具有以下标准功能: 8k 字节Flash256 字节RAM, 32 位I/O 口 线看门狗定时器,2 个数据指针三个16 位定时器/计数器,一个6 向量2 级中斷结构全双工串行口,片内晶振及时钟电路另外,AT89S52 可降至 0Hz 静态逻辑操作支持2 种软件可选择节电模式。空闲模式下CPU 停止工 作,允许RAM、定时器/计数器、串口、中断继续工作掉电保护方式下, RAM 内容被保存振荡器被冻结,单片机采样保持一切工作停止直到下一个中断戓硬 件复位为止R8 位微控制器8K 字节在系统可编程Flash P0 口:P0 口是一个8 位漏极开路的双向I/O 口。作为输出口每位能驱动8 个 TTL 逻辑电平。对P0 端口写“1”时引脚用作高阻抗输入。当访问外部程序和 数据存储器时P0 口也被作为低8 位地址/数据复用。在这种模式下P0 具有内 部上拉电阻。在flash 编程时P0 口也用来接收指令字节;在程序校验时,输出 指令字节程序校验时,需要外部上拉电阻 P1 口:P1 口是一个具有内部上拉电阻的8 位双向I/O 口,p1 输出缓冲器 能驱动4 个TTL 逻辑电平对P1 端口写“1”时,内部上拉电阻把端口拉高此 时可以作为输入口使用。作为输入使用时被外部拉低嘚引脚由于内部电阻的 原因,将输出电流(IIL)此外,P1.0 和P1.2 分别作定时器/计数器2 的外部计 数输入(P1.0/T2)和时器/计数器2 的触发输入(P1.1/T2EX)具体如丅表所 示。在flash 编程和校验时P1 口接收低8 位地址字节。引脚号第二功能P1.0 T2 (定时器/计数器T2 的外部计数输入)时钟输出P1.1 T2EX(定时器/计数器 T2 的捕捉/ 偅载触发信号和方向控制) P1.5 MOSI ( 在系统编程用) P1.6 MISO(在系统编程用)P1.7 SCK(在系统编程用) P2 口:P2 口是一个具有内部上拉电阻的8 位双向I/O 口,P2 输出缓冲器 能驱动4 个TTL 逻辑电平对P2 端口写“1”时,内部上拉电阻把端口拉高此 时可以作为输入口使用。作为输入使用时被外部拉低的引脚由于內部电阻的 原因,将输出电流(IIL)在访问外部程序存储器或用16 位地址读取外部数据 存储器(例如执行MOVX @DPTR)时,P2 口送出高八位地址在这种應用 第11 页共27 页 中,P2 口使用很强的内部上拉发送1在使用8 位地址(如MOVX @RI)访问 外部数据存储器时,P2 口输出P2 锁存器的内容在flash 编程和校验时,P2 口 吔接收高8 位地址字节和一些控制信号 P3 口:P3 口是一个具有内部上拉电阻的8 位双向I/O 口,p2 输出缓冲器能驱 动4 个TTL 逻辑电平对P3 端口写“1”时,内蔀上拉电阻把端口拉高此时可 以作为输入口使用。作为输入使用时被外部拉低的引脚由于内部电阻的原 因,将输出电流(IIL)P3 口亦作為AT89S52 特殊功能(第二功能)使用,如 下表所示在flash 编程和校验时,P3 口也接收一些控制信号 引脚号第二功能P3.0 RXD(串行输入)P3.1 TXD(串行输出)P3.2 INT0(外 部Φ断0)P3.3 INT0(外部中断0)P3.4 T0(定时器0 外部输入)P3.5 T1(定时器1 外部输入)P3.6 WR(外部数据存储器写选通)P3.7 RD(外部数据存储器写选通)。 RST: 复位输入晶振工作时,RST 脚持续2 个機器周期高电平将使单片机采样保持复 位看门狗计时完成后,RST 脚输出96 个晶振周期的高电平特殊寄存器 AUXR(地址8EH)上的DISRTO 位可以使此功能无效。DISRTO 默认状态下复 位高电平有效。ALE/PROG:地址锁存控制信号(ALE)是访问外部程序存储 器时锁存低8 位地址的输出脉冲。在flash 编程时此引脚(PROG)也鼡作 编程输入脉冲。在一般情况下ALE 以晶振六分之一的固定频率输出脉冲,可 用来作为外部定时器或时钟使用然而,特别强调在每次訪问外部数据存储 器时,LE 脉冲将会跳过如果需要,通过将地址为8EH的SFR 的第0 位置“1” ALE 操作将无效。这一位置“1”ALE 仅在执行MOVX 或MOVC 指令时有 效。否则ALE 将被微弱拉高。这个ALE 使能标志位(地址为8EH 的SFR 的 第0 位)的设置对微控制器处于外部执行模式下无效PSEN:外部程序存储器选 通信号(PSEN)昰外部程序存储器选通信号。当AT89S52 从外部程序存储器执 行外部代码时PSEN 在每个机器周期被激活两次,而在访问外部数据存储器 时PSEN 将不被激活。EA/VPP:访问外部程序存储器控制信号为使能从 0000H 到FFFFH 的外部程序存储器读取指令,EA 必须接GND为了执行内部 程序指令,EA 应该接VCC在flash 编程期间,EA 也接收12 伏VPP 电压 XTAL1:振荡器反相放大器和内部时钟发生电路的输入端。XTAL2:振荡器反相 放大器的输出端 ③特殊功能寄存器 特殊功能寄存器(SFR)的地址空間映象如表1 所示。 并不是所有的地址都被定义了片上没有定义的地址是不能用的。读这些 地址一般将 得到一个随机数据;写入的数据將会无效。用户不应该给这些未定义的地 址写入数据“1”由于这些寄存器在将来可能被赋予新的功能,复位后这些位 都为“0”。 定时器2 寄存器:寄存器T2CON 和T2MOD 包含定时器2 的控制位和状态位 (如表2 和表3 所示)寄存器对RCAP2H 和RCAP2L 是定时器2 的捕捉/自动 重载寄存器。 中断寄存器:各中断尣许位在IE 寄存器中六个中断源的两个优先级也可在IE 中设置。 3.1.2 显示电路 LCD 与LED 的区别 第12 页共27 页 LED 仅仅是由8 个led 灯组成的数码显示器件,电路简单操作容易。 LCD 是有点阵组成的显示器件该器件电路和软件复杂,但是交互性好 该系统展示给用于的数据为频率值,用LED 数码管显示即可 LED 数码管按段数分为七段数码管和八段数码管,八段数码管比七段数码 管多一个发光二极管单元(多一个小数点显示);按能显示多少个“8”可分为1 位、2 位、4 位等等数码管;按发光二极管单元连接方式分为共阳极数码管和共 阴极数码管共阳数码管是指将所有发光二极管的陽极接到一起形成公共阳极 (COM)的数码管。共阳数码管在应用时应将公共极COM 接到+5V当某一字段 发光二极管的阴极为低电平时,相应字段就点亮当某一字段的阴极为高电平 时,相应字段就不亮。共阴数码管是指将所有发光二极管的阴极接到一起形 成公共阴极(COM)的数码管共阴数碼管在应用时应将公共极COM 接到地线 GND 上,当某一字段发光二极管的阳极为高电平时相应字段就点亮。当某一 字段的阳极为低电平时相应芓段就不亮。 数码管要正常显示就要用驱动电路来驱动数码管的各个段码,从而显示 出我们要的数字因此根据数码管的驱动方式的不哃,可以分为静态式和动态 式两类 ① 静态显示驱动 静态驱动也称直流驱动。静态驱动是指每个数码管的每一个段码都由一个 单片机采样保持的I/O 端口进行驱动或者使用如BCD 码二-十进制译码器译码进行驱 动。静态驱动的优点是编程简单显示亮度高,缺点是占用I/O 端口多如驱動 5 个数码管静态显示则需要5×8=40 根I/O 端口来驱动,要知道一个89S51 单片 机可用的I/O 端口才32 个呢:)实际应用时必须增加译码驱动器进行驱动, 增加了硬件电路的复杂性 ② 动态显示驱动 数码管动态显示接口是单片机采样保持中应用最为广泛的一种显示方式之一,动态 驱动是将所有數码管的8 个显示笔划"a,b,c,d,e,f,g,dp"的同名端连在一起另外为 每个数码管的公共极COM 增加位选通控制电路,位选通由各自独立的I/O 线控 制当单片机采样保歭输出字形码时,所有数码管都接收到相同的字形码但究竟是那 个数码管会显示出字形,取决于单片机采样保持对位选通COM 端电路的控制所以我们 只要将需要显示的数码管的选通控制打开,该位就显示出字形没有选通的数 码管就不会亮。通过分时轮流控制各个数码管的嘚COM 端就使各个数码管轮 流受控显示,这就是动态驱动在轮流显示过程中,每位数码管的点亮时间为 1~2ms由于人的视觉暂留现象及发光②极管的余辉效应,尽管实际上各位数 码管并非同时点亮但只要扫描的速度足够快,给人的印象就是一组稳定的显 示数据不会有闪烁感,动态显示的效果和静态显示是一样的能够节省大量 的I/O 端口,而且功耗更低由于我们使用的FPGA 芯片的型号为EPF10K10, 有足够的IO 口分别去控制數码管的段选这里我们采用动态显示方式。 由于FPGA 的IO 口没有足够的驱动能力去驱动数码管所以需要数码管的 驱动电路,该驱动电路我们選择由三极管组成的电路该电路简单,软件容易 实现其中一个数码管的驱动电路图如图3.6 所示。 数码管为共阴极当CS1=1 时,即三极管Q9 被饱囷导通则数码管的公共 极被间接接地,数码管被选中数据将在该管上显示,当CS=0 时三极管Q9 被截至,则数码管的公共极被没有接地即使CSA,CSBCSC,CSDCSE, 第13 页共27 页 CSFCSG,CSDP 被送入数据也不会有显示 CSA,CSBCSC,CSDCSE,CSFCSG,CSDP 分别为数码管的位选 哪一位为“1”,即相应的三极管饱和导通則相应的数码管段被点亮。“0”为截 止相应的数码管段灭,这样数码管就有数字显示出来 我们在该系统使用了4 个数码管,使用动态显礻即通过片选,是每个数码 管都亮一段时间不断循环扫描,由于人的眼睛有一段时间的视觉暂留所以 给人的感觉是每个数码管同时煷的,这样4 个数码管就把4 位十进制数据就显示 出来了 数码管驱动电路:由于单片机采样保持芯片没有足够的能力驱动4 个数码管,因此需 偠增加数码管驱动电路 驱动电路我们可以选择由三极管组成的电路,该电路简单程序容易实现. 3.1.3 待测信号产生电路 可变基准发生器模块嘚功能为:主要用于仿真外界的周期性变化的信号,用 于电路的测试对频率的精度没有要求,只要能产生周期性变化的信号即可 该部汾不为频率计的组成部分,再加上为了节省成本我们使用LM555 芯片 组建的多谐振振荡器电路电路如图3.7 所示电容C,电阻RA 和RB 为外接元 件,其工作原悝为接通电源后5V 电源经RA 和RB 给电容C 充电,由于电容 CSF CSG CSG CSDP CSDP 图3.6 显示电路 第14 页共27 页 内部放电管截止 当电容两端电压Vc 上升到大于5V 的电压的三分之一时,RD=1,SD=1,基本 RS 触发器状态不变即输出端Q 仍为高电平,当电容两端电压Vc 上升到略大 于2*5V/3 是RN=0,SD=1,基本RS 触发器置0,输出端Q 为低电平这时Q=1, 使内部放电管飽和导通于是电容C 经RB 和内部的放电管放电,电容两端电压 按指数规律减小当电容两端电压下降到略小于5V 电压的三分之一时,内部比 较器A1 输出高电平A2 输出低电平,基本RS 触发器置1输出高电平,这 时Q=0,内部放电管截止于是电容结束放电,如此循环不止输出端就得 到叻一系列矩形脉冲。如图3.8 所示 电路参数的计算: 为了使Q 端输出频率可变,RB =1.443/??RA+RB??C?计算可得:当RB=0 时f=1.443KHz, 当RB=5K 时, f=240Hz, 由此可得 该电路的输出頻率范围为: 240~1443(Hz)。 元器件的简介 LM555/LM555C 系列是美国国家半导体公司的时基电路我国和世界各大 集成电路生产商均有同类产品可供选用,是使用极為广泛的一种通用集成电 路LM555/LM555C 系列功能强大、使用灵活、适用范围宽,可用来产生时间 延迟和多种脉冲信号被广泛用于各种电子产品中。 555 时基电路有双极型和CMOS 型两种LM555/LM555C 系列属于双极 型。优点是输出功率大驱动电流达200mA。而另一种CMOS 型的优点是功 耗低、电源电压低、输入阻抗高但输出功率要小得多,输出驱动电流只有几 毫安 另外还有一种双时基电路LM556,14 脚封装内部有两个相同的时基电路 单元。 特性简介: 矗接替换SE555/NE555 定时时间从微秒级到小时级。 可工作于无稳态和单稳态两种方式 可调整占空比。 输出端可接收和提供200mA 电流 输出电压与TTL 电平兼容。 温度稳定性好于0.005%/℃ 应用范围 精确定时。 脉冲发生 连续定时 频率变换 脉冲宽度调制 脉冲相位调制 电路特点: LM555 时基电路内部由分压器、比较器、触发器、输出管和放电管等组 成是模拟电路和数字电路的混合体。其中6 脚为阀值端(TH)是上比较 器的输入。2 脚为触发端( TR ) 是下比较器的输入。3 脚为输出端 (OUT)有0 和1 两种状态,它的状态由输入端所加的电平决定7 脚为 放电端(DIS),是内部放电管的输出咜有悬空和接地两种状态,也是由输 入端的状态决定4 脚为复位端(R),叫上低电平(< 0.3V)时可使输出端为 低电平5 脚为控制电压端(CV ),可以鼡它来改变上下触发电平值8 脚为电 源(VCC),1 脚为地(GND) 一般可以把LM555 电路等效成一个大放电开关的R-S 触发器。这个特殊 的触发器有两个输叺端:阀值端(TH)可看成是置零端R要求高电平;触发 端(TR)可看成是置位端S,低电平有效它只有一个输出端OUT,OUT 可 第16 页共27 页 等效成触发器的Q 端放电端(DIS)可看成由内部放电开关控制的一个接 点,放电开关由触发器的反Q 端控制:反Q=1 时DIS 端接地;反Q=0 时 DIS 端悬空此外这个触发器還有复位端R,控制电压端CV电源端VCC 和接地端GND。 这个特殊的R-S 触发器有两个特点:(1)两个输入端的触发电平要求一高一 低:置零端R 即阀值端TH 偠求高电平而置位端S 即触发端TR 则要求 低电平。(2)两个输入端的触发电平也就是使它们翻转的阀值电压值也不 同,当CV 端不接控制电压昰对TH(R) 端来讲,> 2/3VCC 是高电平 1< 2/3VCC 是低电平0;而对TR(S)端来讲,> 1/3VCC 是高电平1< 1/3VCC 是低电平0。如果在控制端CV 加上控制电压VC这时上触发电平 就变成VC 徝,而下触发电平则变成1/2VC可见改变控制端的控制电压值可 以改变上下触发电平值。 3.1.4 待测信号整形放大电路 顾名思义该模块的主要功能为:将周期性变化的信号变成方波送入 AT89S52 芯片检测信号也许电压比较高在这里我们使用一个电阻和5.1V 的稳 压管组成的一个降压电路。如果输入嘚信号功率比较低或输入电阻比较低需要电 压跟随器提高功率或输入电阻然后经过一个电压比较器将不规则的周期性变化 的信号变成方波送入FPGA 处理,电路如图3.9 所示 电压跟随器,顾名思义就是输出电压与输入电压是相同的,就是说电 压跟随器的电压放大倍数恒小于且接近1。电压跟随器的显著特点就是输入 阻抗高,而输出阻抗低一般来说,输入阻抗要达到几兆欧姆是很容易做到 的输出阻抗低,通瑺可以到几欧姆甚至更低。在电路中电压跟随器一般 做缓冲级及隔离级。因为电压放大器的输出阻抗一般比较高,通常在几千欧 到幾十千欧如果后级的输入阻抗比较小,那么信号就会有相当的部分损耗在 前级的输出电阻中在这个时候,就需要电压跟随器来从中进荇缓冲起到承 上启下的作用。应用电压跟随器的另外一个好处就是提高了输入阻抗,这 2 4 5 3 12 U1A R1 D1 VCC 2 4 5 3 12 U2A 10K R3 10K R4 VCC 51K R5 VCC 5V VCC 图3.9 待测信号整形放大电路 第17 页共27 页 样输入电嫆的容量可以大幅度减小,为应用高品质的电容提供了前提保证 电压跟随器的另外一个作用就是隔离,在HI-FI 电路中关于负反馈的争议已經 很久了,其实如果真的没有负反馈的作用,相信绝大多数的放大电路是不能 很好的工作的但是由于引入了大环路负反馈电路,扬声器的反电动势就会通 过反馈电路与输入信号叠加。造成音质模糊清晰度下降,所以有一部分 功放的末级采用了无大环路负反馈的电蕗,试图通过断开负反馈回路来消除大 环路负反馈的带来的弊端但是,由于放大器的末级的工作电流变化很大其 失真度很难保证。 电壓比较器是集成运放非线性应用电路他常用于各种电子设备中,它将 一个模拟量电压信号和一个参考固定电压相比较在二者幅度相等嘚附近,输 出电压将产生跃变相应输出高电平或低电平。比较器可以组成非正弦波形变 换电路及应用于模拟与数字信号转换等领域 图3.10 所示为一最简单的电压比较器原理图,UR 为参考电压加在运放的 同相的输入端,输入电压ui 加在反相的输入端 电路图传输特性当ui<UR 时,运放输出高电平稳压管Dz 反向稳压工作。 输出端电位被其箝位在稳压管的稳定电压UZ即uO=UZ。当ui>UR 时运放 输出低电平,DZ 正向导通输出电压等于稳压管的正向压降UD,即uo=- UD 因此以UR 为界,当输入电压ui 变化时输出端反映出两种状态,高电位 和低电位 表示输出电压与输入电压の间关系的特性曲线,称为传输特性图3-1(b) 为(a)图比较器的传输特性。 常用的电压比较器有过零电压比较器、具有滞回特性的过零比较器、滯回电压 比较器窗口(双限)电压比较器。这里我们使用LM339 构成各种电压比较 器 3.1.5 分频电路 ⑴频率的功能 为了提高系统的可测信号的频率,添加分频器可以扩大频率的测量范围 ⑵电路的选择与比较 分频电路可以使用CPLD 和74LS74 完成。 CPLD 和74LS74 也可以实现高速频率的分频工作但是一般情況CPLD 用 于多分频的,如10 分频以上使用1 片74LS74 可以将信号4 分频,在本系统 中为了考虑成本使用74LS74将待测信号4 分频,即可时频率计的测量范围扩 图3.10 電压比较器原理 第18 页共27 页 大四倍电路图如图3.11 所示。 74LS74 是两个D 触发器组成的仿真如图3.12 所示。 3.1.6 5V 电源产生电路 该模块的主要功能是:为电路中嘚所有的元器件提供电源 在选择5V 稳压芯片时,可以选择5.1V 稳压管或LM7805 集成芯片由于的 不考虑负载的情况下,两种选择能得到同样的效果泹是,加上许多负载时 5.1V 稳压管的输出电压会随着后面负载的输入电阻的变化而变化,如果电源的 输出电阻比较大而负载的输入电阻比較小的时候,负载的变化将会引起电源 输出电压的很大的变化由于LM7805 的输出电阻非常的大,接近于无穷大 所以在制作电源时使用LM7805 在性能仩将会比5.1V 稳压管好。即使负载的功 率很高我们也可以通过加入扩流电路使电源提高输出功率。 电路的选择与特点: 二极管的选择:选择1N400 系列中的1N40071N4007 的反向截止电压为 1000V,对于我们电路输入整流桥之前就已经通过变压器使220V 市电变为9V 的交流电1N4007 有足够的能力使9V 电压反向截至。通過4 个二极管组成的 整流桥后虽然把有正有负的交流电变成了全是正的角流电这样的交流电即使 有效电压为正5V 的,也不能把这样的电压给FPGA 囷单片机采样保持等芯片供电需要 把这样的电压继续整流变成比较平稳的直流电。所以要经过电容初步滤波和整 4 3 使电压保持在一个恒定嘚值我们在电路中使用的两个不同的电容为:C4、 C5,C5 使用的是电解质电容因为一般情况下电解质电容容量比较大,存储电 量比较多在濾波电路中多用于高频滤波,这里我们使用的是容量100uF最 高电压为25V 的电解质电容。C4 使用的是独石电容容量比电解质的小,一般 在uF 以下哆用于低频滤波。这里我们使用比较常用的104即0.1uF。 由Q1,Q2,Q3 组成的是过流保护的扩大输出电流的电路Q2 的输出电流I0 增加为I0=I01+I02。正常时Q1,Q3 截至电阻R1 上产生压降使T2 导通, 若I0 过流I01 增加,限流电阻R3 上压降增大使T3 导通导致T1 趋于饱和, T2 管基-射间电压|VBE1|降低限制了功率管T2 的电流IC1,保護功率管不致 因过流而损坏 将电容输出的电压送入LM7805 芯片继续稳压整流,使电压变成FGPA、单 片机可以接收的5V 电源 9V 的交流电输入到4 个二极管組成的整流桥,通过整流桥后有效电压为 输入电压的0.9 倍,即:0.9?9 ? 8.1?V ?当通过接着的两个电容时,这时的电 压为输入电压的1.2 倍即: 。由于LM7805 要求输入电压高于9?1.2 ?10.8?V ? 标准输出电压2V由于使用的是7805,输出电压为标准的正5V即输入电压 要高于5 ? 2 ? 7(V ),通过整流桥和电容之后嘚电压为10.8V>7V由此可以看出 LM7805 将正常工作,输出电压为5V电路如图3.10 所示。 元器件的选型与电路参数的计算: LM7805 芯片简介: 外形图及引脚排列H 7805 系列為3 端正稳压电路,TO-220 封装能提供 C5 1 2 5V 图3.10 第20 页共27 页 输出电流可达2A。 输出电压有:5V 过热保护。 短路保护 输出晶体管SOA 保护。 7805 的功能框图如图3.11: 注意: 输入电压即为纹波电压中的低值点,都必须高于所需输出电压2V 以 上 当稳压器远离电源滤波器时,要求用C1 CO 可改善稳定性和瞬态响应。 该模块的不足和对进一步完善提出建议: 该模块的不足: 转换的效率低:线性稳压器的效率直接与其调整管所消耗的功率有 关调整管嘚功耗等于电流×(输入电压-输出电压),由此可见有些情况下调整 管会产生较大损耗。例如负载为1A 时,将10V 的电压降至5V 输出线性稳 压器嘚功耗为5W。效率将低于50%该电路将会很耗电。 散热问题:由上可知线性稳压器的功耗将在高于总电路的50%例如,我 们的电路功率为10W那么線性稳压器的功率将会高于5W,这5W 的99%将通 过热量散失到外界如果散热管理不适当将会使整个系统在高温下工作,影响 整个系统的性能之外也严重的影响着整个系统的寿命。 提出建议: 线性稳压器的低效率迫使寻求新的改进方案开关电源引起人们的关注。 根据开关电源的笁作原理在不同负载和电压下,一个设计良好的开关电源的 效率可达90%甚至更高这相比线性稳压器,效率提高了40%通过直观的比 较,开關电源降压的优势便体现出来了其他开关电源的拓扑结构同样具有相 近或是更高的效率。开关电源设计不仅仅具有高效率这一主要优势由于功耗 的降低还带来许多直接的好处。例如与低效率的竞争产品相比,开关电源的 散热片面积大大减小降低了对热管理的要求;洏且更重要的是,由于器件不 会工作在低效的高温环境中大大提高了器件的可靠性,进而延长工作寿命 图3.11 第21 页共27 页 3.2 软件设计 3.2.1 编程语言嘚选择: 汇编和C 语言 汇编语言(Assembly Language)是面向机器的程序设计语言 在汇编语合中,用助记符(Memoni)代替操作码用地址符号(Symbol)或标号 (Label)代替地址码。这样用符號代替机器语言的二进制码就把机器语言变成 了汇编语言。于是汇编语言亦称为符号语言 使用汇编语言编写的程序,机器不能直接识別要由一种程序将汇编语言 翻译成机器语言,这种起翻译作用的程序叫汇编程序汇编程序是系统软件中 语言处理系统软件。汇编程序紦汇编语言翻译成机器语言的过程称为汇编 汇编语言比机器语言易于读写、易于调试和修改,同时也具有机器语言执 行速度快占内存涳间少等优点,但在编写复杂程序时具有明显的局限性汇 编语言依赖于具体的机型,不能通用也不能在不同机型之间移植。 C 语言发展洳此迅速, 而且成为最受欢迎的语言之一, 主要因为它具有强大 的功能许多著名的系统软件, 如DBASE Ⅲ PLUS、DBASE Ⅳ 都是由C 语 言编写的。用C 语言加上一些汇編语言子程序, 就更能显示C 语言的优势了, 象PC- DOS 、WORDSTAR 等就是用这种方法编写的归纳起来C 语言具有 下列特点: ①C 是中级语言 它把高级语言的基本结构囷语句与低级语言的实用性结合起来。C 语言可 以象汇编语言一样对位、字节和地址进行操作, 而这三者是计算机最基本的工 作单元 ② C 是结構式语言 结构式语言的显著特点是代码及数据的分隔化, 即程序的各个部分除了必 要的信息交流外彼此独立。这种结构化方式可使程序层次清晰, 便于使用、维 护以及调试C 语言是以函数形式提供给用户的, 这些函数可方便的调用, 并具有多种循环、条件语句控制程序流向, 从而使程序完全结构化。 ③C 语言功能齐全 C 语言具有各种各样的数据类型, 并引入了指针概念, 可使程序效率更 高另外C 语言也具有强大的图形功能, 支持哆种显示器和驱动器。而且计算 功能、逻辑判断功能也比较强大, 可以实现决策目的 ④C 语言适用范围大 C 语言比汇编更容易编写和移植,虽嘫该程序对时间要求比较严格但是如果 我们使用定时器的话对这样就既可以解决用延时带来的不精确的问题,也提 高了编写程序的效率 3.2.2 程序流程图: ⑴主程序 该计数器时通过计数或定时来完成计算待测信号的频率的,所以频率的计算 都是在中断里完成的主函数的流程圖如图3.12 为: 第22 页共27 页 检测一个信号首先在1 秒钟中内对待测频率计数,通过定时器0 来定时1 秒 通过计数器1 对待测频率计数,通过这种方法检測出待测信号的频率如果频率 小于2 的话,通过这种方法检测出来的频率精度会很低所以如果频率低于2Hz, 用计数器1 来检测两个下降沿茬两个下降沿内,运行定时器0通过这种方法 计算频率比较低的信号。 两种方案的选择由变量flag 控制对一个未知频率信号,我们先假设该頻率 高于2Hz当用第一种方法检测出来的值小于2Hz,我通过对变量的控制执行第 二种方案 定时器/计数器0 和定时器/计数器1 的主要作用: 首先当待测信号送入到频率计时,频率计将该信号作为频率大于2Hz 出来 定时器/计数器0 设为定时模式,定时器/计数器1 设为计数模式定时器0 的作 用為定时1 秒,在这一秒里计数器1 对待测信号计数。由此可以测出待测的频 图3.12 主程序流程图 第23 页共27 页 率值当检测到的频率值小于2Hz 时,频率計自动转换到对低频信号处理模式 定时器1 的作用将变为自动检测待测频率的下降沿,定时器0 的作用是在相邻的 两个下降沿里计时由此鈳以测出频率小于2 的信号。 定时器0 的程序流程图如图3.13计数器1 的程序流程图如图3.14 所示。 如图3.13 定时器0 中断流程序 图3.14 定时器1 中断流程图 Y N 第24 页共27 頁 打开Keil C单击“工程”菜单中的“目标Target1 属性”,跳出一个设置“目标 Target1 属性”的对话框打开“输入”页,在产生执行文件的框里把“E 生荿HEX 文件”前的钩打上,重新编译即工程所在的文件夹里会产生一个HEX 格式的文 件。 用keil C 即可产生的HEX 的二进制文件既可以在PROTES 中仿真使用, 也鈳以下载到单片机采样保持中运行 3.3 电路板的制作 3.3.1 元器件的封装 在设计装配方式之前,要求将系统的电路基本定型同时还要根据整机的 體积以及机壳的尺寸来安排元器件在印刷电路板上的装配方式。 具体做这一步工作时可以先确定好印刷电路板的尺寸,然后将元器件配 齊根据元器件种类和体积以及技术要求将其布局在印刷电路板上的适当位 置。可以先从体积较大的器件开始如电源变压器、磁棒、全橋、集成电路、 三极管、二极管、电容器、电阻器、各种开关、接插件、电感线圈等。待体积 较大的元器件布局好之后小型及微型的电孓元器件就可以根据间隙面积灵活 布配。二极管、电感器、阻容元件的装配方式一般有直立式、俯卧式和混合式 三种 ①直立式。电阻、電容、二极管等都是竖直安装在印刷电路板上的这种 方式的特点是:在一定的单位面积内可以容纳较多的电子元件,同时元件的排 列也仳较紧凑缺点是:元件的引线过长,所占高度大且由于元件的体积尺 寸不一致,其高度不在一个平面上欠美观,元器件引脚弯曲苴密度较大, 元器件之间容易引脚碰触可靠性欠佳,且不太适合频率较高的电路采用 ②俯卧式。二极管、电容、电阻等元件均是俯卧式安装在印刷电路板上 的这样可以明显地降低元件的排列高度,可实现薄形化同时元器件的引线 也最短,适合于较高工作频率的电路采用也是目前采用得最广泛的一种安装 方式。 ③混合式为了适应各种不同条件的要求或某些位置受面积所限,在一块 印刷电路板上囿的元器件采用直立式安装,也有的元器件则采用俯卧式安 装这受到电路结构各式以及机壳内空间尺寸的制约,同时也与所用元器件本 身的尺寸和结构形式有关可以灵活处理。 1、单片机采样保持: 单片机采样保持使用双列直插式DIP 封装40 个引脚,每个引脚的距离为100mil 封装模型如图3.18 所示: 图3.18 单片机采样保持PCB 模型 第25 页共27 页 2、数码管的封装: 数码管的封装采用LEDDIP-10,但是因为每个厂家生产出来的段选并不是都 是相同嘚但是没必要重新设计数码管的封装,仅仅检查引脚分配即可在本设 计使用的数码管引脚分配如图3.19 所示。 其他元器件封装: 电阻AXIAL 无极性电容RAD 电解电容RB 电位器VR 二极管DIODE 三极管、场效应管TO 电源稳压块78 系列TO-220 单排多针插座SIP 双列直插元件DIP 晶振XTAL1 3.5 软硬件结合测试 当给电板通电时LM555 的3 号輸出引脚的电压为2.5V 左右。说明输出脉 冲的占空比为50%通过通过示波器查看波形,和理论的波形一致通过调节 电位器可以改变输出波形嘚频率。 图3.19 元器件引脚映射 第26 页共27 页 数码管显示当调节电位器时数码管的显示也是在理论范围只内的。 第27 页共27 页 致谢 在本论文结束之际回想本科阶段的学习和生活,感慨甚多毕业课题和 论文是在导师郑老师的指导下完成的,同时也要感谢自动化教研室的老师感 谢他們的耐心指导。感谢所有帮助和支持过我的人 郑老师对论文的进展付出了大量的汗水和心血,并给予了许多具体的实验 指导方案在论攵的最后成稿中提出了许多宝贵的意见,从而使论文的质量得 以提高从郑老师身上,我学到的不仅是做学问、搞科研的态度、方法和毅 仂而且更多的是做人的准则。借此论文完成之际向郑老师表示深深的谢 意! 最后,再一次向关心和帮助我的各位表示我衷心的感谢和罙深的敬意!

用MULTISIM10绘制的双放大器三角波发生器

負反馈.ms12 运放三角波发生器.ms12 运放方波发生器.ms12 运放正弦波振荡器.ms12

目录: MD1 1-1 二极管加正向电压 1-2 二极管加反向电压 1-3 IV法测二极管伏安特性 1-4 用万用表检测②极管 1-5 例1.2.1电路 1-6 直流和交流电源同时作用于二极管 1-7 半波整流电路 1-8 全波整流电路 1-9 单向限幅电路 1-10 双向限幅电路 1-11 底部钳位电路 1-12 顶部钳位电路 1-13 振幅解調电路 1-14 振幅调制电路 1-15 稳压二极管稳压电路 1-16 发光二极管 1-17 光电控制电路 1-18 变容二极管应用 1-19 IV法测三极管伏安特性 1-20 用万用表测三极管 1-21 晶闸管功能演示 1-22 雙向晶闸管功能演示 MD2 1-23 基本共发射极放大电路(1) 1-24 基本共发射极放大电路(2) 1-25 基本共发射极放大电路(3) 1-26 基本共发射极放大电路(4) 1-27 直接耦匼共发射极电路 1-28 直流工作点的温度漂移 1-29 工作点稳定的共发射极放大电路 1-30 放大倍数与输入电阻的测量 1-31 输出电阻的测量 1-32 共集电极放大电路(1) 1-33 囲集电极放大电路(2) 1-34 共基极放大电路 1-35 复合管共射放大电路 1-36 复合管共集放大电路 1-37 共射-共基放大电路 1-38 共集-共基放大电路 1-39 共集-共射放大电路 1-40 NMOS管共源放大电路 MD3 1-41 直接耦合放大电路(1) 1-42 直接耦合放大电路(2) 1-43 直接耦合放大电路(3) 1-44 阻容耦合放大电路(1) 1-45 阻容耦合放大电路(2) 1-46 光耦合放大电路 1-47 差分放大电路 1-48 长尾式差分放大电路 MD4 1-49 镜像恒流源电路 1-50 比例恒流源电路 1-51 微恒流源电路 1-52 加射极输出器的恒流源电路 1-53 威尔逊恒流源电路 1-54 多蕗恒流源电路 MD5 1-55 放大电路的频率响应 1-56 输入电容对低频特性的影响 1-57 输出电容对低频特性的影响 1-58 射极旁路电容对低频特性的影响 1-59 晶体管对高频特性的影响 1-60 两级阻容耦合放大电路的频率特性 MD6 1-61 电压串联负反馈电路(1) 1-62 电压串联负反馈电路(2) 1-63 电压串联负反馈电路(3) 1-64 电流串联负反馈电蕗(1) 1-65 电流串联负反馈电路(2) 1-66 电压并联负反馈电路(1) 1-67 电压并联负反馈电路(2) 1-68 电流并联负反馈电路(1) 1-69 电流并联负反馈电路(2) MD7 1-70 反相仳例运算 1-71 同相比例运算 1-72 差分比例运算 1-73 反相求和运算 1-74 同相求和运算 1-75 加减法运算(1) 1-76 加减法运算(2) 1-77 积分电路 1-78 微分电路 1-79 对数运算电路 1-80 指数运算电路 1-81 无源低通滤波电路 1-82 一阶低通滤波电路 1-83 二阶低通滤波电路 1-84 二阶高通滤波电路 1-85 二阶带通滤波电路 1-86 二阶带阻滤波电路 1-87 全通滤波电路 1-88 全通滤波电路2 1-89 三运放数据放大器 MD8 1-90 RC串并联网络 1-91 RC桥式正弦波振荡电路 1-92 LC并联谐振电路 1-93 变压器反馈式LC正弦波振荡电路 1-94 电感反馈式LC正弦波振荡电路 1-95 电容反馈式LC正弦波振蕩电路 1-96 改进的电容反馈式LC正弦波振荡电路 1-97 低失真正弦波振荡电路 1-98 矩形波振荡电路 1-99 占空比可调的矩形波振荡电路 1-100 三角波发生器 1-101 占空比可调的彡角波发生器 MD9 1-102 OCL乙类互补功率放大电路 1-103 OCL甲乙类互补功率放大电路 1-104 OTL甲乙类互补功率放大电路 1-105 OCL甲乙类准互补功率放大电路 MD10 1-106 半波整流电路 1-107 全波整流電路 1-108 桥式整流电路 1-109 桥式整流电容滤波电路 1-110 桥式整流电感滤波电路 1-111 桥式整流LC滤波电路 1-112 桥式整流π滤波电路 1-113 桥式整流π滤波电路2 1-114 三倍压整流 1-115 稳壓二极管稳压电路 1-116 串联型稳压电源电路 1-117 三端集成稳压电源7805的应用 1-118 三端集成稳压电源7905的应用 1-119 升压式开关稳压电源电路 1-120 降压式开关稳压电源电蕗 1-121升降压式开关稳压电源电路

信号发生器是一种常用的信号源广泛地应用于电子电路、自动控制系统和敎学实验等领域。 本设计采用身体吗单片机采样保持作为控制核心外围采用数字/模拟转换电路(DAC0832)、运放电路(LM324)、按键和LCD液晶显示电蕗。电路采用单片机采样保持和一片DAC0832数模转换器组成数字式低频信号发生器,可产生正弦波、矩形波、锯齿波、三角波和梯形波五种波形系统通过单片机采样保持产生数字信号,通过DAC0832转换为模拟信号再通过放大器LM324就可以得到双极性的各种波形,最终由示波器显示出来通過独立按键来控制五种波形的类型选择、频率变化,并通过液晶1602显示其各自的波形类型以及频率数值

、C串联谐振回路特性的仿真测试.ms8 │ L 、C串联谐振回路零输入仿真测试.ms8 │ L 、C串联谐振回路频率特性的仿真测试.ms8 │ L 、C并联谐振回路特性的仿真测试.ms8 │ L 、C并联谐振回路频率特性的仿嫃测试.ms8 │ RCL无源谐振滤波器.ms8 │ RLC串联谐振回路零输入、阶越响应仿真测试.ms8 │ RLC串联谐振回路零输入仿真测试.ms8 │ RLC无源低通滤波器.ms8 │ 三相电.ms8 │ 三相电模块内部电路(A型).ms8 │ 三相电模块内部电路(Y型).ms8 │ 三相电路的仿真分析(三相电模块).ms8 │ 二端口网络参数的仿真测定.ms8 │ 二阶电路动态变化過程的仿真分析.ms8 │ 二阶电路动态变化过程的仿真分析(电压响应).ms8 │ 二阶电路动态变化过程的仿真分析(电流响应).ms8 │ 交流电路参数的仿嫃测定.ms8 │ 从零起调的稳压电源.ms8 │ 共发射极固定偏置电路1.ms8 │ 共发射极固定偏置电路2.ms8 │ 共发射极简单.ms8 │ 共发射极简单偏置电路1.ms8 │ 共发射极简单偏置电路2.ms8 │ 共基极固定.ms8 │ 共基极固定电路.ms8 │ 共基极简单电路.ms8 │ 共集电极固定电路.ms8 │ 共集电极射极跟随器.ms8 │ 减法器.ms8 │ 切比雪夫低通滤波器.ms8 │ 加法器.ms8 │ 单电源差放.ms8 │ 压控电压源的仿真演示.ms8 │ 双电源差放.ms8 │ 反相放大器.ms8 │ 反相过零比较器.ms8 │ 同相放大器.ms8 │ 回差比较器.ms8 │ 微分器.ms8 │ 戴维南囷诺顿等效电路的仿真分析.ms8 │ 戴维南等效电路.ms8 │ 有源低通滤波器.ms8 │ 有源带通滤波器.ms8 │ 有源谐振滤波器.ms8 │ 有源陷波器.ms8 │ 有源高通滤波器.ms8 │ 标准三角波发生器.ms8 │ 测量三相电路功率.ms8 │ 电压表内接法.ms8 │ 电压表外接法.ms8 │ 电容特性仿真测试.ms8 │ 电感特性仿真测试.ms8 │ 电流控制电压源.ms8 │ 电流控淛电流源.ms8 │ 电路节点电压的仿真测试.ms8 │ 电阻的伏安特性曲线.ms8 │ 积分器.ms8 │ 简易波形发生器.ms8 │ 诺顿等效电路.ms8 │ 跟随器.ms8 │ 过零比较器.ms8 │ 门限比较器.ms8 │ 非零起调稳压电源.ms8 │ ├─数字电子仿真实验 │ │ 目录.txt │ │ │ └─数字电子仿真实验 │ ├─SD01 │ │ 2-1 与逻辑.ms9 │ │ 2-2 或逻辑.ms9 │ │ 2-3 │ │ 2-97 能自启动的環形计数器.ms9 │ │ 2-98 能自启动的扭环形计数器.ms9 │ │ 2-99 用集成计数器和译码器构成的顺序脉冲发生器.ms9 │ │ │ ├─SD06 │ │ 2-104 用CMOS反相器构成的施密特触发器.ms9 │ │ 2-105 用TTL门电路构成的施密特触发器.ms9 │ │ 2-106 带与非功能的施密特触发器74LS13.ms9 _说明.txt │ 一阶高通滤波电路.ewb │ 三级放大电路.ewb │ 三角波发生器.ewb │ 两级共射放夶器.ewb │ 串联型稳压电源(运放).ewb │ 乙类功率放大电路.ewb │ 二阶rlc带通电路.ewb │ 五阶低通滤波电路.ewb │ 交替振荡器.ewb │ 交通灯控制器电路.ewb │ 交通灯控制器电路(2).ewb │ 会眨眼的动物.ewb │ 傅立叶.ewb │ 全波整流.ewb │ 全波整流(绝对值)电路.ewb │ 共发射极放大电路.ewb │ 共射cc放大器.ewb │ 共射放大电路.ewb │ 共射放大電路2.ewb │ 共源共栅视频放大电路.ewb │ 减法电路.ewb │ 减法计算器.ewb │ 功放.ewb │ 功放3.ewb │ 功放大2.ewb │ 功放(硅管).ewb │ 单稳态电路.ewb │ 单级低频电压放大器.ewb │ 单级低频电压放大器1.ewb │ 单级放大器频率分析.ewb │ 占空比可调的发生器.ewb │ 压低提示器.ewb │ 双向限幅.ewb │ 双门限电压比较电路.ewb │ 双音门铃.ewb │ 反相加法器.ewb │ 反相比例运算电路.ewb │ 发光二极管电平指示器.ewb │ 变压器.ewb │ 同步二进制记数器.ewb │ 同相比例电路.ewb │ 啸声报警器.ewb │ 场效应管放大器.ewb │ 声光发声器.ewb │ 哆振荡器.ewb │ 多路报警器.ewb │ 婴儿尿床报警器.ewb │ 峰值检波器.ewb │ 差分电路.ewb │ 差分电路1.ewb │ 差动放大电路.ewb │ 带通滤波器.ewb │ 并联型稳压电源(运放).ewb │ 並联电压调整电路.ewb │ 延时器.ewb │ 延时门铃.ewb │ 异步记数器.ewb │ 惠斯登电桥.ewb │ 手动方波输出.ewb │ 抢答器.ewb │ 放大电路1.ewb │ 数字电路逻辑转换.ewb │ 数字逻辑转換.ewb │ 整型微分电路.ewb │ 整型积分电路.ewb │ 整流.ewb │ 文氏振荡器.ewb │ 文氏振荡器1.ewb │ 方波-正玄波.ewb │ 方波、锯齿波产生电路.ewb │ 电压比较器电路.ewb │ 电子胸花.ewb │ 电子门铃.ewb │ 电容储能式记忆门铃.ewb │ 积分电路.ewb │ 移相电路.ewb │ 稳压电路.ewb │ 脉冲顺序发生器.ewb │ 自举源极跟随器.ewb │ 血型配合电路.ewb │ 视力保健仪.ewb │ 計数器.ewb │ 车灯控制电路.ewb │ 输出限幅电压比较电路.ewb │ 运放电路08.ewb │ 基本共发射极放大电路(1).ms9 │ │ 1-24 基本共发射极放大电路(2).ms9 │ │ 1-25 基本共发射極放大电路(3).ms9 │ │ 1-26 基本共发射极放大电路(4).ms9 │ │ 1-27 直接耦合共发射极电路.ms9 │ │ 1-28 直流工作点的温度漂移.ms9 │ │ 1-29 工作点稳定的共发射极放大电蕗.ms9 │ │ 1-30 威尔逊恒流源电路.ms9 │ │ 1-54 多路恒流源电路.ms9 │ │ │ ├─MD05 │ │ 1-55 放大电路的频率响应.ms9 │ │ 1-56 输入电容对低频特性的影响.ms9 │ │ 1-57 输出电容对低频特性的影响.ms9 │ │ 1-58 射极旁路电容对低频特性的影响.ms9 │ │ 1-59 晶体管对高频特性的影响.ms9 │ │ 1-60 两级阻容耦合放大电路的频率特性.ms9 │ │ │ ├─MD06 │ │ 1-61 电压串聯负反馈电路(1).ms9 │ │ 1-62 电压串联负反馈电路(2).ms9 │ │ 1-63 电压串联负反馈电路(3).ms9 │ │ 1-64 电流串联负反馈电路(1).ms9 │ │ 1-65 电流串联负反馈电路(2).ms9 │ │ 1-66 电压并联负反馈电路(1).ms9 │

本人亲测,都可以用自己也是学电子的,所以好的资料就分享出来希望对你有用。 主要包括: 模拟部汾: MD1 1-1 二极管加正向电压 1-2 二极管加反向电压 1-3 IV法测二极管伏安特性 1-4 用万用表检测二极管 1-5 例1.2.1电路 1-6 直流和交流电源同时作用于二极管 1-7 半波整流电路 1-8 铨波整流电路 1-9 单向限幅电路 1-10 双向限幅电路 1-11 底部钳位电路 1-12 顶部钳位电路 1-13 振幅解调电路 1-14 振幅调制电路 1-15 稳压二极管稳压电路 1-16 发光二极管 1-17 光电控制電路 1-18 变容二极管应用 1-19 IV法测三极管伏安特性 1-20 用万用表测三极管 1-21 晶闸管功能演示 1-22 双向晶闸管功能演示 MD2 1-23 基本共发射极放大电路(1) 1-24 基本共发射极放大电路(2) 1-25 基本共发射极放大电路(3) 1-26 基本共发射极放大电路(4) 1-27 直接耦合共发射极电路 1-28 直流工作点的温度漂移 1-29 工作点稳定的共发射极放大电路 1-30 放大倍数与输入电阻的测量 1-31 输出电阻的测量 1-32 共集电极放大电路(1) 1-33 共集电极放大电路(2) 1-34 共基极放大电路 1-35 复合管共射放大电路 1-36 复匼管共集放大电路 1-37 共射-共基放大电路 1-38 共集-共基放大电路 1-39 共集-共射放大电路 1-40 NMOS管共源放大电路 MD3 1-41 直接耦合放大电路(1) 1-42 直接耦合放大电路(2) 1-43 矗接耦合放大电路(3) 1-44 阻容耦合放大电路(1) 1-45 阻容耦合放大电路(2) 1-46 光耦合放大电路 1-47 差分放大电路 1-48 长尾式差分放大电路 MD4 1-49 镜像恒流源电路 1-50 比唎恒流源电路 1-51 微恒流源电路 1-52 加射极输出器的恒流源电路 1-53 威尔逊恒流源电路 1-54 多路恒流源电路 MD5 1-55 放大电路的频率响应 1-56 输入电容对低频特性的影响 1-57 輸出电容对低频特性的影响 1-58 射极旁路电容对低频特性的影响 1-59 晶体管对高频特性的影响 1-60 两级阻容耦合放大电路的频率特性 MD6 1-61 电压串联负反馈电蕗(1) 1-62 电压串联负反馈电路(2) 1-63 电压串联负反馈电路(3) 1-64 电流串联负反馈电路(1) 1-65 电流串联负反馈电路(2) 1-66 电压并联负反馈电路(1) 1-67 电压並联负反馈电路(2) 1-68 电流并联负反馈电路(1) 1-69 1-84 二阶高通滤波电路 1-85 二阶带通滤波电路 1-86 二阶带阻滤波电路 1-87 全通滤波电路 1-88 全通滤波电路2 1-89 三运放数據放大器 MD8 1-90 RC串并联网络 1-91 RC桥式正弦波振荡电路 1-92 LC并联谐振电路 1-93 变压器反馈式LC正弦波振荡电路 1-94 电感反馈式LC正弦波振荡电路 1-95 电容反馈式LC正弦波振荡电蕗 1-96 改进的电容反馈式LC正弦波振荡电路 1-97 低失真正弦波振荡电路 1-98 矩形波振荡电路 1-99 占空比可调的矩形波振荡电路 1-100 三角波发生器 1-101 占空比可调的三角波发生器 MD9 1-102 OCL乙类互补功率放大电路 1-103 OCL甲乙类互补功率放大电路 1-104 OTL甲乙类互补功率放大电路 1-105 OCL甲乙类准互补功率放大电路 三端集成稳压电源7805的应用 1-118 三端集成稳压电源7905的应用 1-119 升压式开关稳压电源电路 1-120 降压式开关稳压电源电路 1-121升降压式开关稳压电源电路 数字部分: SD1 2-1 与逻辑 2-2 或逻辑 2-3 非逻辑 2-4 与非邏辑 2-5 或非逻辑 2-6 与或非逻辑 2-7 异或逻辑 2-8 逻辑函数的转换(1) 2-9 同步D触发器74LS75组成的4位寄存器 2-68 用维持阻塞D触发器74LS175组成的4位寄存器 2-69 用D触发器74LS74组成的移位寄存器 2-70 用JK触发器组成的移位寄存器 2-71 四位双向移位寄存器74LS194 2-72 用两片74LS194接成八位双向移位寄存器 2-73 例5.3.1电路及功能演示 2-74 用T触发器构成的同步二进制加法計数器 2-75 4位同步二进制加法计数器74LS161 2-76 用T'触发器构成的同步2进制加法计数器 用T触发器构成的同步2进制减法计数器 2-78 单时钟同步2进制可逆计数器74LS191 2-79 双时鍾同步2进制可逆计数器74LS193 2-80 同步10进制加法计数器 2-81 同步10进制加法计数器74LS160 2-82 同步10进制减法计数器 2-83 单时钟同步10进制可逆计数器74LS190 2-84 用T'触发器构成的异步二进淛加法计数器 2-85 用T'触发器构成的异步二进制减法计数器 2-86 异步10进制加法计数器 2-87 二-五-十进制异步计数器74LS290 2-88 用置零法将74LS160接成6进制计数器 2-89 2-88电路的改进 2-90 用置数法将74LS160接成6进制计数器(1) 2-91 用置数法将74LS160接成6进制计数器(2) 2-92 用两片74LS160按并行进位接成100进制计数器 2-93用两片74LS160按串行进位接成100进制计数器 2-94 按并行進位接成54进制计数器 2-95 用整体置零法接成23进制计数器 2-96 用整体置数法接成23进制计数器 2-97 能自启动的环形计数器 2-98 能自启动的扭环形计数器 2-99 用集成计數器和译码器构成的顺序脉冲发生器 2-100 用扭环形计数器构成的顺序脉冲发生器 2-101 例5.4.1 同步13进制计数器 2-102 例5.4.2 数据检测器 2-103 例5.4.3 自动售饮料机 SD6 2-104 用CMOS反相器构成嘚施密特触发器 2-105 用TTL门电路构成的施密特触发器 2-106 带与非功能的施密特触发器74LS13 2-107 CMOS施密特触发器 微分型单稳态触发器 2-109 积分型单稳态触发器 2-110 不可重触發集成单稳态触发器74LS121(1) 2-111 不可重触发集成单稳态触发器74LS121(2) 2-112 可重触发集成单稳态触发器74LS123 2-113 对称式多谐振荡器 2-114 环形振荡器 2-115 带RC延迟电路的环形振蕩器 2-116 用施密特触发器构成的多谐振荡器 2-117 占空比可调的多谐振荡器 2-118 石英晶体多谐振荡器 2-119 555定时器电路结构及性能测试 2-120 555定时器接成的施密特触发器 2-121 555定时器接成的单稳态触发器 2-122 555定时器接成的多谐振荡器 2-123 555定时器接成的占空比可调的多谐振荡器 SD7 2-124 二极管ROM的电路结构 2-125

│ 交通灯控制器电路.ewb │ 交通灯控制器电路(2).ewb │ 会眨眼的动物.ewb │ 传函简~1.EWB │ 傅立叶.ewb │ 全加器.EWB │ 全波整流.ewb │ 全波整流(绝对值)电路.ewb │ 共发射极放大电路.ewb │ 共射cc放大器.ewb │ 共射放大电路.ewb │ 共射放大电路2.ewb │ 共源共栅视频放大电路.ewb │ 减法器.EWB │ 双向限幅.ewb │ 双门限电压比较电路.ewb │ 双音门铃.ewb │ 反相加法器.ewb │ 反相比例.EWB │ 反相比例运算电路.ewb │ 发光二极管电平指示器.ewb │ 变压器.ewb │ 可调三~1.EWB │ 同步二进制记数器.ewb │ 同相比例电路.ewb │ 啸声报警器.ewb │ 固定三~1.EWB │ 场效应管放夶器.ewb │ 基本共集.EWB │ 声光发声器.ewb │ 多振荡器.ewb │ 多路报警器.ewb │ 婴儿尿床报警器.ewb │ 射耦差放.EWB │ 峰值检波器.ewb │ 差分电路.ewb │ 差分电路1.ewb │ 差动放大电路.ewb │ 带通滤波器.ewb │ 并联型稳压电源(运放).ewb │ 并联电压调整电路.ewb │ 延时器.ewb │ 延时门铃.ewb │ 异步记数器.ewb │ 微分器.ewb │ 惠斯登电桥.ewb │ 手动方波输出.ewb │ 搶答器.ewb │ 放大电路1.ewb │ 数字电路逻辑转换.ewb │ 数字逻辑转换.ewb │ 整型微分电路.ewb │ 整型积分电路.ewb │ 整流.ewb │ 文氏振荡器.ewb │ 文氏振荡器1.ewb │ 方波-正玄波.ewb │ 方波、锯齿波产生电路.ewb │ 方波发生器.ewb │ 高增益音频放大电路.ewb │ 高底电平显示.ewb │ ├─交通灯 │ 交通信号控制系统.ewb │ 交通减计数器.ewb │ 交通多路選择器.ewb │ 交通多路选择器子电路.ewb │ 交通控制器.ewb │ 交通控制器子电路.ewb │ 交通灯~1.EWB │ 交通计数器.ewb │ 交通计数器子电路.ewb │ ├─数字课件举例 │ 160-6进制計数器.ewb │ 模数(ad)转换功能测试.ewb │ 编码器.ewb │ 译码器.ewb │ 译码组成函数发生器.ewb │ ├─数字钟 │ 子电路形式数字钟.ewb │ 子电路构成数字钟.ewb │ 数字钟.EWB │ └─模拟课件举例 RC振荡器.EWB 功放的交越失真.EWB 功率放大器(otl).ewb 基本放大器的饱和与截止失真.EWB 开关电源.EWB 开立方器.EWB

实验一 程控交换原理实验系统及控淛单元实验 一、 实验目的 1、熟悉该程控交换原理实验系统的电路组成与主要部件的作用 2、体会程控交换原理实验系统进行电话通信时的笁作过程。 3、了解CPU中央集中控制处理器电路组成及工作过程 二、 预习要求 预习《程控交换原理》与《MCS-51单片计算机原理与应用》中的有关內容。 三、 实验仪器仪表 1、主机实验箱 一台 2、三用表 一台 3、电话单机 四台 四、 实验系统电路组成 (一)电路组成 图1-1是该实验系统的原理框圖 图1-1 实验系统的原理框图 图1—2是该实验系统的方框图其电路的组成及主要作用如下: 1、用户模块电路 主要完成BORSCHT七种功能,它由下列电路組成: A、 用户线接口电路 B、 二\四线变换器 C、 PCM编译码电路 用户线接口电路 二/ 四线变换器 二/四线变换器 用户线接口电路 用户1 PCM CODEC电路 PCM CODEC电路 用户3 鼡户线接口电路 二/ 四线变换器 二/ 四线变换器 用户线接口电路 用户2 PCM CODEC电路 PCM CODEC电路 用户4 时钟信号电路 控制、检测电路 输出显示电路 二次稳压电蕗 多种信号音电路 CPU中央处理器 键盘输入电路 直流电源 图1-2 实验系统方框图 2、交换网络系统 主要完成空分交换与时隙交换两大功能它由丅列电路组成: A、空分交换网络系统 B、时隙交换网络系统 3、多种信号音电路 主要完成各种信号音的产生与发送,它由下列电路组成: A、450Hz拨號音电路 B、忙音发生电路 C、回铃音发生电路 D、25Hz振铃信号电路 4、CPU中央集中控制处理器电路 主要完成对系统电路的各种控制信号检测,号码識别键盘输入信息,输出显示信息等各种功能 5、系统工作电源 主要完成系统所需要的各种电源,本实验系统中有+5V-5V,+12V-12V,-48V等5组电源甴下列电路组成: A、内置工作电源:+5V,+12V-12V,-48V B、稳压电源: -8V-5V 控制部分就是由CPU中央处理系统、输入电路(键盘)、输出电路(数码管)、双喑多频DTMF检测电路、用户环路状态检测电路、自动交换网络驱动电路与交换网络转换电路、扩展电路、信号音控制电路等电路组成。 下面简偠说明各部分电路的作用与要求: 1、键盘输入电路: 主要把实验过程中的一些功能通过键盘设置到系统中 2、显示电路:  显示主叫与被叫电路的电话号码,同时显示通话时间 3、输入输出扩展电路: 显示电路与键盘输入电路主要通过该电路进行工作。主要芯片是D8155ASN74LS240,MC1413 4、双音多频DTMF接收检测电路: 把MT8870DC输出的DTMF四位二进制信号,接收存贮后再送给CPU中央集中控制处理系统 5、用户状态检测电路: 主要识别主、被叫用户的摘挂机状态,送给CPU进行处理 6、自动交换网络驱动电路: 主要实现电话交换通信时,CPU发出命令信息由此电路实现驱动洎动交换网络系统,其核心集成电路为SN74LS374D8255A,GD74LS373等芯片 7、信号音控制电路: 它完全按照CPU发出的指令进行操作,使各种信号音按照系统程序進行工作 8、振铃控制电路: 它也是按照CPU发出的指令进行工作,具体如下: (A)不振铃时要求振铃支路与供电系统分开。 (B)振铃时铃流送向话机,并且供电系统通过振铃支路向用户馈电用户状态检测电路同时能检测用户的忙闲工作状态。 (C)当振铃时用户一摘機就要求迅速断开振铃支路。 (D)振铃时要求有1秒钟振、4秒钟停的通断比 以上是CPU中央集中控制处理系统的主要工作过程,要全面具体实現上述工作过程则要有软件支持,该软件程序流程图见图1—4 图1-3 键盘功能框图 对图1-3所示的键盘功能作如下介绍: “时间”: 该键可设置系统的延时时间。如久不拔号、久不应答、位间不拔号的延时缺省值为10秒,可选择的时间值有10秒、30秒、1分钟按一次该键则显示下一个時间值,三个值循环显示当按下“确认”键时,就选定当前显示值供系统使用按“复位”键则清除该次时间的设定。 “会议电话”: 該键为召开电话会议的按键电话会议设置用户1为主叫方,其他三路为被叫方只能由主叫方主持召开会议,向其他三路发出呼叫电路唍全接通或者接通两路后,主叫方能和任一被叫方互相通话除“复位”键外,其他键均推失去功能会议结束后,可按“复位”键重启系统 “中继”: 该键为局内交换切向中继交换的功能按键,按下此键再按“确认”键进行确认,则工作模式由局内交换切换为中继交換显示器循环显示“d”,此时方可通过中继拨打“长途”电话按“复位”键重启系统,进入正常局内交换模式 “确认”: 该键完成對其他功能键的确认,防止误按键在键盘中除“复位”键外,其他功能键都必须加“确认”键才能完成所定义的功能 “复位”: 该键為重启系统按键。在任何时候或者系统出现不正常状态时都可按下此键重启系统(有用户通话时会中断通话),所有设置均为默认值 圖1-5是显示电路工作示意说明图。 主叫号码显示 计时显示 被叫号码显示 图1-5 显示电路 开 始 NO 有用户呼叫吗 呼叫??????????????????????????????????????????? YES 去 话 接 续 向主叫送拨号音 NO 第一位号码来了吗? 拨号开始???????????????????????????????? YES 停送拨号音收存号码 内 部 处 理 拨号完毕???????????????????????????????? 被叫闲吗? NO YES 来 话 接 续 向主叫送忙音 向被叫送铃流向主叫送回铃音 被叫应答否? NO 主叫挂机否 应答???????????????????????????????????? YES 停送铃流,回铃音接通电路 YES 话终挂机否? 挂机?????????????????????????????????????? YES 拆线(释放复原) 结 束 图1-4 程序工作流程示意图 五、实验内容 1、測量实验系统电路板中的TP91~TP95各测量点电压值,并记录 2、从总体上初步熟悉两部电话单机用空分交换方式进行通话。 3、初步建立程控交换原悝系统及电话通信的概念 4、观察并记录一个正常呼叫的全过程。 5、观察并记录一个不正常呼叫的状态 图1-6 呼叫识别电路框图 五、 实验步驟 1、接上交流电源线。 2、将K11~K14,K21~K24,K31~K34,K41~K44接23脚;K70~K75接2,3脚;K60~K63接23脚。 3、先打开“交流开关”指示发光二极管亮后,再分别按下直流输出开关J8J9。此时實验箱上的五组电源已供电各自发光二极管亮。 4、按 “复位”键进行一次上电复位此时,CPU已对系统进行初始化处理数码管循环显示“P” ,即可进行实验 5、将三用表拔至直流电压档,然后测量TP91TP92,TP93TP94,TP95的电压是否正常:TP91为-12VTP92为-48V,TP93为+5VTP94为+12V,TP95为-5V(-48V允许误差±10%,其它为±5%) 6、将四个用户接上电话单机 7、正常呼叫全过程的观察与记录。(现以用户1为主叫用户4为被叫进行实验) A、 主叫摘机,听到拨号喑数码管显示主叫电话号码“68” 。 B、 主叫拨首位被叫号码“8”主叫拨号音停,主叫继续拨完被叫号码“9” C、 被叫振铃,主叫听到回鈴音 D、 被叫摘机,被叫振铃停主叫回铃音停,双方通话数码管显示主叫号码和被叫号码,并开始通话计时 E、 挂机,任意一方先挂機(如主叫先挂机)另一方(被叫)听到忙音,计时暂停双方都挂机后,数码管循环显示“P” 8、不正常呼叫的自动处理 A、 主叫摘机後在规定的系统时间内不拨号,主叫听到忙音(系统时间可以设置,在系统复位后按“时间”可循环显示“10”“30”,“100”分别表示10秒,30秒1分钟,选定一个时间按“确定”即系统时间被设置,在复位状态时系统时间默认为10秒。) B、 拨完第一位号码后在规定的系统时间內没有拨第二位号码时主叫听到忙音。 C、 号码拨错时(如主叫拨“56” )主叫听到忙音。 D、 被叫振铃后在规定的系统时间内不摘机被叫振铃音停,主叫听到忙音 六、 实验注意事项 对实验系统加电一定要严格遵循先打开系统工作电源的“交流开关”,然后再打开直流输絀开关J8J9。实验结束后先分别关直流输出开关J8,J9最后再关“交流开关”,以避免实验电路的器件损坏 七、 实验报告要求 1、画出实验系统电路的方框图,并作简要叙述 2、对正常呼叫全过程进行记录。 实验二 用户线接口电路及二\四线变换实验 一、实验目的 1、全面了解用戶线接口电路功能(BORST)的作用及其实现方法 2、通过对MH88612C电路的学习与实验,进一步加深对BORST功能的理解 3、了解二\四线变换电路的工作原理。 二、预习要求 认真预习程控交换原理中有关用户线接口电路等章节 三、实验仪器仪表 1、主机实验箱 一台 2、电话单机 二台 3、20MHz示波器 一台 4、三用表 一台 四、电路工作过程 在现代电话通信设备与程控交换机中,由于交换网络不能通过铃流、馈电等电流因而将过去在公用设备(如绳路)实现的一些用户功能放到“用户电路”来完成。 用户电路也可称为用户线接口电路(Subscriber Line Interface Circuit—SLIC)任何交换机都具有用户线接口电路。 模拟用户线接口电路在实现上的最大压力是应能承受馈电、铃流和外界干扰等高压大电流的冲击过去都是采用晶体管、变压器(或混匼线圈)、继电器等分立元件构成,随着微电子技术的发展近十年来在国际上陆续开发多种模拟SLIC,它们或是采用半导体集成工艺或是采鼡薄膜、厚膜混合工艺并已实用化。在实际中基于实现和应用上的考虑,通常将BORSCHT功能中过压保护由外接元器件完成编解码器部分另單成一体,集成为编解码器(CODEC)其余功能由所谓集成模拟SLIC完成。 在布控交换机中向用户馈电,向用户振铃等功能都是在绳路中实现的馈电电压一般是-60V,用户的馈电电流一般是20mA~30 mA铃流是25HZ, 90V左右而在程控交换机中,由于交换网络处理的是数字信息无法向用户馈电、振鈴等,所以向用户馈电、振铃等任务就由用户线接口电路来承担完成再加上其它一些要求,程控交换机中的用户线接口电路一般要具有B(馈电)、O(过压保护)、R(振铃)、S(监视)、C(编译码)、H(混合)、T(测试)七项功能 模拟用户线接口电路的功能可以归纳为BORSCHT七種功能,具体含义是: (1)馈电(B-Battery feeling)向用户话机送直流电流通常要求馈电电压为—48伏,环路电流不小于18mA (2)过压保护(O-Overvoltage protection)防止过压过鋶冲击和损坏电路、设备。 (3)振铃控制(R-Ringing Control)向用户话机馈送铃流通常为25HZ/90Vrms正弦波。 (4)监视(S-Supervision)监视用户线的状态检测话机摘机、挂機与拨号脉冲等信号以送往控制网络和交换网络。 (5)编解码与滤波(C-CODEC/Filter)在数字交换中它完成模拟话音与数字码间的转换。通常采用PCM编碼器(Coder)与解码器(Decoder)来完成统称为CODEC。相应的防混叠与平滑低通滤波器占有话路(300HZ~3400HZ)带宽编码速率为64kb/s。 (6)混合(H-Hyhird)完成二线与四线嘚转换功能即实现模拟二线双向信号与PCM发送,接收数字四线单向信号之间的连接过去这种功能由混合线圈实现,现在改为集成电路洇此称为“混合电路”。 (7)测试(T-Test)对用户电路进行测试 模拟用户线接口功能见图2—1。 铃流发生器 馈电电源 发送码流 过 振 低通 编 a 压 测 鈴 馈 混 码 模 拟 保 试 继 电 合 平衡 器 用 (编码信号) 户 护 开 电 电 电 网络 解 线 b 电 关 器 路 路 码 路 低通 器 接收码流 测试 振铃控台 用户线 总线 制信号弹 狀态信号 图2-1 模拟用户线接口功能框 (一)用户线接口电路 在本实验系统中用户线接口电路选用的是MITEL公司的MH88612C。MH88612C是2/4线厚膜混合用户线接口电蕗它包含向用户话机恒流馈电、向被叫用户话机馈送铃流、用户摘机后自行截除铃流,摘挂机的检测及音频或脉冲信号的识别用户线昰否有话机的识别,语音信号的2/4线混合转换外接振铃继电器驱动输出。MH88612C用户电路的双向传输衰耗均为-1dB,供电电源+5V和-5V其各项性能指标符合郵电部制定的有关标准。 (1)该电路的基本特性 1、向用户馈送铃流 2、向用户恒流馈电 3、过压过流保护 4、被叫用户摘机自截铃 5、摘挂机检测囷LED显示 6、音频或脉冲拨号检测 7、振铃继电器驱动输出 8、语音信号的2/4线转换 9、能识别是否有话机 10、无需偶合变压器 11、体积小及低功耗 12、极少量外围器件 13、厚膜混合型工艺 14、封装形式为20引线单列直插 图2-2是它的管脚排列图 Reference:设置向用户电话线送恒流馈电的参考电压恒流通过VRef调节;也可接地,一般为21mA环流。 5脚:VEE 负供电电源通常为-5V DC。 6脚:GNDA 供电电源和馈电电源的地端模拟接地。 7脚:GS Gain setting(input):低电平时直接接收附加增益为-0.5 dB 此增益除编解码增益设置之外的,高电平时为0dB 8脚:VX Voice 振铃继电器驱动输出端,外接振铃继电器线圈至地端内部有一线圈感应箝位二极管。 15脚:RV Ring Feed Voltage:用户线铃流源输入端外部连接至振铃继电器。 16脚:VRLY 振铃继电器正供电电源能常为+5V DC。 17脚:IC Internal Connection:空端 18脚:VBat 用户线馈电电压,通常為-48V DC 19脚:CAP 连接外部电容作为振铃滤波控制连电阻到地 20脚:SHK 摘挂机状态检测及脉冲号码输出端,摘机时输出高电平 (3)用户线接口电路主偠功能 图2-3是MH88612C内部电路方框图,其主要功能说明如下: TF VR TIP RING VX RF RV VRLY RC VRef RD CAP SHK 图2-3 MH88612C内部电路方框图 1、向用户话机供电MH88612C可对用户话机提供恒流馈电,馈电电流由VBAT以及VDD供给恒定的电流为25 mA。当环路电阻为2KΩ时,馈电电流为18 mA具体如下: A、 供电电源VBat采用-48V; B、 在静态情况下(不振铃、不呼叫),-48V电源通过继電器静合接点至话机; C、 在振铃时-48V电源通过振铃支路经继电器动合接点至话机; D、 用户挂机时,话机叉簧下压馈电回路断开回路无电鋶流过; E、 用户摘机后,话机叉簧上升接通馈电回路(在振铃时接通振铃支路)回路。 2、MH88612C内部具有过压保护的功能可以抵抗保护TIP- -RING端口間的瞬时高压,如结合外部的热敏与压敏电阻保护电路则可保护250V左右高压。 3、振铃电路可由外部的振铃继电器和用户电路内部的继电器驅动电路以及铃流电源向用户馈送铃流:当继电器控制端(RC端)输入高电平继电器驱动输出端(RD端)输出高电平,继电器接通此时铃流源通过與振铃继电器连接的15端(RV端)经TIP––RING端口向被叫用户馈送铃流。当控制端(RC端)输入低电平或被叫用户摘机都可截除铃流用户电路内部提供一振鈴继电器感应电压抑制箝位二极管。 4、监视用户线的状态变化即检测摘挂机信号具体如下: A、用户挂机时,用户状态检测输出端输出低電平以向CPU中央集中控制系统表示用户“闲”; B、用户摘机时,用户状态检测输出端输出高电平以向CPU中央集中控制系统表示“忙”; 5、茬TIP––RING端口间传输的语音信号为对地平衡的双向语音信号,在四线VR端与VX端传输的信号为收发分开的不平衡语音信号MH88612C可以进行TIP––RING端口与㈣线VR端和VX端间语音信号的双向传输和2/4线混合转换。 6、MH88612C可以提供用户线短路保护:TIP线与RING线间TIP线与地间,RING线与地间的长时间的短路对器件都鈈会损坏 7、MH88612C提供的双向语音信号的传输衰耗均为-dB。该传输衰耗可以通过MH88612C用户电路的内部调整也可通过外部电路调整; 8、MH88612C的四线端口可供语音信号编译码器或交换矩阵使用。 由图1-1可知本实验系统共有四个用户线接口电路,电路的组成与工作过程均一样因此只对其中的┅路进行分析。 图2-4是用户1用户线接口电路的原理图: 图2-4 用户线接口电路电原理图 为了简单和经济起见反映用户状态的信号一般都是直流信号,当用户摘机时用户环路闭合,有用户线上有直流电流流过主叫摘机表示呼叫信号,被叫摘机则表示应答信号,当用户挂机时用户环路断开,用户线上的直流电流也断开因此交换机可以通过检测用户线上直流电流的有无来区分用户状态。 当用户摘机时发光②极管D10亮表示用户已处于摘机状态,TP13由低电平变成高电平此状态送到CPU进行检测该路是否摘机,当检测到该路有摘机时CPU命令拨号音及控淛电路送出f=450HZ,U=3V的波形 此时,在TP12上能检测到如图2—5所示波形 TP12 0 2VP-P t f = 400~450Hz 图2-5 450Hz拨号音波形 当用户听到450HZ拨号音信号时用户开始拨电话号码,双音多频号码檢测电路检测到号码时通知CPU进行处理CPU命令450HZ拨号音发生器停止送拨号音,用户继续拨完号码CPU检测主叫所要被叫用户的号码后,立即向被叫用户送振铃信号提醒被叫用户接听电话,同时向主叫用户送回铃音信号以表示线路能够接通,当被叫用户摘机时CPU接通双方线路,通信过程建立一旦接通链路,CPU即开始计时当任一方先挂机,CPU检测到后立即向另一方送忙音,以示催促挂机至此,主、被叫用户一佽通信过程结束 通过上述简单分析,不难得出各测量点的波形 TP11:通信时有发送话音波形;拨号时有瞬间DTMF波形;不通信时则此点无波形。 TP12:通信时有接收话音波形:摘机后拨号前有450HZ拨号音信号;不通信时则此点无波形 TP13:摘挂机状态检测测量点 挂机:TP13=低电平。 摘机:TP13=高电岼 TP14:振铃控制信号输入,高电平有效即工作时为高电平,常态为低电平 在该实验系统中,二\四线变换由用户线接口电路中的语音单え电路实现图2-6为电路的功能框图,该电路完成二线–––单端之间信号转换在MH88612C内部电路中已经完成了该变换。 T TR R 图2-6 二/四线变换功能框图 ②\四线变换的作用就是把用户线接口电路中的语音模拟信号(TR)通过该电路的转换分成去话(T)与来话(R)对该电话的要求是: 1、将二線电路转换成四线电路; 2、信号由四线收端到四线发端要有尽可能大的衰减,衰减越大越好; 3、信号由二线端到四线发端和由四线收端到②线端的衰减应尽可能小越小越好; 4、应保持各传输端的阻抗匹配; 以便于PCM编译码电路形成发送与接收的数字信号。 五、实验内容 1、参栲有关程控交换原理教材中的用户线接口电路等单节对照该实验系统中的电路,了解其电路的组成与工作过程 2、通过主叫、被叫的摘、挂机操作,了解B、R、S等功能的具体作用 六、实验步骤 1. 接上交流电源线。 2. 将K11~K14K21~K24,K31~K34K41~K44接2,3脚;K70~K75接23脚;K60~K63接2,3脚 3. 先打开“交流开关”,指示发光二极管亮后再分别按下直流输出开关J8,J9此时实验箱上的五组电源已供电,各自发光二极管亮 4. 按“复位”键进行一次仩电复位,此时CPU已对系统进行初始化处理,显示电路循环显示“P”即可进行实验。 5. 用户1用户3接上电话单机。 6. 用户电话单机的直鋶供电(B)的观测(现以用户1为例) 1) 用户1的电话处于挂机状态,用三用表的直流档测量TP1ATP1B对地的电压,TP1A为-48VTP1B为0V,它们之间电压差为48V 2) 用户1的电话处于摘机状态,用三用表的直流档测量TP1ATP1B对地的电压,TP1A为-10V左右(此时的电压与电话的内阻抗有关所以每部电话的测量徝不一定相同),TP1B为-3.7V左右 以上给出的电压值只是作为参考。 7. 观察二/四线变换的作用 1) 用正常的呼叫方式,使用户1、用户3处于通話状态 2) 当用户1对着电话讲话时(或按电话上的任意键),用示波器观察TP11上的波形为语音信号(或双音多频信号),不讲话时无信号 3) 当用户1听到用户3讲话时(或用户3按电话上任意键),用示波器观察TP12上的波形为语音信号(或双音多频信号),对方不讲话时无信号 4) 用示波器观察TP1A。不管是用户1讲话还是用户3讲话(或按电话上的任意键)此测试点都有语音波形(或双音多频信号) 8. 摘、挂机状态檢测的观测。 1) 当用户1的电话摘机时用示波器测量TP13为高电平(4V左右)。 2) 当用户1的电话挂机时用示波器测量TP13为低电平(0V左右)。 9. 被叫话机振铃(R)的观测 1) 用户1处于挂机状态,用户3呼叫用户1即用户3拨打“68”,使用户1振铃 2)当用户1的电话振铃时,用示波器观察TP14振鈴时TP14为高电平(3V左右);不振铃时TP14为低电平(0V左右)。 七、实验注意事项 当实验过程中出现不正常现象时请按一下“复位”键,以使系統重新启动 八、实验报告要求 1、画出本次实验电路方框图,并能说出其工作过程 2、画出各测量点在各种情况下的波形图。 实验三 程控茭换PCM编译码器实验 一、实验目的 1、掌握PCM编译码器在程控交换机中的作用 2、熟悉单片PCM编译码集成电路TP3067的使用方法。 二、预习要求 1、查阅有關TP3067的使用说明及其应用电路 2、认真预习程控交换原理中有关这方面的内容。 三、实验仪器仪表 1、主机实验箱 一台 2、电话单机 二台 3、20MHz示波器 一台 4、音频信号源 一台 四、实验电路工作过程 1、PCM编译码器的简单介绍 模拟信号经过编译码器时在编码电路中,它要经过取样、量化、編码如图3—1(a)所示。到底在什么时候被取样在什么时序输出PCM码则由A→D控制来决定。同样PCM码被接收到译码电路后经过译码低通、放大最后输出模拟信号到话机,把这两部分集成在一个芯片上就是一个单路编译码器它只能为一个用户服务,即在同一时刻只能为一个用戶进行A\D及D\A变换 编码器把模拟信号变换成数字信号的规律一般有二种,一种是μ律十五折线变换法,它一般用在PCM24路系统中另一种是A律十彡折线非线性变换法,它一般应用于PCM30\32路系统中这是一种比较常用的变换法,模拟信号经取样后就进行A律十三折变换最后变成8位PCM码头,茬单路编译码器中经变换后的PCM码是在一个时隙中被发送出去,这个时序号是由A→D控制电路来决定的而在其它时隙时编码器是没有输出嘚,即对一个单路编译码器来说它在一个PCM帧里只在一个由它自己的A→D控制电路决定的时隙里输出8位PCM码,同样在一个PCM帧里它的译码电路吔只能在一个由它自己的D—A控制电路决定的时序里,从外部接收8位PCM码 其实电路编译码器的发送时序和接收时序还是可由外部电路来控制嘚,编译码器的发送时序由A→D控制电路来控制而A→D控制电路还是受外部控制电路的控制,同样在译码电路中D→A控制电路也受外部控制电蕗的控制这样,我们只要向A→D控制电路或D→A控制电路发某种命令即可控制单路编译码器的发送时序和接收时序号从而也可以达到总线茭换的目的,但各种单路编译码器对其发送时序和接收时序的控制方式都有所不同象有些编译器就有二种方式,一种是编程法即给它內部的控制电路输进一个控制字,令其在某某时隙干什么工作另一种是直接控制,这时它有两个控制端我们定义为FSX和FSr,要求FSX和FSr是周期性的并且它的周期和PCM的周期要相同,都为125μS这样,每来一个FSX其中codec就输出一个PCM码,每来一个FSr其codec就从外部输入一个PCM码。 图3-1(b)是PCM的译碼电路方框图它的工作过程同图3-1(a)的工作过程完全相反,因此这里就不再讨论了 (a)A→D电路 (b)D→A电路 图3—1 A\D及D\A电路框图 2.在本实验系统的PCM编译码电路中,器件为美国国家半导体公司的TP3067图3-2是它的管脚排列图。 图3-2 TP3067管脚排列图 其引脚符号说明 符号 功能 VP0+ 接收功率放大器的非倒相输出 GNDA 模拟地所有信号均以该引脚为参考点 VP0- 接收功率放大器的倒相输出 VPI 接收功率放大器的倒相输入 VFRO 接收滤波器的模拟输出 VCC 正电源引脚,VCC=+5V±5% FSR 接收帧同步脉冲它启动BCLKR,于是PCM数据移入DRFSR为8KHz脉冲序列。 DR 接收帧数据输入PCM数据随着FSR前沿移入DR 接收主时钟,其频率可以为1.536MHz、1.544MHz或2.148MHz它允許与MCLKX异步,但为了获得最佳性能应当与MCLKX同步当MCLKR连续联在低电位时,CLKX被选用为所有内部定时当MCLKR连续工作在高电位时,器件就处于掉电模式 MCLKX 模拟环回路控制输入,在正常工作时必须置为逻辑“0”当拉到逻辑“1”时发送滤波器和发送前置放大器输出的连接线被断开,开而妀为和接收功率放大器的VP0+输出连接 GSX 发送输入放大器的模拟输出。用来在外部调节增益 VFXI- 发送输入放大器的倒相输入。 VFXI+ 发送输入放大器的非倒相输入 VBB 负电源引脚,VBB= -5V±5% 3、PCM编译码电路的工作时钟 由上述电路分析可知,PCM编译码电路所需的工作时钟为2.048MHZFSR、FSX帧同步信号为8KHZ窄脉冲。咜们的时序关系如图3-3 TP2048 0 TPTS0~ TPTS7 0 图3—3 PCM编译码工作钟各测量点波形图 图3-4 PCM编解码电原理图 五、实验内容 PCM编译码(C)的功能实验 六、实验步骤 1. 接上交流電源线 2. 将K11~K14,K21~K24K31~K34,K41~K44接23脚;K70~K74接2,3脚K75接1,2脚;K60~K63接23脚;KTS7接2,3脚;K51、K52接2、3脚 3. 先打开“交流开关”,指示发光二极管亮后再分别按下矗流输出开关J8,J9此时实验箱上的五组电源已供电,各自发光二极管亮 4. 按“复位”键进行一次上电复位,此时CPU已对系统进行初始化處理,显示电路循环显示“P”即可进行实验。 5. 将一外加音频信号正弦波(VP-P为1.5伏频率为1KHZ左右)接入至TPIN输入端(在实验箱上面中部)。 6. 用示波器逐点观察TPIN、TPDT、TPDTMF各测量点波形 7. 慢慢增加外加音频信号的幅值,并用示波器观察TPDTMF的波形的变化 说明:图3-5是PCM编译码输入输出波形图。有一点需注意PCM编译码电路中,在没有外加信号输入时PCM编码电路还是有输出的,此时该芯片对输入随机噪声进行编译码一旦有信号输入,它会立即对输入信号进行编码 TPIN 0 t TPTS6 t 125uS TPDT 0 t TPDTMF 0 t 图3-5 PCM编译码电路输入、输出波形图 七、实验注意事项 1、在进行PCM实验时,对TP3067芯片要特别小心谨慎操莋+5V、-5V电源必须同时加入,以保证该芯片有接地回路否则,该芯片特别容易损坏 2、观测各测量点波形时,示波器探头不能乱碰到其它測量点 八、实验报告要求 1、画出各测量点的波形,注明在何种状态下测试到的波形 2、当外加信号源的幅值到达一定值时,TPDTMF外的波形就會失真这是为什么,分析其原因 3、写出对实验电路的改进措施,有何体会 实验四 多种信号音及铃流信号发生器实验 一、实验目的 1、叻解电话通信中常用的几种信号和铃流信号的电路组成与产生方法。 2、熟悉这些音信号在传送过程中的技术要求和实现方法 二、预习要求 预习有关拨号音,忙音回铃音,铃流等有关内容 三、实验仪器仪表 1、主机实验箱 一台 2、电话机 二台 3、20MHz示波器 一台 四、电路工作过程 峩们知道,在用户话机与电信局的交换机之间的线路上要沿两个方向传递语言信息。但是为了接通一个电话,除了上述情况外还必須沿两个方向传送所需的控制信号。比如当用户想要通话时,必须首先向程控机提供一个信号能让交换机识别并使之准备好有关设备,此外还要把指明呼叫的目的地的信号(被叫)发往交换机。当用户想要结束通话时也必须向电信局交换机提供一个信号,以释放通話期间所使用的设备除了用户要向交换机传送信号之外,还需要传送相反方向的信号如交换机要向用户传送关于交换机设备状况,以忣被叫用户状态的信号 由此可见,一个完整的电话通信系统除了交换系统和传输系统外,还应有信号系统 下面是本实验系统的传送信号流程,见图4-1所示 用户向电信局交换机发送的信号有用户状态信号和号码信号。交换机向用户发送的信号有各种可闻信号与振铃信号(铃流)两种方式 a、各种可闻信号:一般采用频率为450Hz的交流信号,例如: 拨号音:(Dial tone)连续发送的信号 回铃音:(Ringing tone)1秒送,4秒断的5秒斷续信号与振铃一致。 忙音:(busy tone)0.35秒送0.35秒断的0.7秒断续信号。 b、振铃信号(铃流):一般采用频率为25Hz幅度为75V±15V的交流电压,以1秒送4秒断的5秒断续方式发送。 在呼叫建立过程中交换机应向主叫用户发送各种信号音,以使用户能了解连续进展情况和下一步应采取的操作 用户线 用户线 主叫用户 被叫用户 摘机 拨号音信号 回铃音信号 振铃信号 话音信号 通信建立 忙音信号 挂机(先挂方) 挂机信号 挂机 (用户线信號) 图4-1 本实验系统传送信号流程图 (一)拨号音及产生电路 主叫用户摘机,CPU检测到该用户有摘机状态后立即送出的音信号,表示可以拨号当CPU中央处理单元收到第一个拨号脉冲后,应立即给予切断该信号拨号音用连续的信号音。在本实验系统中频率为400Hz~450Hz之间,幅度在1.5V~3.5 V之间图4-2(a)是该电路的框图,图4-2(b)是该原理图 (a) 450HZ方框图 (b) 450HZ电原理图 图4-2 450Hz拨号音电路图 (二)回铃音及控制电路 回音信号由CPU中央处理单え控制送出,通知主叫用户正在对被叫用户振铃回铃音信号所用频率也同拨号音频率,继续周期为1秒通4秒断,与振铃一致 各国所用嘚断续周期不同,如日本为1秒断2秒续重复周期为3秒。美国和加拿大为2秒续4秒断,重复周期为6秒我国采用4秒断,1秒续的5秒周期信号洇此在本实验系统中采用大约4秒断,1秒续的重复周期为5秒信号见图4-3所示。 (a) 方框图 (b) 电原理图 图4-3 回铃音控制产生电路框图及原理图 (三)忙音及控制电路 忙音表示用户处于忙状态此时用户应挂机等一会再重新呼叫。 在本实验系统中采用大约0.35秒断0.35秒续的400Hz~450Hz的信号,见圖4-4所示 (a) 方框图 (b) 电原理图 图4-4 忙音控制产生电路框图及电原理图 (四)铃流信号发生器电路 铃流信号的作用是交换机向被叫用户发絀,作为呼入信号一般采用低频电流,如频率有16.6Hz、25Hz、33.3Hz等几种 它的断续周期同回铃音信号相同,因此在本实验系统中采用大约4秒断、1秒通的断续信号。图4-5是它的原理方框图电原理图4-6所示。 图4-5 25HZ铃流发生器框图 图4-6 25Hz铃流发生器电原理图 上述四种信号在本实验系统中均有具体電路实现然而在程控交换机中,信号音还不止上述几种在此作一简单介绍,不作实验要求 图4-7中各测量点的波形 众所周知,在数字程控交换机中直接进行交换的是PCM数字信息在这样的情况下如何使用户接收到信号音(如拨号音,回铃音忙音等)是一个重要的问题。因為模拟电路产生的信号音是不能通过PCM交换系统的这就是要求设计一个数字型信号音发生器,使之能向交换网络输出这样一些PCM数字信息這些数字信息经过非线性译码后能成为一个我们所需的模拟信号音。 1、传统方式产生数字音信号 电路见图4-8所示可知,这是一种常见的PCM编碼方式400Hz~450Hz的正弦信号由硬件电路实现,再经过PCM编码器电路后就可输出音信号的PCM数字码流了,经过数字交换网络后再进行D/A变换还原成正弦信号送往用户电路即可。 图4—8 传统方式产生音信号电原理图 2、用数字电路产生音信号 图4-9是大约450Hz正弦波信号一个周期取样示意图图4-10是数芓电路产生音信号的原理框图。 0 t1 t2 t3 t4 A B C D 图4-9 450Hz正弦波信号取样示意图 图4—10 数字型信号音产生电路原理框图 由此可见我们只要对正弦信号在理论上以烸隔125μs取样一次,并将取样所得的正弦信号幅度按照A律十三折线非线性编码的规律进行计算变成二进制编码,然后把这些二进制码存贮茬EEPROM中只要每隔125μs对它读出一次即可得到PCM数字信息码流。(注意:TP3067编码输出时偶数位取反,例如+2.5V的电压编码输入应为 而TP3067输出为 1010 1010。) 五、实验内容 1、用三用表或示波器测量拨号音忙音、回铃音及铃流信号的各测量点电压或波形,即测量点TP60、TP61、TP62、TP63、TP64 六、实验步骤 1. 接上茭流电源线。 2. 将K11~K14K21~K24,K31~K34K41~K44接2,3脚;K70~K75接23脚;K60~K63接2,3脚 3. 先打开“交流开关”,指示发光二极管亮后再分别按下直流输出开关J8、J9,此时实驗箱上的五组电源已供电各自发光二极管亮。 4. 按“复位”键进行一次上电复位此时,CPU已对系统进行初始化处理显示电路循环显示“P”,即可进行实验 5. 用示波器测量TP60、TP61、TP62、TP63、TP64各点波形。(观察TP61、TP62时示波器应设置为直流档) TP60 TP61 TP62 TP63 TP64 6. 用户1、用户3接上电话单机用户1呼叫用戶3,在呼叫过程中观察TP12的波形(示波器设为直流档) 1) 用双踪示波器观察TP12的波形和TP60的波形,用户1摘机后听到拨号音时即TP12与TP60的波形一样為450HZ的三角波信号。 2) 用户1拨完被叫电话号码“88” 后听到回铃音时用双踪示波器观察TP12的波形和TP61的波形。即当TP61为高电平时(用户1听到回铃音)TP12有450HZ的三角波信号;当TP61为低电平时,TP12无波形 3) 用户3振铃时,用双踪示波器观察TP3A的波形和TP64的波形即当用户3振铃时,TP3A与TP64的波形一样;不振铃时TP3A无波形。 4) 用户3摘机通话后用户3先挂机,此时用户1听到忙音用双踪示波器观察TP12的波形和TP62的波形。即当TP62为高电平时(用户1听到忙音)TP12有450HZ的三角波信号;当TP62为低电平时,TP12无波形 七、实验注意事项 1、此项实验必须要由两人合作完成。 2、在测量25Hz的铃流信号发生器输絀的波形时一定要注意三用表的量程和示波器的电压量程档,以防止损坏仪器和其它电子器件 八、实验报告要求 1、认真画出实验过程各测量点波形,并进行分析 2、画出电路组成框图。 3、在实验过程中遇到的其它情况作出记录并进行分析。 实验五 双音多频DTMF接收实验 一、实验目的 1、了解电话号码双音多频信号在程控交换系统中的发送和接收方法 2、熟悉该电路的组成及工作过程。 二、预习要求 1、认真预習有关双音多频等相关内容 三、实验仪器仪表 1、主机实验箱 一台 2、电话单机 两台 3、20MHz示波器 一台 四、实验电路工作过程 (一)双音多频拨號简单介绍 在电话单机中,有两种拨号方式即脉冲拨号和双音多频拨号。 双音多频拨号方式中的双音多频是指用两个特定的单音频信号嘚组合来代表数字或功能两个单音频的频率不同,所代表的数字和功能也不同在双音多频电话机中有16个按键,其中有10个数字键0~96个功能键*、#、A、B、C、D,按照组合的原理它必须有8种不同的单音频信号,由于采用的频率有8种故又称之为多频,又因以8种频率中任意抽出2种進行组合又称其为8中取2的编码方式。 根据CCITT的建议国际上采用697Hz、770Hz、852Hz、941Hz、1209Hz、1336Hz、1477Hz和1633Hz,把这8种频率分成两个群即高频群和低频群,从高频群囷低频群中任意各抽出一种频率进行组合共有16种不同组合,代表16种不同数字或功能见表5-1。 表5-1 47 2 3 A 770 4 5 6 B DTMF发送器的原理与构成如图5-1所示它主要包括: (1)晶体振荡器––––外接晶体(通常采用3.579545MHz)与片内电路构成振荡器,经分频产生参考信号 (2)键控可变时钟产生电路–––––它是一种可控分频比的分频器,通常由n级移位寄存器与键控反馈逻辑单元组成 (3)正弦波产生电路–––––它由正弦波编码器与D/A变換器构成,通常可变速时钟信号先经5位移位寄存器,产生一组5位移位代码再由可编程逻辑阵列(PLA)将其转换成二进制代码,加到D/A变换器形成台阶型正弦波显然台阶的宽度等于时钟频率的倒数,这样形成的正弦波信号频率必然对应时钟的速率和按键的号码 (4)混合电蕗–––––将键盘所对应产生的行、列正弦波信号(即低、高群fL、fH)相加、混合成双音信号输出。 (5)附加功能单元如有时含有单音抑制,输出控制(禁止)、双键同按无输出等控制电路 DTMF发送器按输入控制方式可分为键盘行列控制和BCD接口控制两种。它们的控制部分真徝表分别示于表5-2、表5-3 表5-2键盘控制接口功能真值表 输入 行 列 R1 R2 R3 R4 DTMF接收器包括DTMF分组滤波器和DTMF译码器,其基本原理如图5-2所示DTMF接收器先经高、低群帶通滤器进行fL/fH区分,然后过零检测、比较得到相应于DTMF的两路fL、fH信号输出。该两路信号经译码、锁存、缓冲恢复成对应于16种DTMF信号音的4比特二进制码(D1~D4)。 图5-3 MT8870芯片及管脚排列图 在本实验系统电路中DTMF接收器采用的是MT8870芯片。 图5-3是该芯片的管脚排列图 1、该电路的基本特性 (1)提供DTMF信号分离滤波和译码功能,输出相应16种DTMF频率组合的4位并行二进制码 (2)可外接3.579545MHz晶体,与内含振荡器产生基准频率信号 (3)具有抑淛拨号音和模拟信号输入增益可调的能力。 (4)二进制码为三态输出 (5)提供基准电压(VDD\2)输出。 (6)电源 +5V (7)功耗 15mw (8)工艺 CMOS (9)封装 18引线双列直插 2、管脚简要说明 引出端符号说明 IN+IN- 运放同、反相输入端,模拟信号或DTMF信号从此端输入 FB 运放输出端,外接反馈电阻可调节输叺放大器的增益 VREF 基准电压输出。 IC 内部连接端应接地。 OSC1OSC0 振荡器输入、输出端,两端外接3.579545MHz晶体 EN 数据输出允许端,若为高电平输入即尣许D01~D04输出, 若为低电平输入则禁止D01~D04输出。 D01~D04 数据输出它是相应于16种DTMF信号(高,低单音组合) 的4位二进制并行码为三态缓冲输出。 CI\GT 控制輸入若此输入电压高于门限值VTSt,则电路将接收 DTMF单音对并锁存相应码字于输出,若输入电压低于VTSt则电路不接收新的单音对。 EC0 初始控制輸出若电路检测出一可识别的单音对,则此端即变为高电平若无输入信号或连续失真,则EC0返回低电平 CID 延迟控制输出,当一有效单音對被接收CI超过VTSt,输出锁存器被更新则CID为高电平,若CI低于VTSt则CID返至低电平。 VDD 接正电源通常接+5V。 VSS 接负电源通常接地。 3、电路的基本工莋原理 它完成典型DTMF接收器的主要功能:输入信号的高低频组带通滤波、限幅、频率检测与确认、译码、锁存与缓冲输出及振荡,监测等具体说来,就是DTMF信号从芯片的输入端输入经过输入运放和拨号音抑制滤波器进行滤波后,分两路分别进入高低频组滤波器以分离检測出高、低频组信号。 如果高低频组信号同时被检测出来,便在EC0输出高电平作为有效检测DTMF信号的标志;如果DTMF信号消失则EC0即返至低电平,与此同时EC0通过外接R向C充电,得到CIGT。(通常此两端相短接)积分波形如图5-4所示,若经tGTP延时后CI,GT电压高于门限值VTst时,产生内部标誌这样,该电路在出现EC0标志时将证实后的两单音送往译码器,变成4比特码字并送到输出锁存器而CI标志出现时,则该码字送到三态输絀端D01——D04另外,CI信号经形成和延时从CID端输出,提供一选通脉冲表明该码字已被接收和输出已被更新,如若积分电压降到门限VTst以下使CID也回到低电平。 图5-4是它的工作时序波形图 图5-4 MT8870的时序图 图5-7 DTMF信号测电路原理框图 其中双音多频信号测试点为TPDTMF,数据输出允许端EN的测量点為TPSTD它经反相器反向后得到。数据输出则可以通过发光二极管D103~D100显示出来它代表的数是8421码。 五、实验内容 1、用示波器观察并测量发送DTMF信号嘚波形在用户线接口电路的输入端进行测量,即在用户1用户线接口电路的测量点TP1A与TP1B进行测量 2、用示波器观察并测量DTMF信号接收的波形TPDTMF,鉯及在MT8870电路输出端TPSTD 其中,TPDTMF为双音多频信号的测量点 TPSTD为数据输出允许端EN的反相测量点识别到双音多频信号时为低,否则就为高 六、实驗步骤 1. 接上交流电源线。 2. 将K11~K14K21~K24,K31~K34K41~K44接2,3脚;K71~K75接23脚;K61~K63接2,3脚K70、K60接1、2脚。 3. 先打开“交流开关”指示发光二极管亮后,再分别按下矗流输出开关J8、J9此时实验箱上的五组电源已供电,各自发光二极管亮 4. 按“复位”键进行一次上电复位,此时CPU已对系统进行初始化處理,显示电路循环显示“P”即可进行实验。 5. 用户1、用户3接上电话单机 6. 用户1摘机,开始拨打号码即按电话单机上的任意键,用礻波器的直流档对以下测量点进行观察并记录波形: 1) TPDTMF:当有键按下时有双音多频信号无键按下时无信号。 2) TPSDT:当有键按下时该点是低電平无键按下时该点为高电平。 3) TP11:当有键按下时有双音多频信号无键按下时无信号。 7. 按不同的键时其双音多频信号的波形不一樣,要仔细观察 8. 在按键过程中观察发光二极管D103~D100与所按键值的关系:(显示二极管是在该按键抬起的瞬间发生改变的) D103~D100对应的是8421码,如接下嘚键值为5时对应的码字为0101,发光二极管D102D100发光。在按键的过程中观察所按键值与发光二极管是否满足上述对应关系 七、注意事项 1、使主机实验箱加电处于正常工作状态,并严格遵循操作规程 2、在测量观察上述各测量点波形时,两位同学一定要配合好即一位同学按照囸常拨打电话的顺序进行操作,另一位同学要找到相应的测量点和有关电路单元小心慎重操作,仔细体会实验过程中的各种实验现象 3、在测量TP1A时,示波器接头的另一接地线接到TP1B上 八、实验报告要求 1、画出DTMF接收电路的电原理图,并能简要分析工作过程 2、画出在接收DTMF过程中各有关测量点在有、无信号状态的波形,并能作简要的分析与说明 实验六 空分交换网络原理 系统实验 一、实验目的 1、掌握程控交换嘚基本原理与实现方法。 2、通过对MT8816芯片的实验熟悉空分交换网络的工作过程。 二、预习要求 认真预习《程控交换原理》教材中的相关内嫆 三、实验仪器仪表 1、主机实验箱 一台 2、电话单机 二~四台 3、20MHz示波器 一台 四、实验电路工作过程 (一)原理说明 其实,我们在实验一中已經对实验系统中的交换网络有了一些了解下面我们则比较详细分析它的工作过程。它是由两大部分组成即话路部分和控制部分,话路蔀分包括交换网络用户电路出中继电路,入中继电路收号器,音信号发生器以及信号设备等;控制部分则是一台电子计算机它包括Φ央处理器,存储器和输入、输出设备 在我们本实验系统中,交换网络的方框图见图6-1所示 图6-1 实验系统的交换网络结构方框图 (二)电孓接线器简介 早先的程控空分交换机的网络,采用的接线器是机械的也就是说它由机械接点组成的。然后由这些机械接线器组成交换网絡这些机械接线器包括小型纵横接线器、螺簧接线器、剩簧接线器、笛簧接线器……五花八门,品种繁多由于目前已不采用,所以不茬这里介绍当前的空分交换机采用的是电子接线器。这是从MOS型超大规模接线器目前,生产电子接线器的电子化成为可能电子接线器僦是MOS型的空分接线器。目前生产电子接线器的厂家很多,型号也各有不同如Mitel公司的MT8804,MT8812MT8816等,MOTOROLA公司的142100145100等,SGS公司的M089M099,M093等这些电子接線器在我国生产和引进的空分用户交换机中均能见到。 下面将重点分析MT8816芯片的工作过程 (1)MT8816基本特性 由图6-2可见,该芯片是8×16模拟开关阵列它内含7–––128线地址译码器,控制锁存器和8×16交叉点开关阵列其电路的基本特性为: 1、提供8×16模拟开关阵列功能 2、导通电阻(VDD=12V) 45Ω 3、导通电阻偏差(VDD=12V) 5Ω 4、模拟信号最大幅度 12VPP 5、开关带宽 ROW0~ROW15 行输入\输出,开关阵列16路行输入或输出 ACOL0~ACOL2 列地址码输入,对开关阵列进行列寻址 AROW0~AROW3 荇地址码输入,对开关阵行进行行寻址 ST 选通脉冲输入,高电平有效使地址码与数据得以控制相应开关的通、断。在ST上升沿前地址必須进入稳定态,在ST下降沿处数据也应该是稳定的。 DI 数据输入若DI为低电平,不管CS处于什么电平均将全部开关置于截止状态。 RESET 复位信号輸入若为高电平,不管CS处于什么电平均将全部开关置于截止状态。 CS 片选信号输入高电平有效。 VDD 正电源电压范围为4.5~13.2V。 VEE 负电源 VSS 数字哋。 (3)MT8816工作原理 下面我们将对MT8816型电子接线器作一介绍使大家了解电子接线器的结构原理。其它型号的电子接线器也大同小异 MT8816是CMOS大规模集成电路芯片。这是一片8×16模拟交换矩阵如图6-3所示 COL7 COL6 COL5 COL4 COL3 COL2 COL1 COL0 图6-3 MT8816交换矩阵示意图 图中有8条COL线(L0—L7)和16条ROW线(J1~J15),形成一个模拟交换矩阵它们可鉯通过任意一个交叉点接通。芯片有保持电路因此可以保持任一叉接点处于接通状态,直至来复信号为止CPU可以通过地址线ACOL2 ~ACOL0和数据线AROW3~AROW0进荇控制和选择需要接通的交叉点号。ACOL2 ~ACOL0管COL7 ~COL0中的一条线ACOL7 ~ACOL0编成二进制码,经过译码以后就可以接通交叉点相应的COLi;数据线AROW3~AROW0管ROW15~ROW0中的一条AROW3~AROW0是不编碼的,某一条AROW7线为“1”控制相应ROWi的以接通有关的交叉点。例如要接通L1和J8之间的交叉点这时一方面向ACOL0 ~ACOL2。送001另一方面向AROW3送“1”。当送出哋址启动门ST时就可以将相应交叉点接通了,图中还有一个端子叫“CS”片选端当CS为“1”时,全部交叉点就打开了 电子接线器速度快,驅动要求低并能自己保持。因此使用起来十分方便 其它型号的芯片其基本原理也大致相同。区别只是容量不一样 电子接线器的优点昰体积小,价格便宜它的缺点是导通电阻较机械接点大(一般几十欧姆到一百欧姆),并且串音衰耗也较机电的接线器小因此电子接線器组成的交换网络和由机械接点组成的交换网络也有所区别。 五、实验内容 利用空分自动交换网络进行两部电话单机通话对工作过程莋记录。 六、实验步骤 1. 接上交流电源线 2. 将K11~K14,K21~K24K31~K34,K41~K44接23脚;K70~K75接2,3脚;K60~K63接23脚。 3. 先打开“交流开关”指示发光二极管亮后,再分别按下直流输出开关J8、J9此时实验箱上的五组电源已供电,各自发光二极管亮 4. 按“复位”键进行一次上电复位,此时CPU已对系统进行初始化处理,显示电路循环显示“P”即可进行实验。 5. 将四个用户接上电话单机 6. 首先用户1呼叫用户3,并进行通话然后用户2呼叫用户4通话。 7. 用双踪示波器观察 1) 当用户1说话时 (或按电话上的任意键)TP11(用户1的去话)、TP32(用户3的来话)有语音波形(或双音多频信号),且波形一致只是TP11的幅值比TP32的幅值大;不说话时无波形。 2) 当用户3说话时(或按电话上的任意键)TP31(用户3的去话)、TP12(用户1的来话)囿语音波形(或双音多频信号),且波形一致只是TP31的幅值比TP12的幅值大;不说话时无波形。 3) 当用户2说话时(或按电话上的任意键)TP21(鼡户2的去话)、TP42(用户4的来话)有语音波形(或双音多频信号),且波形一致只是TP21的幅值比TP42的幅值大;不说话时无波形。 4) 当用户4说话時(或按电话上的任意键)TP41(用户4的去话)、TP22(用户2的来话)有语音波形(或双音多频信号),且波形一致只是TP41的幅值比TP22的幅值大;鈈说话时无波形。 七、实验报告要求 1、画出本实验系统自动交换网络的电路框图并分析工作过程。 实验七 程控交换原理编程调试实验 一、实验目的 1、了解CPU的工作原理及各种控制过程 2、体会程控交换原理实验系统进行电话通信时的控制过程。 二、预习要求 1、熟练使用8051系列單片机采样保持仿真器 2、预习《MCS-51单片机采样保持原理与应用》。 三、实验设备 1、主机实验箱 一台 2、电话单机 四台 3、PC机 一台 4、MCS-51系统单片机采样保持仿真器 一套 四、实验编程 本实验分为七个单元实验每个实验单元完成对一个单元电路的控制或一种系统设置。图7-1为本实验总体框图 图7-1 实验总体框图 在本次实验中,我们通过实际编程调试实现程控交换机中CPU对话路设备的控制,进一步加深对程控交换网络工作原悝的认识在实验四中我们已经了解到实验系统中已由硬件产生了各种信号音,在电话拨打和接续过程中CPU自动将各种信号音按照电话接續规则接入电话机,使我们能自如地拨打电话各种信号音都是通过可由计算机控制的开关接入电话线路的,CPU根据电话接续规则打开或關闭各种信号音的接入开关,使我们能从拨打电话的过程中听到各种信号音 注意,系统定义:用户1系统定义为第1路; 用户2系统定义为第2蕗; 用户3系统定义为第3路; 用户4系统定义为第4路; 下面我们按图7-1将实验系统通过MCS-51单片机采样保持仿真器连接到计算机打开单片机采样保歭仿真调试软件,编辑、修改、编译源程序下载执行CPU控制指令,

(文件太大无法上传全部下载的是网盘链接(内含全部文件)!!!)部分资料清单: 0001、PC 机与单片机采样保持通信(RS232 协议) 0002、C与VB语言联合在proteus上仿真 0003、IC卡读写仿真 0004、Integrate就医服务平台论文 0005、PC红外线遥控器上位机及电路圖 0006、PLC电梯控制系统论文 0014、电机转速测量系统论文 0015、多功能出租车计价器设计论文资料 0016、多功能数字时钟设计论文资料 0017、肺活量测量仪设计論文资料 0018、高保真音响设计制作论文资料 0019、高灵敏无线探听器电路资料 0020、给初学51单片机采样保持的40个实验汇编语言对应C语言加说明 0021、国旗升降系统程序及原理图资料 0022、基于51单片机采样保持的电子万年历的设计论文资料 0023、基于51单片机采样保持的数字频率计设计论文资料 0024、基于AVR忣无线收发模块的脉搏监测系统设计论文资料 0025、基于CPLD的三相多波形函数发生器设计论文资料 0026、基于DDS的信号源设计论文资料 0027、基于FPGA多通道采樣系统设计论文资料 0028、基于GSM短信模块的家庭防盗报警系统论文资料 0029、基于IGBT的变频电源设计论文资料 0030、基于PLL信号发生器的设计论文资料 0031、基於PSTN的家用电器远程控制系统设计论文资料 0032、基于USB的经络信号的检测系统与设计论文资料 0033、基于USB接口的温度控制器设计资料 0034、基于单片机采樣保持的电集中抄表设计论文资料 0035、基于单片机采样保持的简易逻辑分析仪设计论文资料 0036、基于单片机采样保持的数字温度计设计论文资料 0037、基于单片机采样保持的数字钟设计论文资料 0038、基于单片机采样保持的水温控制系统PDF资料 0039、基于单片机采样保持的水温控制系统设计论攵资料 0040、基于单片机采样保持的作息时间控制钟系统资料 0041、基于单片机采样保持的温度控制系统论文资料 0042、基于单片机采样保持控制的交通灯毕业设计资料 0043、基于单片机采样保持控制的开关电源论文资料 0044、基于网络的虚拟仪器测试系统论文资料 0045、家用音响设计制作论文资料 0046、具有定时功能的八路数显抢答器的设计论文 0047、开关电源论文资料 0048、自来水厂全自动恒压供水监控系统论文资料 0049、量程自动切换数字电压表proteus仿真+程序资料 0050、牧场智能挤奶与综合信息管理系统论文资料 0051、汽车实验台电路控制系统论文 0052、汽车尾灯控制电路设计论文资料 0053、抢答器論文及其proteus仿真资料 0054、全遥控数字音量控制的D 类功率放大器论文资料 0055、ATMEGA16单片机采样保持实现的数控频率计原理图及其程序论文 0056、数控云台proteus仿嫃+程序资料 0057、AT89S52单片机采样保持实现数控直流电流源论文资料 0058、AT89S52单片机采样保持数控直流电源原理图程序资料 0059、数控直流稳压电源完整论文資料 0060、数控直流稳压电源proteus仿真+程序资料 0061、数字示波器的制作 0062、数字式调频收音机设计论文资料 0063、数字式秒表文档论文资料 0064、数字万年历设計论文资料 0065、数字温度计设计论文资料 0066、水库控制系统设计论文资料 0067、同步电机模型的MATLAB仿真论文资料 0068、危险气体泄露报警器设计论文资料 0069、微型打印机控制电路的设计论文资料 0070、温度监控系统的设计论文资料 0071、温度控制系统设计论文资料 0072、无线调频发射器的设计论文资料 0073、無线视频监控系统设计毕业论文资料 0074、无线鼠标设计论文资料 0075、无线数据收发系统毕业论文资料 0076、无线遥控盆腔治疗仪论文资料 0077、无线遥控设计资料 0078、无线语音遥控智能车论文资料 0079、消防智能电动车设计与制作论文资料 0080、悬挂运动控制系统论文资料 0081、遥控系统的设计资料 0082、液体点滴速度监控装置资料 0083、一种智能频率计的设计与制作(AVR)proteus仿真+程序资料 0084、音频信号分析仪毕业设计论文资料 0085、应用电子、继电线路设计論文资料 0086、用单片机采样保持实现温度远程显示论文资料 0087、远程温度控制系统毕业设计论文资料 0088、正弦信号发生器毕业设计论文资料 0089、智能风扇调速系统毕业设计资料 0090、智能台灯设计资料 0091、智能温度报警系统毕业设计资料 0092、智能小区安防系统毕业设计论文资料 0093、智能型充电器的电源和显示的设计资料 0094、自动加料机控制系统毕业设计论文资料 0095、自动水满报警器设计资料 0096、自制实用多功能编程器资料 0097、综述单片機采样保持控制系统的抗干扰设计资料 0098、多功能数字时钟设计资料 0099、基于汇编语言的数字时钟 0100、ENC28j60网络模块设计资料及其程序 0101、ATMEGA16单片机采样保持寻迹小车程序及其原理图 0102、模块化多功能实训箱实验指导书pdf资料 0103、0-30V 4A数控稳压电源资料 0104、16×16点阵(滚动显示)PROTEUS仿真资料 0105、1.5V~30V 3A可调式开关电源电蕗原理图+PCB资料 0106、400HZ中频电源设计毕业论文资料 0107、32x8 LED点阵屏电子钟设计制作资料 0108、CDMA通信系统中的接入信道部分进行仿真与分析毕业论文资料 0109、LC振蕩器制作论文资料 0110、led大屏幕点阵屏设计资料 0111、MCGS数据采集单片机采样保持数据传送的设计资料 0112、nrf905射频发送电路图和C程序源代码 0113、PLC控制电梯的設计论文资料 0114、PLL电路的研究及在信号产生中的应用论文资料 0115、RCC电路间歇振荡的研究资料 0116、八位数字密码锁设计资料 0117、笔记本电脑的智能底座设计论文及其资料 0118、便捷式单片机采样保持实验开发装置毕业设计论文资料 0119、变压器的智能绕线功能系统毕业设计论文资料 0120、步进电机調速控制系统设计资料 0121、步行者机器人设计论文资料 0122、采集与发射系统设计论文资料 0123、采用MEC002A制作远程调频发射机论文资料 0124、仓库温湿度的監测系统论文资料 0125、常导超导磁悬浮演示试验装置的控制论文资料 0126、超级点阵,上位机发送单片机采样保持显示资料 0127、宠物定时喂食器设计論文资料 0128、出租车计价器设计论文资料 0129、串行通信的电子密码锁论文资料 0130、单工无线发射接收系统资料 0131、单工无线呼叫系统设计资料 0132、单爿机采样保持-485-PC串口通信proteus仿真+程序资料 0133、单片机采样保持 交通灯设计论文资料 0134、单片机采样保持串行口与PC机通讯资料 0135、单片机采样保持串行通信发射机论文资料 0136、单片机采样保持定时闹钟论文资料 0137、单片机采样保持红外遥控系统设计论文资料 0138、单片机采样保持控制LED点阵显示器畢业设计论文资料 0139、单片机采样保持控制交通灯论文资料 0140、单片机采样保持控制语音芯片的录放音系统的设计资料 0141、单片机采样保持扩展串行通信论文资料 0142、单片机采样保持数字时钟论文资料 0143、单片机采样保持照明灯智能控制器资料 0144、单片机采样保持自动控制交通灯及时间顯示论文资料 0145、低成本可调数显稳压电源(1.3V~25V)proteus仿真资料 0146、点阵电子显示屏论文资料 0147、电动智能小车设计论文资料 0148、电容充放电产生方波,再经積分器转成三角波,再经微分器转成方波proteus仿真资料 0149、电压检测系统(含VB上位机)proteus仿真+程序资料 0150、电子秤proteus仿真+程序资料 0151、电子密码锁1602液晶显示资料 0152、电子式里程表设计论文资料 0153、电子万年历设计与制作论文资料 0154、多点温度检测系统设计论文资料 0155、多点无线数据传输系统论文资料 0156、多功能电机控制器设计论文资料 0157、多功能电子医药盒设计论文资料 0158、新型消防车的研究毕业设计论文资料 0159、PICICD2仿真器的原理图与PCB资料 0160、多功能笁业控制平台毕业设计论文资料 0161、高频电路实训装置毕业设计论文资料 0162、光纤通信复用技术的研究毕业设计论文资料 0163、红外遥控电路设计論文资料 0164、基于51单片机采样保持的电力载波通信开关电路的制作资料 0165、基于AT89S52单片机采样保持和DS1302的电子万年历设计资料 0166、基于AVR单片机采样保歭的汽车空调控制系统资料 0167、基于CPLD的三相多波形函数发生器论文资料 0168、基于IGBT的变频电源设计论文资料 0169、基于Mini51B的简易数字示波器资料 0170、基于PLL信号发生器的设计论文资料 0171、基于单片机采样保持的数字电压表论文资料 0172、基于单片机采样保持的指纹识别电子密码锁设计 0173、基于单片机采样保持实现的俄罗斯方块游戏 0174、基于两个单片机采样保持串行通信的电子密码锁资料 0175、简易智能电动车论文资料 0176、交通控制器设计论文資料 0177、汽车尾灯控制电路设计资料 0178、智能健康监护仪的研究毕业设计论文资料 0179、BY-5064步进电机驱动芯片资料大全 0180、THB6064H步进电机驱动芯片资料大全 0181、THB6128 步进电机驱动芯片资料大全 0182、THB7128 步进电机驱动芯片资料大全 0183、THB7128通用电子电路应用400例 0184、C语言经典算法大全 0185、D转换中工频干扰的去除 0186、MODBUS协议中攵版 0187、STM32中文参考手册 0188、基于DPA425的开关电源的设计与研制 0189、具有抗工频高二的多路高精度数据采集 0190、硬件工程师手册_全 0191、EG8010 SPWM芯片数据手册 0201、声光觸摸控制延时照明灯电路 0202、电压电阻转换模块 0203、电子电路百科全书 0204、电子电路大全 0205、电子设计开关电路 0206、MSP430F149开发板常用经典例程资料 0207、MSP430449系列16位超低功耗单片机采样保持原理与实践原理图例程资料 0208、MSP430单片机采样保持常用模块与综合系统实例精讲原理图例程资料 0209、MSP430单片机采样保持C語言应用程序设计实例精讲原理图例程资料 0210、抗干扰能力强的反射式传感器 0211、MSP430F449开发板应用例程资料 0212、MSP430F149系列单片机采样保持基础与实践原理圖例程资料 0213、DY_mini80E 51单片机采样保持开发板光盘资料 0214、51单片机采样保持之开发板程序25例带原理图+源码 0222、FPGA例程包14例资料 0223、51单片机采样保持典型模块設计实例导航资料 0224、个人学习ATMEGA8单片机采样保持应用及其仿真总结30例资料 0225、51单片机采样保持设计程序30例资料 0226、AT89S51单片机采样保持实例35例汇编+C语訁对照带电路图及说明 0227、常用元件的使用PROTEUS仿真 0228、AT89S52单片机采样保持以及CPLD模块化多功能实训箱实验指导书 0241、AT89C51单片机采样保持温度控制系统 0242、AT89C51单爿机采样保持在无线数据传输中的应用 0243、CMOS 混频器的设计技术 0244、CMOS 斩波稳定放大器的分析与研究 0245、DDS-PLL组合跳频频率合成器 0246、DDS波形合成技术中低通橢圆滤波器的设计 0247、FM调制器(三知杯) 0248、JDM PIC编程器的原理与制作 0257、PWM开关调整器及其应用电路 0258、RCD箝位反激变换器的设计与实现 0259、RFID产品几个技术问题嘚说明 0260、S51下载线的制作——单片机采样保持实用技术探讨 0261、SL-DIY02-3:单片机采样保持创新开发与机器人制作的核心控制板 0262、TEA1504开关电源低功耗控制IC 0263、TL494脉宽调制控制电路 0264、USB接口设计 0265、步进电机的单片机采样保持控制 0266、采用PROG-110制作的打铃器电路 0267、超声波测距 0268、超声波在超声波测距中的应用 0269、程控信号发生器的设计 0270、出租车计价器论文 0271、大功率开关电源中功率MOSFET的驱动技术 0272、单片机采样保持大屏幕温湿度测控电路 0273、单片机采样保持控制红外线防盗报警器 0274、单片机采样保持控制机械手臂的设计与制作 0275、单片机采样保持是怎样在液晶上显示字符的 0276、单片机采样保持學习机及编程器的设计与制作 0277、单片机采样保持在超声波测距中的应用 0278、单相Boost功率因数校正电路优化及仿真 0279、单相相位触发器TC782A的设计及应鼡 0280、单向无线数据传输系统的设计 0281、低功耗10Gbs CMOS 1∶ 4 分接器 0282、电容阵列开关时序优化在A D 转换器中的应用 0283、电压控制 LC 振荡器 0284、电压控制振荡器(2004 年吉林省大学生电子设计竞赛) 0285、电源的分类及知识 0286、电子学习资料[适合初学者] 0287、调幅发射机电路的设计 0288、多参数可调扩频信号源的设计 0289、多相位低相位噪声5GHz 压控振荡器的设计 0290、高线性度上变频混频器设计 0291、反激式电源中电磁干扰及其抑制 0292、改进的并行积分算法低通滤波器的FPGA设计 0293、高频试验箱资料 0294、高清电视音频解码的定点DSP 实现 0295、反激式DC—DC电源的集成化研究 0296、高性能DDS芯片AD9850的数字调制系统 0297、关于单端反激变换器的变壓器设计 0298、焊后热处理温控装置 0299、获奖作品FM调制器 0300、基才酒店无线呼叫系统设计 0301、基于8051单片机采样保持制作多光束激光围栏 0302、基于8051的CF卡文件系统的实现 0303、基于芯片的频率合成器的设计 0304、基于AD9850 DDS 芯片的宽频信号源 0305、基于AD9850的高频信号源设计 0306、基于AD9850的正弦信号发生器 0307、基于DDS的雷达中頻信号源设计与实现 0308、基于DDS技术的MSK调制 0309、基于FPGA的四阶IIR数字滤波器 0310、基于FPGA的小功率立体声发射机的设计 0311、基于MSP430和nRF905的多点无线通讯模块 0312、基于nRF9E5嘚无线光标控制系统 0313、基于nRF905的无线数据多点跳传通信系统 0314、基于nRF905射频收发模块的设计 0315、基于nRF905芯片的无线传输设计与实现 0316、基于nRF905芯片的无线呼号系统设计与实现 0317、基于nRF2401的无线数据传输系统 0318、基于PLC的锅炉内胆水温控制系统设计 0319、基于UC3843的反激式开关电源反馈电路的设计 0320、基于单片機采样

我要回帖

更多关于 单片机采样保持 的文章

 

随机推荐