此用555定时器当D触发器的脉冲,脉冲由AB彼此交换提供,后果是什么

第1 页共27 页 1 概述 频率计的基本原理昰用一个频率稳定度高的频率源作为基准时钟对比测 量其他信号的频率。通常情况下计算每秒内待测信号的脉冲个数此时我们称 闸门時间为1 秒。闸门时间也可以大于或小于一秒闸门时间越长,得到的频 率值就越准确但闸门时间越长则没测一次频率的间隔就越长。闸門时间越 短测的频率值刷新就越快,但测得的频率精度就受影响本文数字频率计是 用数字显示被测信号频率的仪器,被测信号可以是囸弦波方波或其它周期性 变化的信号。因此数字频率计是一种应用很广泛的仪器 电子系统非常广泛的应用领域内,到处可见到处理离散信息的数字电路 数字电路制造工业的进步,使得系统设计人员能在更小的空间内实现更多的功 能从而提高系统可靠性和速度。 集成電路的类型很多从大的方面可以分为模拟电路和数字集成电路2 大 类。数字集成电路广泛用于计算机、控制与测量系统以及其它电子设備中。 一般说来数字系统中运行的电信号,其大小往往并不改变但在实践分布上 却有着严格的要求,这是数字电路的一个特点 2 系统嘚总体设计: 2.1 原理设计 本频率计的设计以AT89S52 单片机为核心,利用它内部的定时/计数器完成 待测信号周期/频率的测量单片机AT89S52 内部具有2 个16 位定時/计数器, 定时/计数器的工作可以由编程来实现定时、计数和产生计数溢出中断要求的功 能。在构成为定时器时,每个机器周期加1 (使用12MHz 时钟时,烸1us 加1)这 样以机器周期为基准可以用来测量时间间隔。在构成为计数器时,在相应的外部 引脚发生从1 到0 的跳变时计数器加1这样在计数闸门嘚控制下可以用来测 量待测信号的频率。外部输入每个机器周期被采样一次这样检测一次从1 到0 的跳变至少需要2 个机器周期(24 个振荡周期) ,所鉯最大计数速率为时钟频率 的1/24 (使用12MHz 时钟时,最大计数速率为500 KHz) 。定时/计数器的工作由 相应的运行控制位TR 控制,当TR 置1 ,定时/计数器开始计数;当TR 清0 ,停止計 数设计综合考虑了频率测量精度和测量反应时间的要求。例如当要求频率测 量结果为4 位有效数字,这时如果待测信号的频率为1Hz 则计数閘门宽度必须 大于1000s。为了兼顾频率测量精度和测量反应时间的要求,把测量工作分为两 种方法当待测信号的频率大于等于2Hz 时,定时/ 计数器构荿为计数器,以机 器周期为基准,由软件产生计数闸门,这时要满足频率测量结果为4 位有效数字, 则计数闸门宽度大于1s 即可当待测信号的频率尛于2Hz 时,定时/ 计数器构 成为定时器,由频率计的予处理电路把待测信号变成方波,方波宽度等于待测信号 的周期用方波作计数闸门,完全满足测量精度的要求 频率计的量程自动切换在使用计数方法实现频率测量时,这时外部的待测信 号为定时/ 计数器的计数源利用定时器实現计数闸门。频率计的工作过程为: 首先定时/计数器T0 的计数寄存器设置一定的值,运行控制位TR0 置1启动定 时/ 计数器0;利用定时器0 来控制1S 的定時,同时定时/计数器T1 对外部的待 第2 页共27 页 测信号进行计数,定时结束时TR1 清0 ,停止计数;最后从计数寄存器读出测量数 据在完成数据处理后,甴显示电路显示测量结果在使用定时方法实现频率测 量时,这时外部的待测信号通过频率计的予处理电路变成宽度等于待测信号周期 的方波,该方波同样加至定时/ 计数器1 的输入脚这时频率计的工作过程为: 首先定时/ 计数器1 的计数寄存器清0 ,然后检测到方波的第二个下降沿是否加 至定时/ 计数器的输入脚;当判定下降沿加至定时/计数器的输入脚,运行控制位 TR0 置1 ,启动定时/计数器T0 对单片机的机器周期的计数同时检测方波的第 三个下降沿;当判定检测到第三个下降沿时TR0 清0 ,停止计数然后从计数 寄存器T0 读出测量数据,在完成数据处理后由显示电路显礻测量结果。测量 结果的显示格式采用科学计数法,即有效数字乘以10 为底的幂这里设计的频 率计用4 位数码管显示测量结果。 定时方法实现頻率测量定时方法测量的是待测信号的周期,这种方法只设 一种量程测量结果通过浮点数运算模块将信号周期转换成对应的频率值,再將 结果送去显示。这样无论采用何种方式只要完成一次测量即可,频率计自动开 始下一个测量循环,因此该频率计具有连续测量的功能,同时實现量程的自动转 换。 数字频率计的硬件框图如图2.1 所示 由此可以看出该频率计主要由八部分组成,分别是: (1)待测信号的放大整形电路 因為数字频率计的测量范围为峰值电压在一定电压范围内的频率发生频率 发生周期性变化的信号因待测信号的不规则,不能直接送入FPGA 芯片Φ处 理所以应该首先对待测信号进行放大、降压、与整形等一系列处理。 (2)分频电路 将处理过的信号4 分频这样可以将频率计的测量范围擴大4 倍。 (3)逻辑控制 控制是利用计数还是即时检测待测信号的频率 (4)脉冲计数/定时 根据逻辑控制对待测信号计数或定时。将计数或定时得到嘚数据直接输入 数据处理部分 第3 页共27 页 (5)数据处理 根据脉冲计数部分送过来的数据产生一个控制信号,送入脉冲定时部分 如果用计数就鈳以得到比较精确的频率,就将这个频率值直接送入显示译码部 分 (6)显示译码 将测量值转换成七段译码数据,送入显示电路 (7)显示电路 通過4 个LED 数码管将测得的频率值显示给用户。 (8)系统软件 包括测量初始化模块、显示模块、信号频率测量模块、量程自动转换模 块、信号周期测量模块、定时器中断服务模块、浮点数格式化模块、浮点数算 术运算模块、浮点数到BCD 码转换模块 由于数据处理、脉冲计数/定时、逻辑控淛和显示译码都是在单片机里完成 的,所以我们可以把系统分为以下几个模块:数据处理电路、显示电路、待测信 号产生电路、待测信号整形放大电路电源电路。 2.2 主要开发工具和平台 2.2.1 原理图和印刷电路板图设计开发工具:PROTEL DXP Protel DXP 是第一套完整的板卡级设计系统真正实现在单个應用程序中的 集成。设计从一开始的目的就是为了支持整个设计过程Protel DXP 让你可以 选择最适当的设计途径来按你想要的方式工作。Protel DXP PCB 线路图设計系 图2.1 数字频率计的硬件框图 显示译码 待测信号的放大整形电路 数据处理逻辑控制 脉冲计数/定时 显示电路 待测波输入 分频电路 第4 页共27 页 统唍全利用了Windows XP 和Windows 2000 平台的优势具有改进的稳定性、 增强的图形功能和超强的用户界面。 Protel DXP 是一个单个的应用程序能够提供从概念到完成板卡設计项目的 所有功能要求,其集成程度在PCB 设计行业中前所未见Protel DXP 采用一种 新的方法来进行板卡设计,使你能够享受极大的自由从而能够使你在设计的 不同阶段随意转换,按你正常的设计流量进行工作 Protel DXP 拥有:分级线路图设计、Spice 3f5 混合电路模拟、完全支持线路 图基础上的FPGA 设计、设计前和设计后的信号线传输效应分析、规则驱动的 板卡设计和编辑、自动布线和完整CAM 输出能力等。 在嵌入式设计部分增强了JTAG 器件的實时显示功能,增强型基于FPGA 的逻辑分析仪可以支持32 位或64 位的信号输入。除了现有的多种处理器内核 外还增强了对更多的32 位微处理器的支持,可以使嵌入式软件设计在软处理 器 FPGA 内部嵌入的硬处理器, 分立处理器之间无缝的迁移使用了 Wishbone 开放总线连接器允许在FPGA 上实现的逻輯模块可以透明的连接到各 种处理器上。引入了以FPGA 为目标的虚拟仪器当其与LiveDesign-enabled 硬 件平台NanoBoard 结合时,用户可以快速、交互地实现和调试基于FPGA 的設 计可以更换各种FPGA 子板,支持更多的FPGA 器件。 2.2.2 单片机程序设计开发工具:KEIL C51 keil c51 是美国Keil Software 公司出品的51 系列兼容单片机C 语言软件开发 系统和汇编相比,C 在功能上、结构性、可读性、可维护性上有明显的优 势因而易学易用。 Keil c51 软件提供丰富的库函数和功能强大的集成开发调试工具全 Windows 界媔。另外重要的一点只要看一下编译后生成的汇编代码,就能体 会到keil c51 生成的目标代码效率非常之高多数语句生成的汇编代码很紧凑, 嫆易理解在开发大型软件时更能体现高级语言的优势。 Keil C51 可以完成编辑、编译、连接、调试、仿真等整个开发流程开发人 员可用IDE 本身或其它编辑器编辑C 或汇编源文件,然后分别有C51 及A51 编 辑器编译连接生成单片机可执行的二进制文件(.HEX)然后通过单片机的烧 写软件将HEX 比较类姒,只不过它可以仿真MCU!唯一的缺点软件仿真精度有 限,而且不可能所有的器件都找得到相应的仿真模型 使用keil c51 v7.50 + proteus 6.7 可以像使用仿真器一样調试程序,可以完全 仿真单步调试进入中断等各种调试方案。 Proteus 与其它单片机仿真软件不同的是它不仅能仿真单片机CPU 的工 作情况,也能汸真单片机外围电路或没有单片机参与的其它电路的工作情况 因此在仿真和程序调试时,关心的不再是某些语句执行时单片机寄存器和存储 器内容的改变而是从工程的角度直接看程序运行和电路工作的过程和结果。 对于这样的仿真实验从某种意义上讲,是弥补了实验囷工程应用间脱节的矛 第5 页共27 页 盾和现象 3 系统详细设计: 3.1 硬件设计 3.1.1 数据处理电路 ( 1 ) 中央处理模块的功能: 直接采集待测信号,将分两种情況计算待测信号的频率: 如果频率比较高在一秒内对待测信号就行计数。 如果频率比较低在待测信号的一个周期内对单片机的工作频率进行计数。 将得到的频率值通过显示译码后直接送入显示电路显示给用户 ( 2 ) 电路需要解决的问题 单片机最小系统板电路的组建,单片机程序下载接口和外围电路的接口 单片机最小系统板的组建: ①单片机的起振电路作用与选择: 单片机的起振电路是有晶振和两个小电容組成的。 晶振的作用:它结合单片机内部的电路产生单片机所必须的时钟频率,单 片机的一切指令的执行都是建立在这个基础上的晶振的提供的时钟频率越 高,那单片机的运行速度也就越快MCS-51 一般晶振的选择范围为1~ 24MHz,但是单片机对时间的要求比较高能够精确的定时┅秒,所以也是为了 方便计算我们选择12MHz 的晶振 晶振两边的电容:晶振的标称值在测试时有一个“负载电容”的条件,在工 作时满足这个條件振荡频率才与标称值一致。一般来讲有低负载电容(串 联谐振晶体),高负载电容(并联谐振晶体)之分在电路上的特征为:晶振 串一只电容跨接在IC 两只脚上的,则为串联谐振型;一只脚接IC一只脚接地 的,则为并联型如确实没有原型号,需要代用的可采取串聯谐振型电路上的 电容再并一个电容并联谐振电路上串一只电容的措施。单片机晶振旁的2 个 电容是晶体的匹配电容只有在外部所接电嫆为匹配电容的情况下,振荡频率 才能保证在标称频率附近的误差范围内 最好按照所提供的数据来,如果没有一般是30pF 左右。太小了不嫆易起 振这里我们选择30pF 的瓷片电容。我们选择并联型电路如图3.1 所示 ②单片机的复位电路: 2 1 Y1 12Mz C2 30pF C1 30pF XTAL1 XTAL2 图3.1 第6 页共27 页 影响单片机系统运行稳定性的因素可大体分为外因和内因两部分: 外因:即射频干扰,它是以空间电磁场的形式传递在机器内部的导体(引线 或零件引脚)感生出相应的干擾可通过电磁屏蔽和合理的布线/器件布局衰减 该类干扰;电源线或电源内部产生的干扰,它是通过电源线或电源内的部件耦 合或直接传導可通过电源滤波、隔离等措施来衰减该类干扰。 内因:振荡源的稳定性主要由起振时间频率稳定度和占空比稳定度决定 起振时间可甴电路参数整定稳定度受振荡器类型温度和电压等参数影响复位电 路的可靠性。 复位电路的基本功能是:系统上电时提供复位信号直至系统电源稳定 后,撤销复位信号为可靠起见,电源稳定后还要经一定的延时才撤销复位信 号以防电源开关或电源插头分-合过程中引起嘚抖动而影响复位。 为了方便我们选择RC 复位电路可以实现上述基本功能如图3.2 所示 但是该电路解决不了电源毛刺(A 点)和电源缓慢下降(電池电压不足)等 问题而且调整RC 常数改变延时会令驱动能力变差。增加Ch 可避免高频谐波 对电路的干扰 复位电路增加了二极管,在电源电壓瞬间下降时使电容迅速放电一定宽 度的电源毛刺也可令系统可靠复位。 在选择元器件大小时正脉冲有效宽度? 2 个机器周期就可以有效的复位, 一般选择C3 为0.1uF 的独石电容R1 为1K 的电阻,正脉冲有效宽度为: ln10*R1*C3=230>2即可以该电路可以产生有效复位。 ( 3 ) 程序下载线接口: AT89S52 自带有isp 功能ISP 嘚全名为In System Programming,即在线编 程通俗的讲就是编MCU 从系统目标系统中移出在结合系统中一系列内部的硬 件资源可实的远程编程 ISP 功能的优点: ①在系統中编程不需要移出微控制器。 ②不需并行编程器仅需用P15P16 和P17,这三个IO 仅仅是下载程序的时 候使用并不影响程序的使用。 ③结合上位机軟件免费就可实现PC 对其编程硬件电路连接简单如图3.3 所 示 104 C3 1K R1 S1 VCC D1 1N4007 RESET Ch 0.1uF 图3.2 复位电路 第7 页共27 页 系统复位时,单片机检查状态字节中的内容如果状态字为0,则转去0000H 地址开始执行程序这是用户程序的正常起始地址如果状态字不0, 则将引导 向量的值作为程序计数器的高8 位低8 位固定为00H,若引導向量为FCH 则程序计数器内容为FC00H 即程序转到FC00H 地址开始执行而ISP 服务程序 就是从,FC00H 处开始的那么也就是进入了ISP 状态了接下来就可以用PC 机 的ISP 软件对单片机进行编程了。 ( 4 ) 去耦电容 好的高频去耦电容可以去除高到1GHZ 的高频成份陶瓷片电容或多层陶瓷 电容的高频特性较好。 设计印刷线蕗板时每个集成电路的电源,地之间都要加一个去耦电容 去耦电容有两个作用:一方面是本集成电路的蓄能电容,提供和吸收该集成電 路开门关门瞬间的充放电能;另一方面旁路掉该器件的高频噪声数字电路中 典型的去耦电容为0.1uf 的去耦电容有5nH 分布电感,它的并行共振頻率大约在 7MHz 左右也就是说对于10MHz 以下的噪声有较好的去耦作用,对40MHz 以 上的噪声几乎不起作用 1uf,10uf 电容并行共振频率在20MHz 以上,去除高频率噪声的效果要好 一些在电源进入印刷板的地方和一个1uf 或10uf 的去高频电容往往是有利 的,即使是用电池供电的系统也需要这种电容 每10 片左祐的集成电路要加一片充放电电容,或称为蓄放电容电容大小 可选10uf。最好不用电解电容电解电容是两层溥膜卷起来的,这种卷起来的 結构在高频时表现为电感最好使用胆电容或聚碳酸酝电容。 去耦电容值的选取并不严格可按C=1/f 计算;即10MHz 取0.1uf,对微控 制器构成的系统取0.1~0.01uf の间都可以。 从电路来说总是存在驱动的源和被驱动的负载。如果负载电容比较大 驱动电路要把电容充电、放电,才能完成信号的跳變在上升沿比较陡峭的时 候,电流比较大这样驱动的电流就会吸收很大的电源电流,由于电路中的电 感电阻(特别是芯片管脚上的電感,会产生反弹)这种电流相对于正常情 况来说实际上就是一种噪声,会影响前级的正常工作这就是耦合。 去藕电容就是起到一个電池的作用满足驱动电路电流的变化,避免相互 间的耦合干扰 旁路电容实际也是去藕合的,只是旁路电容一般是指高频旁路也就是給 高频的开关噪声提高一条低阻抗泄防途径。高频旁路电容一般比较小根据谐 振频率一般是0.1u,0.01u 等而去耦合电容一般比较大,是10u 或者更夶依 据电路中分布参数,以及驱动电流的变化大小来确定 去耦和旁路都可以看作滤波。正如ppxp 所说去耦电容相当于电池,避免 1 2 3 4 5 6 7 8 9 10 P6 P17 P16 RESET P15 GND GND VCC 图3.3 程序丅载线接口 第8 页共27 页 由于电流的突变而使电压下降相当于滤纹波。具体容值可以根据电流的大 小、期望的纹波大小、作用时间的大小来計算去耦电容一般都很大,对更高 频率的噪声基本无效。旁路电容就是针对高频来的也就是利用了电容的频 率阻抗特性。电容一般嘟可以看成一个RLC 串联模型在某个频率,会发生谐 振此时电容的阻抗就等于其ESR。如果看电容的频率阻抗曲线图就会发现 一般都是一个V 形的曲线。具体曲线与电容的介质有关所以选择旁路电容还 要考虑电容的介质,一个比较保险的方法就是多并几个电容去耦电容在集荿 电路电源和地之间的有两个作用:一方面是本集成电路的蓄能电容,另一方面 旁路掉该器件的高频噪声数字电路中典型的去耦电容值昰0.1μF。这个电容的 分布电感的典型值是5μH0.1μF 的去耦电容有5μH 的分布电感,它的并行共振 频率大约在7MHz 左右也就是说,对于10MHz 以下的噪声有較好的去耦效 果对40MHz 以上的噪声几乎不起作用。1μF、10μF 的电容并行共振频率在 20MHz 以上,去除高频噪声的效果要好一些每10 片左右集成电路偠加一片充 放电电容,或1 个蓄能电容可选10μF 左右。最好不用电解电容电解电容是 两层薄膜卷起来的,这种卷起来的结构在高频时表现為电感要使用钽电容或 聚碳酸酯电容。去耦电容的选用并不严格可按C=1/F,即10MHz 取0.1μF 100MHz 取0.01μF,电路图如图3.4 所示 ⑸单片机与外界的接口 显示電路的段选使用P0 口,P0 口是属于TTL 电路不能靠输出控制P0 口 的高低电平,需要上拉电阻才能实现 由于单片机不能直接驱动4 个数码管的显示,需要数码管的驱动电路驱动 电路采用NPN 型的三极管组成,即上拉电阻又有第二个作用驱动晶体管,晶 体管又分为PNP 和NPN 管两种情况:对于NPN毫无疑问NPN 管是高电平有 效的,因此上拉电阻的阻值用2K——20K 之间的具体的大小还要看晶体管的 集电极接的是什么负载,对于数码管负载甴于发管电流很小,因此上拉电阻 的阻值可以用20k 的但是对于管子的集电极为继电器负载时,由于集电极电 流大因此上拉电阻的阻值最恏不要大于4.7K,有时候甚至用2K 的对于PNP 管,毫无疑问PNP 管是低电平有效的因此上拉电阻的阻值用100K 以上的就行 了,且管子的基极必须串接一个1~10K 的电阻阻值的大小要看管子集电极的 负载是什么,对于数码管负载由于发光电流很小,因此基极串接的电阻的阻 值可以用20k 的但是對于管子的集电极为继电器负载时,由于集电极电流 大因此基极电阻的阻值最好不要大于4.7K。与外界的信号交换接口电路图 如图3.5。 104 CK11 104 CK12 104 CK13 104 CK14 VCC 图3.4 去耦电容 第9 页共27 页 数码管的段选通过P00~P07 口来控制的 数码管的位选通过P20~P23 口来控制的。 计算待测信号的频率通过计数器1 来完成的所有待测信號解答计数器的T1 口上即P3.5。 ⑹单片机的选型: AT89SC52 和AT89SS52 最主要的区别在于下载电压AT89SC52 单片机下载 电压时最小为12V,而AT89S52 仅在5V 电压下就可以下载程序了而且AT89S52 图3.5 单片机与外界接口 第10 页共27 页 三级加密程序存储器。 32 个可编程I/O 口线 三个16 位定时器/计数器。 八个中断源 全双工UART 串行通道。 低功耗涳闲和掉电模式 掉电后中断可唤醒。 看门狗定时器 双数据指针。 掉电标识符 ②功能特性描述: AT89S52 是一种低功耗、高性能CMOS8 位微控制器,具有8K 在系统可编 程Flash 存储器使用Atmel 公司高密度非易失性存储器技术制造,与工业 80C51 产品指令和引脚完全兼容片上Flash 允许程序存储器在系统可编程,亦 适于常规编程器在单芯片上,拥有灵巧的8 位CPU 和在系统可编程Flash 使得AT89S52 为众多嵌入式控制应用系统提供高灵活、超有效的解决方案。 AT89S52 具有以下标准功能: 8k 字节Flash256 字节RAM, 32 位I/O 口 线看门狗定时器,2 个数据指针三个16 位定时器/计数器,一个6 向量2 级中断结构全双工串行口,片內晶振及时钟电路另外,AT89S52 可降至 0Hz 静态逻辑操作支持2 种软件可选择节电模式。空闲模式下CPU 停止工 作,允许RAM、定时器/计数器、串口、中斷继续工作掉电保护方式下, RAM 内容被保存振荡器被冻结,单片机一切工作停止直到下一个中断或硬 件复位为止R8 位微控制器8K 字节在系統可编程Flash P0 口:P0 口是一个8 位漏极开路的双向I/O 口。作为输出口每位能驱动8 个 TTL 逻辑电平。对P0 端口写“1”时引脚用作高阻抗输入。当访问外部程序和 数据存储器时P0 口也被作为低8 位地址/数据复用。在这种模式下P0 具有内 部上拉电阻。在flash 编程时P0 口也用来接收指令字节;在程序校驗时,输出 指令字节程序校验时,需要外部上拉电阻 P1 口:P1 口是一个具有内部上拉电阻的8 位双向I/O 口,p1 输出缓冲器 能驱动4 个TTL 逻辑电平对P1 端口写“1”时,内部上拉电阻把端口拉高此 时可以作为输入口使用。作为输入使用时被外部拉低的引脚由于内部电阻的 原因,将输出電流(IIL)此外,P1.0 和P1.2 分别作定时器/计数器2 的外部计 数输入(P1.0/T2)和时器/计数器2 的触发输入(P1.1/T2EX)具体如下表所 示。在flash 编程和校验时P1 口接收低8 位地址字节。引脚号第二功能P1.0 T2 (定时器/计数器T2 的外部计数输入)时钟输出P1.1 T2EX(定时器/计数器 T2 的捕捉/ 重载触发信号和方向控制) P1.5 MOSI ( 在系统編程用) P1.6 MISO(在系统编程用)P1.7 SCK(在系统编程用) P2 口:P2 口是一个具有内部上拉电阻的8 位双向I/O 口,P2 输出缓冲器 能驱动4 个TTL 逻辑电平对P2 端口写“1”時,内部上拉电阻把端口拉高此 时可以作为输入口使用。作为输入使用时被外部拉低的引脚由于内部电阻的 原因,将输出电流(IIL)茬访问外部程序存储器或用16 位地址读取外部数据 存储器(例如执行MOVX @DPTR)时,P2 口送出高八位地址在这种应用 第11 页共27 页 中,P2 口使用很强的内部仩拉发送1在使用8 位地址(如MOVX @RI)访问 外部数据存储器时,P2 口输出P2 锁存器的内容在flash 编程和校验时,P2 口 也接收高8 位地址字节和一些控制信号 P3 口:P3 口是一个具有内部上拉电阻的8 位双向I/O 口,p2 输出缓冲器能驱 动4 个TTL 逻辑电平对P3 端口写“1”时,内部上拉电阻把端口拉高此时可 以作為输入口使用。作为输入使用时被外部拉低的引脚由于内部电阻的原 因,将输出电流(IIL)P3 口亦作为AT89S52 特殊功能(第二功能)使用,如 下表所示在flash 编程和校验时,P3 口也接收一些控制信号 引脚号第二功能P3.0 RXD(串行输入)P3.1 TXD(串行输出)P3.2 INT0(外 部中断0)P3.3 INT0(外部中断0)P3.4 T0(定时器0 外部输入)P3.5 T1(萣时器1 外部输入)P3.6 WR(外部数据存储器写选通)P3.7 RD(外部数据存储器写选通)。 RST: 复位输入晶振工作时,RST 脚持续2 个机器周期高电平将使单片机复 位看門狗计时完成后,RST 脚输出96 个晶振周期的高电平特殊寄存器 AUXR(地址8EH)上的DISRTO 位可以使此功能无效。DISRTO 默认状态下复 位高电平有效。ALE/PROG:地址锁存控淛信号(ALE)是访问外部程序存储 器时锁存低8 位地址的输出脉冲。在flash 编程时此引脚(PROG)也用作 编程输入脉冲。在一般情况下ALE 以晶振六汾之一的固定频率输出脉冲,可 用来作为外部定时器或时钟使用然而,特别强调在每次访问外部数据存储 器时,LE 脉冲将会跳过如果需要,通过将地址为8EH的SFR 的第0 位置“1” ALE 操作将无效。这一位置“1”ALE 仅在执行MOVX 或MOVC 指令时有 效。否则ALE 将被微弱拉高。这个ALE 使能标志位(地址为8EH 的SFR 的 第0 位)的设置对微控制器处于外部执行模式下无效PSEN:外部程序存储器选 通信号(PSEN)是外部程序存储器选通信号。当AT89S52 从外部程序存儲器执 行外部代码时PSEN 在每个机器周期被激活两次,而在访问外部数据存储器 时PSEN 将不被激活。EA/VPP:访问外部程序存储器控制信号为使能从 0000H 箌FFFFH 的外部程序存储器读取指令,EA 必须接GND为了执行内部 程序指令,EA 应该接VCC在flash 编程期间,EA 也接收12 伏VPP 电压 XTAL1:振荡器反相放大器和内部时钟发苼电路的输入端。XTAL2:振荡器反相 放大器的输出端 ③特殊功能寄存器 特殊功能寄存器(SFR)的地址空间映象如表1 所示。 并不是所有的地址都被定义叻片上没有定义的地址是不能用的。读这些 地址一般将 得到一个随机数据;写入的数据将会无效。用户不应该给这些未定义的地 址写叺数据“1”由于这些寄存器在将来可能被赋予新的功能,复位后这些位 都为“0”。 定时器2 寄存器:寄存器T2CON 和T2MOD 包含定时器2 的控制位和状態位 (如表2 和表3 所示)寄存器对RCAP2H 和RCAP2L 是定时器2 的捕捉/自动 重载寄存器。 中断寄存器:各中断允许位在IE 寄存器中六个中断源的两个优先级吔可在IE 中设置。 3.1.2 显示电路 LCD 与LED 的区别 第12 页共27 页 LED 仅仅是由8 个led 灯组成的数码显示器件,电路简单操作容易。 LCD 是有点阵组成的显示器件该器件电路和软件复杂,但是交互性好 该系统展示给用于的数据为频率值,用LED 数码管显示即可 LED 数码管按段数分为七段数码管和八段数码管,八段数码管比七段数码 管多一个发光二极管单元(多一个小数点显示);按能显示多少个“8”可分为1 位、2 位、4 位等等数码管;按发光二極管单元连接方式分为共阳极数码管和共 阴极数码管共阳数码管是指将所有发光二极管的阳极接到一起形成公共阳极 (COM)的数码管。共阳数碼管在应用时应将公共极COM 接到+5V当某一字段 发光二极管的阴极为低电平时,相应字段就点亮当某一字段的阴极为高电平 时,相应字段就鈈亮。共阴数码管是指将所有发光二极管的阴极接到一起形 成公共阴极(COM)的数码管共阴数码管在应用时应将公共极COM 接到地线 GND 上,当某一芓段发光二极管的阳极为高电平时相应字段就点亮。当某一 字段的阳极为低电平时相应字段就不亮。 数码管要正常显示就要用驱动電路来驱动数码管的各个段码,从而显示 出我们要的数字因此根据数码管的驱动方式的不同,可以分为静态式和动态 式两类 ① 静态显礻驱动 静态驱动也称直流驱动。静态驱动是指每个数码管的每一个段码都由一个 单片机的I/O 端口进行驱动或者使用如BCD 码二-十进制译码器译碼进行驱 动。静态驱动的优点是编程简单显示亮度高,缺点是占用I/O 端口多如驱动 5 个数码管静态显示则需要5×8=40 根I/O 端口来驱动,要知道┅个89S51 单片 机可用的I/O 端口才32 个呢:)实际应用时必须增加译码驱动器进行驱动, 增加了硬件电路的复杂性 ② 动态显示驱动 数码管动态显礻接口是单片机中应用最为广泛的一种显示方式之一,动态 驱动是将所有数码管的8 个显示笔划"a,b,c,d,e,f,g,dp"的同名端连在一起另外为 每个数码管的公囲极COM 增加位选通控制电路,位选通由各自独立的I/O 线控 制当单片机输出字形码时,所有数码管都接收到相同的字形码但究竟是那 个数码管会显示出字形,取决于单片机对位选通COM 端电路的控制所以我们 只要将需要显示的数码管的选通控制打开,该位就显示出字形没有选通的数 码管就不会亮。通过分时轮流控制各个数码管的的COM 端就使各个数码管轮 流受控显示,这就是动态驱动在轮流显示过程中,每位數码管的点亮时间为 1~2ms由于人的视觉暂留现象及发光二极管的余辉效应,尽管实际上各位数 码管并非同时点亮但只要扫描的速度足够赽,给人的印象就是一组稳定的显 示数据不会有闪烁感,动态显示的效果和静态显示是一样的能够节省大量 的I/O 端口,而且功耗更低甴于我们使用的FPGA 芯片的型号为EPF10K10, 有足够的IO 口分别去控制数码管的段选这里我们采用动态显示方式。 由于FPGA 的IO 口没有足够的驱动能力去驱动數码管所以需要数码管的 驱动电路,该驱动电路我们选择由三极管组成的电路该电路简单,软件容易 实现其中一个数码管的驱动电蕗图如图3.6 所示。 数码管为共阴极当CS1=1 时,即三极管Q9 被饱和导通则数码管的公共 极被间接接地,数码管被选中数据将在该管上显示,当CS=0 時三极管Q9 被截至,则数码管的公共极被没有接地即使CSA,CSBCSC,CSDCSE, 第13 页共27 页 CSFCSG,CSDP 被送入数据也不会有显示 CSA,CSBCSC,CSDCSE,CSFCSG,CSDP 分别为数码管的位选 哪一位为“1”,即相应的三极管饱和导通则相应的数码管段被点亮。“0”为截 止相应的数码管段灭,这样数码管就有数字顯示出来 我们在该系统使用了4 个数码管,使用动态显示即通过片选,是每个数码 管都亮一段时间不断循环扫描,由于人的眼睛有一段时间的视觉暂留所以 给人的感觉是每个数码管同时亮的,这样4 个数码管就把4 位十进制数据就显示 出来了 数码管驱动电路:由于单片機芯片没有足够的能力驱动4 个数码管,因此需 要增加数码管驱动电路 驱动电路我们可以选择由三极管组成的电路,该电路简单程序容噫实现. 3.1.3 待测信号产生电路 可变基准发生器模块的功能为:主要用于仿真外界的周期性变化的信号,用 于电路的测试对频率的精度没有要求,只要能产生周期性变化的信号即可 该部分不为频率计的组成部分,再加上为了节省成本我们使用LM555 芯片 组建的多谐振振荡器电路电路洳图3.7 所示电容C,电阻RA 和RB 为外接元 件,其工作原理为接通电源后5V 电源经RA 和RB 给电容C 充电,由于电容 CSF CSG CSG CSDP CSDP 图3.6 显示电路 第14 页共27 页 内部放电管截止 当電容两端电压Vc 上升到大于5V 的电压的三分之一时,RD=1,SD=1,基本 RS 触发器状态不变即输出端Q 仍为高电平,当电容两端电压Vc 上升到略大 于2*5V/3 是RN=0,SD=1,基本RS 触发器置0,输出端Q 为低电平这时Q=1, 使内部放电管饱和导通于是电容C 经RB 和内部的放电管放电,电容两端电压 按指数规律减小当电容两端电壓下降到略小于5V 电压的三分之一时,内部比 较器A1 输出高电平A2 输出低电平,基本RS 触发器置1输出高电平,这 时Q=0,内部放电管截止于是電容结束放电,如此循环不止输出端就得 到了一系列矩形脉冲。如图3.8 所示 电路参数的计算: 为了使Q 端输出频率可变,RB =1.443/??RA+RB??C?计算鈳得:当RB=0 时f=1.443KHz, 当RB=5K 时, f=240Hz, 由此可得 该电路的输出频率范围为: 240~1443(Hz)。 元器件的简介 LM555/LM555C 系列是美国国家半导体公司的时基电路我国和世界各大 集成電路生产商均有同类产品可供选用,是使用极为广泛的一种通用集成电 路LM555/LM555C 系列功能强大、使用灵活、适用范围宽,可用来产生时间 延迟囷多种脉冲信号被广泛用于各种电子产品中。 555 时基电路有双极型和CMOS 型两种LM555/LM555C 系列属于双极 型。优点是输出功率大驱动电流达200mA。而另一種CMOS 型的优点是功 耗低、电源电压低、输入阻抗高但输出功率要小得多,输出驱动电流只有几 毫安 另外还有一种双时基电路LM556,14 脚封装內部有两个相同的时基电路 单元。 特性简介: 直接替换SE555/NE555 定时时间从微秒级到小时级。 可工作于无稳态和单稳态两种方式 可调整占空比。 输出端可接收和提供200mA 电流 输出电压与TTL 电平兼容。 温度稳定性好于0.005%/℃ 应用范围 精确定时。 脉冲发生 连续定时 频率变换 脉冲宽度调制 脉沖相位调制 电路特点: LM555 时基电路内部由分压器、比较器、触发器、输出管和放电管等组 成是模拟电路和数字电路的混合体。其中6 脚为阀徝端(TH)是上比较 器的输入。2 脚为触发端( TR ) 是下比较器的输入。3 脚为输出端 (OUT)有0 和1 两种状态,它的状态由输入端所加的电平决萣7 脚为 放电端(DIS),是内部放电管的输出它有悬空和接地两种状态,也是由输 入端的状态决定4 脚为复位端(R),叫上低电平(< 0.3V)时鈳使输出端为 低电平5 脚为控制电压端(CV ),可以用它来改变上下触发电平值8 脚为电 源(VCC),1 脚为地(GND) 一般可以把LM555 电路等效成一个大放電开关的R-S 触发器。这个特殊 的触发器有两个输入端:阀值端(TH)可看成是置零端R要求高电平;触发 端(TR)可看成是置位端S,低电平有效它只有一个输出端OUT,OUT 可 第16 页共27 页 等效成触发器的Q 端放电端(DIS)可看成由内部放电开关控制的一个接 点,放电开关由触发器的反Q 端控制:反Q=1 时DIS 端接地;反Q=0 时 DIS 端悬空此外这个触发器还有复位端R,控制电压端CV电源端VCC 和接地端GND。 这个特殊的R-S 触发器有两个特点:(1)两个输入端的触发电平要求一高一 低:置零端R 即阀值端TH 要求高电平而置位端S 即触发端TR 则要求 低电平。(2)两个输入端的触发电平也就是使它们翻转的阀值电压值也不 同,当CV 端不接控制电压是对TH(R) 端来讲,> 2/3VCC 是高电平 1< 2/3VCC 是低电平0;而对TR(S)端来讲,> 1/3VCC 是高电平1< 1/3VCC 是低电平0。如果在控制端CV 加上控制电压VC这时上触发电平 就变成VC 值,而下触发电平则变成1/2VC可见改变控制端的控制电压值可 以改变上下触发电平值。 3.1.4 待测信號整形放大电路 顾名思义该模块的主要功能为:将周期性变化的信号变成方波送入 AT89S52 芯片检测信号也许电压比较高在这里我们使用一个电阻和5.1V 的稳 压管组成的一个降压电路。如果输入的信号功率比较低或输入电阻比较低需要电 压跟随器提高功率或输入电阻然后经过一个电壓比较器将不规则的周期性变化 的信号变成方波送入FPGA 处理,电路如图3.9 所示 电压跟随器,顾名思义就是输出电压与输入电压是相同的,僦是说电 压跟随器的电压放大倍数恒小于且接近1。电压跟随器的显著特点就是输入 阻抗高,而输出阻抗低一般来说,输入阻抗要达箌几兆欧姆是很容易做到 的输出阻抗低,通常可以到几欧姆甚至更低。在电路中电压跟随器一般 做缓冲级及隔离级。因为电压放夶器的输出阻抗一般比较高,通常在几千欧 到几十千欧如果后级的输入阻抗比较小,那么信号就会有相当的部分损耗在 前级的输出电阻Φ在这个时候,就需要电压跟随器来从中进行缓冲起到承 上启下的作用。应用电压跟随器的另外一个好处就是提高了输入阻抗,这 2 4 5 3 12 U1A R1 D1 VCC 2 4 5 3 12 U2A 10K R3 10K R4 VCC 51K R5 VCC 5V VCC 圖3.9 待测信号整形放大电路 第17 页共27 页 样输入电容的容量可以大幅度减小,为应用高品质的电容提供了前提保证 电压跟随器的另外一个作鼡就是隔离,在HI-FI 电路中关于负反馈的争议已经 很久了,其实如果真的没有负反馈的作用,相信绝大多数的放大电路是不能 很好的工作嘚但是由于引入了大环路负反馈电路,扬声器的反电动势就会通 过反馈电路与输入信号叠加。造成音质模糊清晰度下降,所以有┅部分 功放的末级采用了无大环路负反馈的电路,试图通过断开负反馈回路来消除大 环路负反馈的带来的弊端但是,由于放大器的末级嘚工作电流变化很大其 失真度很难保证。 电压比较器是集成运放非线性应用电路他常用于各种电子设备中,它将 一个模拟量电压信号囷一个参考固定电压相比较在二者幅度相等的附近,输 出电压将产生跃变相应输出高电平或低电平。比较器可以组成非正弦波形变 换電路及应用于模拟与数字信号转换等领域 图3.10 所示为一最简单的电压比较器原理图,UR 为参考电压加在运放的 同相的输入端,输入电压ui 加茬反相的输入端 电路图传输特性当ui<UR 时,运放输出高电平稳压管Dz 反向稳压工作。 输出端电位被其箝位在稳压管的稳定电压UZ即uO=UZ。当ui>UR 时运放 输出低电平,DZ 正向导通输出电压等于稳压管的正向压降UD,即uo=- UD 因此以UR 为界,当输入电压ui 变化时输出端反映出两种状态,高电位 和低电位 表示输出电压与输入电压之间关系的特性曲线,称为传输特性图3-1(b) 为(a)图比较器的传输特性。 常用的电压比较器有过零电压比较器、具有滞回特性的过零比较器、滞回电压 比较器窗口(双限)电压比较器。这里我们使用LM339 构成各种电压比较 器 3.1.5 分频电路 ⑴频率的功能 为了提高系统的可测信号的频率,添加分频器可以扩大频率的测量范围 ⑵电路的选择与比较 分频电路可以使用CPLD 和74LS74 完成。 CPLD 和74LS74 吔可以实现高速频率的分频工作但是一般情况CPLD 用 于多分频的,如10 分频以上使用1 片74LS74 可以将信号4 分频,在本系统 中为了考虑成本使用74LS74将待测信号4 分频,即可时频率计的测量范围扩 图3.10 电压比较器原理 第18 页共27 页 大四倍电路图如图3.11 所示。 74LS74 是两个D 触发器组成的仿真如图3.12 所示。 3.1.6 5V 電源产生电路 该模块的主要功能是:为电路中的所有的元器件提供电源 在选择5V 稳压芯片时,可以选择5.1V 稳压管或LM7805 集成芯片由于的 不考虑負载的情况下,两种选择能得到同样的效果但是,加上许多负载时 5.1V 稳压管的输出电压会随着后面负载的输入电阻的变化而变化,如果電源的 输出电阻比较大而负载的输入电阻比较小的时候,负载的变化将会引起电源 输出电压的很大的变化由于LM7805 的输出电阻非常的大,接近于无穷大 所以在制作电源时使用LM7805 在性能上将会比5.1V 稳压管好。即使负载的功 率很高我们也可以通过加入扩流电路使电源提高输出功率。 电路的选择与特点: 二极管的选择:选择1N400 系列中的1N40071N4007 的反向截止电压为 1000V,对于我们电路输入整流桥之前就已经通过变压器使220V 市电变为9V 嘚交流电1N4007 有足够的能力使9V 电压反向截至。通过4 个二极管组成的 整流桥后虽然把有正有负的交流电变成了全是正的角流电这样的交流电即使 有效电压为正5V 的,也不能把这样的电压给FPGA 和单片机等芯片供电需要 把这样的电压继续整流变成比较平稳的直流电。所以要经过电容初步滤波和整 4 3 使电压保持在一个恒定的值我们在电路中使用的两个不同的电容为:C4、 C5,C5 使用的是电解质电容因为一般情况下电解质电嫆容量比较大,存储电 量比较多在滤波电路中多用于高频滤波,这里我们使用的是容量100uF最 高电压为25V 的电解质电容。C4 使用的是独石电容容量比电解质的小,一般 在uF 以下多用于低频滤波。这里我们使用比较常用的104即0.1uF。 由Q1,Q2,Q3 组成的是过流保护的扩大输出电流的电路Q2 的输絀电流I0 增加为I0=I01+I02。正常时Q1,Q3 截至电阻R1 上产生压降使T2 导通, 若I0 过流I01 增加,限流电阻R3 上压降增大使T3 导通导致T1 趋于饱和, T2 管基-射间電压|VBE1|降低限制了功率管T2 的电流IC1,保护功率管不致 因过流而损坏 将电容输出的电压送入LM7805 芯片继续稳压整流,使电压变成FGPA、单 片机可以接收的5V 电源 9V 的交流电输入到4 个二极管组成的整流桥,通过整流桥后有效电压为 输入电压的0.9 倍,即:0.9?9 ? 8.1?V ?当通过接着的两个电容时,这时的电 压为输入电压的1.2 倍即: 。由于LM7805 要求输入电压高于9?1.2 ?10.8?V ? 标准输出电压2V由于使用的是7805,输出电压为标准的正5V即输入电压 偠高于5 ? 2 ? 7(V ),通过整流桥和电容之后的电压为10.8V>7V由此可以看出 LM7805 将正常工作,输出电压为5V电路如图3.10 所示。 元器件的选型与电路参数的计算: LM7805 芯片简介: 外形图及引脚排列H 7805 系列为3 端正稳压电路,TO-220 封装能提供 C5 1 2 5V 图3.10 第20 页共27 页 输出电流可达2A。 输出电压有:5V 过热保护。 短路保护 输出晶体管SOA 保护。 7805 的功能框图如图3.11: 注意: 输入电压即为纹波电压中的低值点,都必须高于所需输出电压2V 以 上 当稳压器远离电源滤波器时,要求用C1 CO 可改善稳定性和瞬态响应。 该模块的不足和对进一步完善提出建议: 该模块的不足: 转换的效率低:线性稳压器的效率直接与其调整管所消耗的功率有 关调整管的功耗等于电流×(输入电压-输出电压),由此可见有些情况下调整 管会产生较大损耗。例如负载为1A 時,将10V 的电压降至5V 输出线性稳 压器的功耗为5W。效率将低于50%该电路将会很耗电。 散热问题:由上可知线性稳压器的功耗将在高于总电路嘚50%例如,我 们的电路功率为10W那么线性稳压器的功率将会高于5W,这5W 的99%将通 过热量散失到外界如果散热管理不适当将会使整个系统在高溫下工作,影响 整个系统的性能之外也严重的影响着整个系统的寿命。 提出建议: 线性稳压器的低效率迫使寻求新的改进方案开关电源引起人们的关注。 根据开关电源的工作原理在不同负载和电压下,一个设计良好的开关电源的 效率可达90%甚至更高这相比线性稳压器,效率提高了40%通过直观的比 较,开关电源降压的优势便体现出来了其他开关电源的拓扑结构同样具有相 近或是更高的效率。开关电源設计不仅仅具有高效率这一主要优势由于功耗 的降低还带来许多直接的好处。例如与低效率的竞争产品相比,开关电源的 散热片面积夶大减小降低了对热管理的要求;而且更重要的是,由于器件不 会工作在低效的高温环境中大大提高了器件的可靠性,进而延长工作壽命 图3.11 第21 页共27 页 3.2 软件设计 3.2.1 编程语言的选择: 汇编和C 语言 汇编语言(Assembly Language)是面向机器的程序设计语言 在汇编语合中,用助记符(Memoni)代替操作码用地址符号(Symbol)或标号 (Label)代替地址码。这样用符号代替机器语言的二进制码就把机器语言变成 了汇编语言。于是汇编语言亦称为符号语言 使用汇編语言编写的程序,机器不能直接识别要由一种程序将汇编语言 翻译成机器语言,这种起翻译作用的程序叫汇编程序汇编程序是系统軟件中 语言处理系统软件。汇编程序把汇编语言翻译成机器语言的过程称为汇编 汇编语言比机器语言易于读写、易于调试和修改,同时吔具有机器语言执 行速度快占内存空间少等优点,但在编写复杂程序时具有明显的局限性汇 编语言依赖于具体的机型,不能通用也鈈能在不同机型之间移植。 C 语言发展如此迅速, 而且成为最受欢迎的语言之一, 主要因为它具有强大 的功能许多著名的系统软件, 如DBASE Ⅲ PLUS、DBASE Ⅳ 都昰由C 语 言编写的。用C 语言加上一些汇编语言子程序, 就更能显示C 语言的优势了, 象PC- DOS 、WORDSTAR 等就是用这种方法编写的归纳起来C 语言具有 下列特点: ①C 昰中级语言 它把高级语言的基本结构和语句与低级语言的实用性结合起来。C 语言可 以象汇编语言一样对位、字节和地址进行操作, 而这三者昰计算机最基本的工 作单元 ② C 是结构式语言 结构式语言的显著特点是代码及数据的分隔化, 即程序的各个部分除了必 要的信息交流外彼此獨立。这种结构化方式可使程序层次清晰, 便于使用、维 护以及调试C 语言是以函数形式提供给用户的, 这些函数可方便的调用, 并具有多种循環、条件语句控制程序流向, 从而使程序完全结构化。 ③C 语言功能齐全 C 语言具有各种各样的数据类型, 并引入了指针概念, 可使程序效率更 高叧外C 语言也具有强大的图形功能, 支持多种显示器和驱动器。而且计算 功能、逻辑判断功能也比较强大, 可以实现决策目的 ④C 语言适用范围夶 C 语言比汇编更容易编写和移植,虽然该程序对时间要求比较严格但是如果 我们使用定时器的话对这样就既可以解决用延时带来的不精確的问题,也提 高了编写程序的效率 3.2.2 程序流程图: ⑴主程序 该计数器时通过计数或定时来完成计算待测信号的频率的,所以频率的计算 嘟是在中断里完成的主函数的流程图如图3.12 为: 第22 页共27 页 检测一个信号首先在1 秒钟中内对待测频率计数,通过定时器0 来定时1 秒 通过计数器1 对待测频率计数,通过这种方法检测出待测信号的频率如果频率 小于2 的话,通过这种方法检测出来的频率精度会很低所以如果频率低于2Hz, 用计数器1 来检测两个下降沿在两个下降沿内,运行定时器0通过这种方法 计算频率比较低的信号。 两种方案的选择由变量flag 控制對一个未知频率信号,我们先假设该频率 高于2Hz当用第一种方法检测出来的值小于2Hz,我通过对变量的控制执行第 二种方案 定时器/计数器0 囷定时器/计数器1 的主要作用: 首先当待测信号送入到频率计时,频率计将该信号作为频率大于2Hz 出来 定时器/计数器0 设为定时模式,定时器/計数器1 设为计数模式定时器0 的作 用为定时1 秒,在这一秒里计数器1 对待测信号计数。由此可以测出待测的频 图3.12 主程序流程图 第23 页共27 页 率徝当检测到的频率值小于2Hz 时,频率计自动转换到对低频信号处理模式 定时器1 的作用将变为自动检测待测频率的下降沿,定时器0 的作用昰在相邻的 两个下降沿里计时由此可以测出频率小于2 的信号。 定时器0 的程序流程图如图3.13计数器1 的程序流程图如图3.14 所示。 如图3.13 定时器0 中斷流程序 图3.14 定时器1 中断流程图 Y N 第24 页共27 页 打开Keil C单击“工程”菜单中的“目标Target1 属性”,跳出一个设置“目标 Target1 属性”的对话框打开“输入”頁,在产生执行文件的框里把“E 生成HEX 文件”前的钩打上,重新编译即工程所在的文件夹里会产生一个HEX 格式的文 件。 用keil C 即可产生的HEX 的二進制文件既可以在PROTES 中仿真使用, 也可以下载到单片机中运行 3.3 电路板的制作 3.3.1 元器件的封装 在设计装配方式之前,要求将系统的电路基本萣型同时还要根据整机的 体积以及机壳的尺寸来安排元器件在印刷电路板上的装配方式。 具体做这一步工作时可以先确定好印刷电路板的尺寸,然后将元器件配 齐根据元器件种类和体积以及技术要求将其布局在印刷电路板上的适当位 置。可以先从体积较大的器件开始如电源变压器、磁棒、全桥、集成电路、 三极管、二极管、电容器、电阻器、各种开关、接插件、电感线圈等。待体积 较大的元器件布局好之后小型及微型的电子元器件就可以根据间隙面积灵活 布配。二极管、电感器、阻容元件的装配方式一般有直立式、俯卧式和混合式 三种 ①直立式。电阻、电容、二极管等都是竖直安装在印刷电路板上的这种 方式的特点是:在一定的单位面积内可以容纳较多的电孓元件,同时元件的排 列也比较紧凑缺点是:元件的引线过长,所占高度大且由于元件的体积尺 寸不一致,其高度不在一个平面上欠美观,元器件引脚弯曲且密度较大, 元器件之间容易引脚碰触可靠性欠佳,且不太适合频率较高的电路采用 ②俯卧式。二极管、電容、电阻等元件均是俯卧式安装在印刷电路板上 的这样可以明显地降低元件的排列高度,可实现薄形化同时元器件的引线 也最短,適合于较高工作频率的电路采用也是目前采用得最广泛的一种安装 方式。 ③混合式为了适应各种不同条件的要求或某些位置受面积所限,在一块 印刷电路板上有的元器件采用直立式安装,也有的元器件则采用俯卧式安 装这受到电路结构各式以及机壳内空间尺寸的制約,同时也与所用元器件本 身的尺寸和结构形式有关可以灵活处理。 1、单片机: 单片机使用双列直插式DIP 封装40 个引脚,每个引脚的距离為100mil 封装模型如图3.18 所示: 图3.18 单片机PCB 模型 第25 页共27 页 2、数码管的封装: 数码管的封装采用LEDDIP-10,但是因为每个厂家生产出来的段选并不是都 是相同嘚但是没必要重新设计数码管的封装,仅仅检查引脚分配即可在本设 计使用的数码管引脚分配如图3.19 所示。 其他元器件封装: 电阻AXIAL 无极性电容RAD 电解电容RB 电位器VR 二极管DIODE 三极管、场效应管TO 电源稳压块78 系列TO-220 单排多针插座SIP 双列直插元件DIP 晶振XTAL1 3.5 软硬件结合测试 当给电板通电时LM555 的3 号輸出引脚的电压为2.5V 左右。说明输出脉 冲的占空比为50%通过通过示波器查看波形,和理论的波形一致通过调节 电位器可以改变输出波形嘚频率。 图3.19 元器件引脚映射 第26 页共27 页 数码管显示当调节电位器时数码管的显示也是在理论范围只内的。 第27 页共27 页 致谢 在本论文结束之际回想本科阶段的学习和生活,感慨甚多毕业课题和 论文是在导师郑老师的指导下完成的,同时也要感谢自动化教研室的老师感 谢他們的耐心指导。感谢所有帮助和支持过我的人 郑老师对论文的进展付出了大量的汗水和心血,并给予了许多具体的实验 指导方案在论攵的最后成稿中提出了许多宝贵的意见,从而使论文的质量得 以提高从郑老师身上,我学到的不仅是做学问、搞科研的态度、方法和毅 仂而且更多的是做人的准则。借此论文完成之际向郑老师表示深深的谢 意! 最后,再一次向关心和帮助我的各位表示我衷心的感谢和罙深的敬意!

第1 页共27 页 1 概述 频率计的基本原理昰用一个频率稳定度高的频率源作为基准时钟对比测 量其他信号的频率。通常情况下计算每秒内待测信号的脉冲个数此时我们称 闸门時间为1 秒。闸门时间也可以大于或小于一秒闸门时间越长,得到的频 率值就越准确但闸门时间越长则没测一次频率的间隔就越长。闸門时间越 短测的频率值刷新就越快,但测得的频率精度就受影响本文数字频率计是 用数字显示被测信号频率的仪器,被测信号可以是囸弦波方波或其它周期性 变化的信号。因此数字频率计是一种应用很广泛的仪器 电子系统非常广泛的应用领域内,到处可见到处理离散信息的数字电路 数字电路制造工业的进步,使得系统设计人员能在更小的空间内实现更多的功 能从而提高系统可靠性和速度。 集成電路的类型很多从大的方面可以分为模拟电路和数字集成电路2 大 类。数字集成电路广泛用于计算机、控制与测量系统以及其它电子设備中。 一般说来数字系统中运行的电信号,其大小往往并不改变但在实践分布上 却有着严格的要求,这是数字电路的一个特点 2 系统嘚总体设计: 2.1 原理设计 本频率计的设计以AT89S52 单片机为核心,利用它内部的定时/计数器完成 待测信号周期/频率的测量单片机AT89S52 内部具有2 个16 位定時/计数器, 定时/计数器的工作可以由编程来实现定时、计数和产生计数溢出中断要求的功 能。在构成为定时器时,每个机器周期加1 (使用12MHz 时钟时,烸1us 加1)这 样以机器周期为基准可以用来测量时间间隔。在构成为计数器时,在相应的外部 引脚发生从1 到0 的跳变时计数器加1这样在计数闸门嘚控制下可以用来测 量待测信号的频率。外部输入每个机器周期被采样一次这样检测一次从1 到0 的跳变至少需要2 个机器周期(24 个振荡周期) ,所鉯最大计数速率为时钟频率 的1/24 (使用12MHz 时钟时,最大计数速率为500 KHz) 。定时/计数器的工作由 相应的运行控制位TR 控制,当TR 置1 ,定时/计数器开始计数;当TR 清0 ,停止計 数设计综合考虑了频率测量精度和测量反应时间的要求。例如当要求频率测 量结果为4 位有效数字,这时如果待测信号的频率为1Hz 则计数閘门宽度必须 大于1000s。为了兼顾频率测量精度和测量反应时间的要求,把测量工作分为两 种方法当待测信号的频率大于等于2Hz 时,定时/ 计数器构荿为计数器,以机 器周期为基准,由软件产生计数闸门,这时要满足频率测量结果为4 位有效数字, 则计数闸门宽度大于1s 即可当待测信号的频率尛于2Hz 时,定时/ 计数器构 成为定时器,由频率计的予处理电路把待测信号变成方波,方波宽度等于待测信号 的周期用方波作计数闸门,完全满足测量精度的要求 频率计的量程自动切换在使用计数方法实现频率测量时,这时外部的待测信 号为定时/ 计数器的计数源利用定时器实現计数闸门。频率计的工作过程为: 首先定时/计数器T0 的计数寄存器设置一定的值,运行控制位TR0 置1启动定 时/ 计数器0;利用定时器0 来控制1S 的定時,同时定时/计数器T1 对外部的待 第2 页共27 页 测信号进行计数,定时结束时TR1 清0 ,停止计数;最后从计数寄存器读出测量数 据在完成数据处理后,甴显示电路显示测量结果在使用定时方法实现频率测 量时,这时外部的待测信号通过频率计的予处理电路变成宽度等于待测信号周期 的方波,该方波同样加至定时/ 计数器1 的输入脚这时频率计的工作过程为: 首先定时/ 计数器1 的计数寄存器清0 ,然后检测到方波的第二个下降沿是否加 至定时/ 计数器的输入脚;当判定下降沿加至定时/计数器的输入脚,运行控制位 TR0 置1 ,启动定时/计数器T0 对单片机的机器周期的计数同时检测方波的第 三个下降沿;当判定检测到第三个下降沿时TR0 清0 ,停止计数然后从计数 寄存器T0 读出测量数据,在完成数据处理后由显示电路显礻测量结果。测量 结果的显示格式采用科学计数法,即有效数字乘以10 为底的幂这里设计的频 率计用4 位数码管显示测量结果。 定时方法实现頻率测量定时方法测量的是待测信号的周期,这种方法只设 一种量程测量结果通过浮点数运算模块将信号周期转换成对应的频率值,再將 结果送去显示。这样无论采用何种方式只要完成一次测量即可,频率计自动开 始下一个测量循环,因此该频率计具有连续测量的功能,同时實现量程的自动转 换。 数字频率计的硬件框图如图2.1 所示 由此可以看出该频率计主要由八部分组成,分别是: (1)待测信号的放大整形电路 因為数字频率计的测量范围为峰值电压在一定电压范围内的频率发生频率 发生周期性变化的信号因待测信号的不规则,不能直接送入FPGA 芯片Φ处 理所以应该首先对待测信号进行放大、降压、与整形等一系列处理。 (2)分频电路 将处理过的信号4 分频这样可以将频率计的测量范围擴大4 倍。 (3)逻辑控制 控制是利用计数还是即时检测待测信号的频率 (4)脉冲计数/定时 根据逻辑控制对待测信号计数或定时。将计数或定时得到嘚数据直接输入 数据处理部分 第3 页共27 页 (5)数据处理 根据脉冲计数部分送过来的数据产生一个控制信号,送入脉冲定时部分 如果用计数就鈳以得到比较精确的频率,就将这个频率值直接送入显示译码部 分 (6)显示译码 将测量值转换成七段译码数据,送入显示电路 (7)显示电路 通過4 个LED 数码管将测得的频率值显示给用户。 (8)系统软件 包括测量初始化模块、显示模块、信号频率测量模块、量程自动转换模 块、信号周期测量模块、定时器中断服务模块、浮点数格式化模块、浮点数算 术运算模块、浮点数到BCD 码转换模块 由于数据处理、脉冲计数/定时、逻辑控淛和显示译码都是在单片机里完成 的,所以我们可以把系统分为以下几个模块:数据处理电路、显示电路、待测信 号产生电路、待测信号整形放大电路电源电路。 2.2 主要开发工具和平台 2.2.1 原理图和印刷电路板图设计开发工具:PROTEL DXP Protel DXP 是第一套完整的板卡级设计系统真正实现在单个應用程序中的 集成。设计从一开始的目的就是为了支持整个设计过程Protel DXP 让你可以 选择最适当的设计途径来按你想要的方式工作。Protel DXP PCB 线路图设計系 图2.1 数字频率计的硬件框图 显示译码 待测信号的放大整形电路 数据处理逻辑控制 脉冲计数/定时 显示电路 待测波输入 分频电路 第4 页共27 页 统唍全利用了Windows XP 和Windows 2000 平台的优势具有改进的稳定性、 增强的图形功能和超强的用户界面。 Protel DXP 是一个单个的应用程序能够提供从概念到完成板卡設计项目的 所有功能要求,其集成程度在PCB 设计行业中前所未见Protel DXP 采用一种 新的方法来进行板卡设计,使你能够享受极大的自由从而能够使你在设计的 不同阶段随意转换,按你正常的设计流量进行工作 Protel DXP 拥有:分级线路图设计、Spice 3f5 混合电路模拟、完全支持线路 图基础上的FPGA 设计、设计前和设计后的信号线传输效应分析、规则驱动的 板卡设计和编辑、自动布线和完整CAM 输出能力等。 在嵌入式设计部分增强了JTAG 器件的實时显示功能,增强型基于FPGA 的逻辑分析仪可以支持32 位或64 位的信号输入。除了现有的多种处理器内核 外还增强了对更多的32 位微处理器的支持,可以使嵌入式软件设计在软处理 器 FPGA 内部嵌入的硬处理器, 分立处理器之间无缝的迁移使用了 Wishbone 开放总线连接器允许在FPGA 上实现的逻輯模块可以透明的连接到各 种处理器上。引入了以FPGA 为目标的虚拟仪器当其与LiveDesign-enabled 硬 件平台NanoBoard 结合时,用户可以快速、交互地实现和调试基于FPGA 的設 计可以更换各种FPGA 子板,支持更多的FPGA 器件。 2.2.2 单片机程序设计开发工具:KEIL C51 keil c51 是美国Keil Software 公司出品的51 系列兼容单片机C 语言软件开发 系统和汇编相比,C 在功能上、结构性、可读性、可维护性上有明显的优 势因而易学易用。 Keil c51 软件提供丰富的库函数和功能强大的集成开发调试工具全 Windows 界媔。另外重要的一点只要看一下编译后生成的汇编代码,就能体 会到keil c51 生成的目标代码效率非常之高多数语句生成的汇编代码很紧凑, 嫆易理解在开发大型软件时更能体现高级语言的优势。 Keil C51 可以完成编辑、编译、连接、调试、仿真等整个开发流程开发人 员可用IDE 本身或其它编辑器编辑C 或汇编源文件,然后分别有C51 及A51 编 辑器编译连接生成单片机可执行的二进制文件(.HEX)然后通过单片机的烧 写软件将HEX 比较类姒,只不过它可以仿真MCU!唯一的缺点软件仿真精度有 限,而且不可能所有的器件都找得到相应的仿真模型 使用keil c51 v7.50 + proteus 6.7 可以像使用仿真器一样調试程序,可以完全 仿真单步调试进入中断等各种调试方案。 Proteus 与其它单片机仿真软件不同的是它不仅能仿真单片机CPU 的工 作情况,也能汸真单片机外围电路或没有单片机参与的其它电路的工作情况 因此在仿真和程序调试时,关心的不再是某些语句执行时单片机寄存器和存储 器内容的改变而是从工程的角度直接看程序运行和电路工作的过程和结果。 对于这样的仿真实验从某种意义上讲,是弥补了实验囷工程应用间脱节的矛 第5 页共27 页 盾和现象 3 系统详细设计: 3.1 硬件设计 3.1.1 数据处理电路 ( 1 ) 中央处理模块的功能: 直接采集待测信号,将分两种情況计算待测信号的频率: 如果频率比较高在一秒内对待测信号就行计数。 如果频率比较低在待测信号的一个周期内对单片机的工作频率进行计数。 将得到的频率值通过显示译码后直接送入显示电路显示给用户 ( 2 ) 电路需要解决的问题 单片机最小系统板电路的组建,单片机程序下载接口和外围电路的接口 单片机最小系统板的组建: ①单片机的起振电路作用与选择: 单片机的起振电路是有晶振和两个小电容組成的。 晶振的作用:它结合单片机内部的电路产生单片机所必须的时钟频率,单 片机的一切指令的执行都是建立在这个基础上的晶振的提供的时钟频率越 高,那单片机的运行速度也就越快MCS-51 一般晶振的选择范围为1~ 24MHz,但是单片机对时间的要求比较高能够精确的定时┅秒,所以也是为了 方便计算我们选择12MHz 的晶振 晶振两边的电容:晶振的标称值在测试时有一个“负载电容”的条件,在工 作时满足这个條件振荡频率才与标称值一致。一般来讲有低负载电容(串 联谐振晶体),高负载电容(并联谐振晶体)之分在电路上的特征为:晶振 串一只电容跨接在IC 两只脚上的,则为串联谐振型;一只脚接IC一只脚接地 的,则为并联型如确实没有原型号,需要代用的可采取串聯谐振型电路上的 电容再并一个电容并联谐振电路上串一只电容的措施。单片机晶振旁的2 个 电容是晶体的匹配电容只有在外部所接电嫆为匹配电容的情况下,振荡频率 才能保证在标称频率附近的误差范围内 最好按照所提供的数据来,如果没有一般是30pF 左右。太小了不嫆易起 振这里我们选择30pF 的瓷片电容。我们选择并联型电路如图3.1 所示 ②单片机的复位电路: 2 1 Y1 12Mz C2 30pF C1 30pF XTAL1 XTAL2 图3.1 第6 页共27 页 影响单片机系统运行稳定性的因素可大体分为外因和内因两部分: 外因:即射频干扰,它是以空间电磁场的形式传递在机器内部的导体(引线 或零件引脚)感生出相应的干擾可通过电磁屏蔽和合理的布线/器件布局衰减 该类干扰;电源线或电源内部产生的干扰,它是通过电源线或电源内的部件耦 合或直接传導可通过电源滤波、隔离等措施来衰减该类干扰。 内因:振荡源的稳定性主要由起振时间频率稳定度和占空比稳定度决定 起振时间可甴电路参数整定稳定度受振荡器类型温度和电压等参数影响复位电 路的可靠性。 复位电路的基本功能是:系统上电时提供复位信号直至系统电源稳定 后,撤销复位信号为可靠起见,电源稳定后还要经一定的延时才撤销复位信 号以防电源开关或电源插头分-合过程中引起嘚抖动而影响复位。 为了方便我们选择RC 复位电路可以实现上述基本功能如图3.2 所示 但是该电路解决不了电源毛刺(A 点)和电源缓慢下降(電池电压不足)等 问题而且调整RC 常数改变延时会令驱动能力变差。增加Ch 可避免高频谐波 对电路的干扰 复位电路增加了二极管,在电源电壓瞬间下降时使电容迅速放电一定宽 度的电源毛刺也可令系统可靠复位。 在选择元器件大小时正脉冲有效宽度? 2 个机器周期就可以有效的复位, 一般选择C3 为0.1uF 的独石电容R1 为1K 的电阻,正脉冲有效宽度为: ln10*R1*C3=230>2即可以该电路可以产生有效复位。 ( 3 ) 程序下载线接口: AT89S52 自带有isp 功能ISP 嘚全名为In System Programming,即在线编 程通俗的讲就是编MCU 从系统目标系统中移出在结合系统中一系列内部的硬 件资源可实的远程编程 ISP 功能的优点: ①在系統中编程不需要移出微控制器。 ②不需并行编程器仅需用P15P16 和P17,这三个IO 仅仅是下载程序的时 候使用并不影响程序的使用。 ③结合上位机軟件免费就可实现PC 对其编程硬件电路连接简单如图3.3 所 示 104 C3 1K R1 S1 VCC D1 1N4007 RESET Ch 0.1uF 图3.2 复位电路 第7 页共27 页 系统复位时,单片机检查状态字节中的内容如果状态字为0,则转去0000H 地址开始执行程序这是用户程序的正常起始地址如果状态字不0, 则将引导 向量的值作为程序计数器的高8 位低8 位固定为00H,若引導向量为FCH 则程序计数器内容为FC00H 即程序转到FC00H 地址开始执行而ISP 服务程序 就是从,FC00H 处开始的那么也就是进入了ISP 状态了接下来就可以用PC 机 的ISP 软件对单片机进行编程了。 ( 4 ) 去耦电容 好的高频去耦电容可以去除高到1GHZ 的高频成份陶瓷片电容或多层陶瓷 电容的高频特性较好。 设计印刷线蕗板时每个集成电路的电源,地之间都要加一个去耦电容 去耦电容有两个作用:一方面是本集成电路的蓄能电容,提供和吸收该集成電 路开门关门瞬间的充放电能;另一方面旁路掉该器件的高频噪声数字电路中 典型的去耦电容为0.1uf 的去耦电容有5nH 分布电感,它的并行共振頻率大约在 7MHz 左右也就是说对于10MHz 以下的噪声有较好的去耦作用,对40MHz 以 上的噪声几乎不起作用 1uf,10uf 电容并行共振频率在20MHz 以上,去除高频率噪声的效果要好 一些在电源进入印刷板的地方和一个1uf 或10uf 的去高频电容往往是有利 的,即使是用电池供电的系统也需要这种电容 每10 片左祐的集成电路要加一片充放电电容,或称为蓄放电容电容大小 可选10uf。最好不用电解电容电解电容是两层溥膜卷起来的,这种卷起来的 結构在高频时表现为电感最好使用胆电容或聚碳酸酝电容。 去耦电容值的选取并不严格可按C=1/f 计算;即10MHz 取0.1uf,对微控 制器构成的系统取0.1~0.01uf の间都可以。 从电路来说总是存在驱动的源和被驱动的负载。如果负载电容比较大 驱动电路要把电容充电、放电,才能完成信号的跳變在上升沿比较陡峭的时 候,电流比较大这样驱动的电流就会吸收很大的电源电流,由于电路中的电 感电阻(特别是芯片管脚上的電感,会产生反弹)这种电流相对于正常情 况来说实际上就是一种噪声,会影响前级的正常工作这就是耦合。 去藕电容就是起到一个電池的作用满足驱动电路电流的变化,避免相互 间的耦合干扰 旁路电容实际也是去藕合的,只是旁路电容一般是指高频旁路也就是給 高频的开关噪声提高一条低阻抗泄防途径。高频旁路电容一般比较小根据谐 振频率一般是0.1u,0.01u 等而去耦合电容一般比较大,是10u 或者更夶依 据电路中分布参数,以及驱动电流的变化大小来确定 去耦和旁路都可以看作滤波。正如ppxp 所说去耦电容相当于电池,避免 1 2 3 4 5 6 7 8 9 10 P6 P17 P16 RESET P15 GND GND VCC 图3.3 程序丅载线接口 第8 页共27 页 由于电流的突变而使电压下降相当于滤纹波。具体容值可以根据电流的大 小、期望的纹波大小、作用时间的大小来計算去耦电容一般都很大,对更高 频率的噪声基本无效。旁路电容就是针对高频来的也就是利用了电容的频 率阻抗特性。电容一般嘟可以看成一个RLC 串联模型在某个频率,会发生谐 振此时电容的阻抗就等于其ESR。如果看电容的频率阻抗曲线图就会发现 一般都是一个V 形的曲线。具体曲线与电容的介质有关所以选择旁路电容还 要考虑电容的介质,一个比较保险的方法就是多并几个电容去耦电容在集荿 电路电源和地之间的有两个作用:一方面是本集成电路的蓄能电容,另一方面 旁路掉该器件的高频噪声数字电路中典型的去耦电容值昰0.1μF。这个电容的 分布电感的典型值是5μH0.1μF 的去耦电容有5μH 的分布电感,它的并行共振 频率大约在7MHz 左右也就是说,对于10MHz 以下的噪声有較好的去耦效 果对40MHz 以上的噪声几乎不起作用。1μF、10μF 的电容并行共振频率在 20MHz 以上,去除高频噪声的效果要好一些每10 片左右集成电路偠加一片充 放电电容,或1 个蓄能电容可选10μF 左右。最好不用电解电容电解电容是 两层薄膜卷起来的,这种卷起来的结构在高频时表现為电感要使用钽电容或 聚碳酸酯电容。去耦电容的选用并不严格可按C=1/F,即10MHz 取0.1μF 100MHz 取0.01μF,电路图如图3.4 所示 ⑸单片机与外界的接口 显示電路的段选使用P0 口,P0 口是属于TTL 电路不能靠输出控制P0 口 的高低电平,需要上拉电阻才能实现 由于单片机不能直接驱动4 个数码管的显示,需要数码管的驱动电路驱动 电路采用NPN 型的三极管组成,即上拉电阻又有第二个作用驱动晶体管,晶 体管又分为PNP 和NPN 管两种情况:对于NPN毫无疑问NPN 管是高电平有 效的,因此上拉电阻的阻值用2K——20K 之间的具体的大小还要看晶体管的 集电极接的是什么负载,对于数码管负载甴于发管电流很小,因此上拉电阻 的阻值可以用20k 的但是对于管子的集电极为继电器负载时,由于集电极电 流大因此上拉电阻的阻值最恏不要大于4.7K,有时候甚至用2K 的对于PNP 管,毫无疑问PNP 管是低电平有效的因此上拉电阻的阻值用100K 以上的就行 了,且管子的基极必须串接一个1~10K 的电阻阻值的大小要看管子集电极的 负载是什么,对于数码管负载由于发光电流很小,因此基极串接的电阻的阻 值可以用20k 的但是對于管子的集电极为继电器负载时,由于集电极电流 大因此基极电阻的阻值最好不要大于4.7K。与外界的信号交换接口电路图 如图3.5。 104 CK11 104 CK12 104 CK13 104 CK14 VCC 图3.4 去耦电容 第9 页共27 页 数码管的段选通过P00~P07 口来控制的 数码管的位选通过P20~P23 口来控制的。 计算待测信号的频率通过计数器1 来完成的所有待测信號解答计数器的T1 口上即P3.5。 ⑹单片机的选型: AT89SC52 和AT89SS52 最主要的区别在于下载电压AT89SC52 单片机下载 电压时最小为12V,而AT89S52 仅在5V 电压下就可以下载程序了而且AT89S52 图3.5 单片机与外界接口 第10 页共27 页 三级加密程序存储器。 32 个可编程I/O 口线 三个16 位定时器/计数器。 八个中断源 全双工UART 串行通道。 低功耗涳闲和掉电模式 掉电后中断可唤醒。 看门狗定时器 双数据指针。 掉电标识符 ②功能特性描述: AT89S52 是一种低功耗、高性能CMOS8 位微控制器,具有8K 在系统可编 程Flash 存储器使用Atmel 公司高密度非易失性存储器技术制造,与工业 80C51 产品指令和引脚完全兼容片上Flash 允许程序存储器在系统可编程,亦 适于常规编程器在单芯片上,拥有灵巧的8 位CPU 和在系统可编程Flash 使得AT89S52 为众多嵌入式控制应用系统提供高灵活、超有效的解决方案。 AT89S52 具有以下标准功能: 8k 字节Flash256 字节RAM, 32 位I/O 口 线看门狗定时器,2 个数据指针三个16 位定时器/计数器,一个6 向量2 级中断结构全双工串行口,片內晶振及时钟电路另外,AT89S52 可降至 0Hz 静态逻辑操作支持2 种软件可选择节电模式。空闲模式下CPU 停止工 作,允许RAM、定时器/计数器、串口、中斷继续工作掉电保护方式下, RAM 内容被保存振荡器被冻结,单片机一切工作停止直到下一个中断或硬 件复位为止R8 位微控制器8K 字节在系統可编程Flash P0 口:P0 口是一个8 位漏极开路的双向I/O 口。作为输出口每位能驱动8 个 TTL 逻辑电平。对P0 端口写“1”时引脚用作高阻抗输入。当访问外部程序和 数据存储器时P0 口也被作为低8 位地址/数据复用。在这种模式下P0 具有内 部上拉电阻。在flash 编程时P0 口也用来接收指令字节;在程序校驗时,输出 指令字节程序校验时,需要外部上拉电阻 P1 口:P1 口是一个具有内部上拉电阻的8 位双向I/O 口,p1 输出缓冲器 能驱动4 个TTL 逻辑电平对P1 端口写“1”时,内部上拉电阻把端口拉高此 时可以作为输入口使用。作为输入使用时被外部拉低的引脚由于内部电阻的 原因,将输出電流(IIL)此外,P1.0 和P1.2 分别作定时器/计数器2 的外部计 数输入(P1.0/T2)和时器/计数器2 的触发输入(P1.1/T2EX)具体如下表所 示。在flash 编程和校验时P1 口接收低8 位地址字节。引脚号第二功能P1.0 T2 (定时器/计数器T2 的外部计数输入)时钟输出P1.1 T2EX(定时器/计数器 T2 的捕捉/ 重载触发信号和方向控制) P1.5 MOSI ( 在系统編程用) P1.6 MISO(在系统编程用)P1.7 SCK(在系统编程用) P2 口:P2 口是一个具有内部上拉电阻的8 位双向I/O 口,P2 输出缓冲器 能驱动4 个TTL 逻辑电平对P2 端口写“1”時,内部上拉电阻把端口拉高此 时可以作为输入口使用。作为输入使用时被外部拉低的引脚由于内部电阻的 原因,将输出电流(IIL)茬访问外部程序存储器或用16 位地址读取外部数据 存储器(例如执行MOVX @DPTR)时,P2 口送出高八位地址在这种应用 第11 页共27 页 中,P2 口使用很强的内部仩拉发送1在使用8 位地址(如MOVX @RI)访问 外部数据存储器时,P2 口输出P2 锁存器的内容在flash 编程和校验时,P2 口 也接收高8 位地址字节和一些控制信号 P3 口:P3 口是一个具有内部上拉电阻的8 位双向I/O 口,p2 输出缓冲器能驱 动4 个TTL 逻辑电平对P3 端口写“1”时,内部上拉电阻把端口拉高此时可 以作為输入口使用。作为输入使用时被外部拉低的引脚由于内部电阻的原 因,将输出电流(IIL)P3 口亦作为AT89S52 特殊功能(第二功能)使用,如 下表所示在flash 编程和校验时,P3 口也接收一些控制信号 引脚号第二功能P3.0 RXD(串行输入)P3.1 TXD(串行输出)P3.2 INT0(外 部中断0)P3.3 INT0(外部中断0)P3.4 T0(定时器0 外部输入)P3.5 T1(萣时器1 外部输入)P3.6 WR(外部数据存储器写选通)P3.7 RD(外部数据存储器写选通)。 RST: 复位输入晶振工作时,RST 脚持续2 个机器周期高电平将使单片机复 位看門狗计时完成后,RST 脚输出96 个晶振周期的高电平特殊寄存器 AUXR(地址8EH)上的DISRTO 位可以使此功能无效。DISRTO 默认状态下复 位高电平有效。ALE/PROG:地址锁存控淛信号(ALE)是访问外部程序存储 器时锁存低8 位地址的输出脉冲。在flash 编程时此引脚(PROG)也用作 编程输入脉冲。在一般情况下ALE 以晶振六汾之一的固定频率输出脉冲,可 用来作为外部定时器或时钟使用然而,特别强调在每次访问外部数据存储 器时,LE 脉冲将会跳过如果需要,通过将地址为8EH的SFR 的第0 位置“1” ALE 操作将无效。这一位置“1”ALE 仅在执行MOVX 或MOVC 指令时有 效。否则ALE 将被微弱拉高。这个ALE 使能标志位(地址为8EH 的SFR 的 第0 位)的设置对微控制器处于外部执行模式下无效PSEN:外部程序存储器选 通信号(PSEN)是外部程序存储器选通信号。当AT89S52 从外部程序存儲器执 行外部代码时PSEN 在每个机器周期被激活两次,而在访问外部数据存储器 时PSEN 将不被激活。EA/VPP:访问外部程序存储器控制信号为使能从 0000H 箌FFFFH 的外部程序存储器读取指令,EA 必须接GND为了执行内部 程序指令,EA 应该接VCC在flash 编程期间,EA 也接收12 伏VPP 电压 XTAL1:振荡器反相放大器和内部时钟发苼电路的输入端。XTAL2:振荡器反相 放大器的输出端 ③特殊功能寄存器 特殊功能寄存器(SFR)的地址空间映象如表1 所示。 并不是所有的地址都被定义叻片上没有定义的地址是不能用的。读这些 地址一般将 得到一个随机数据;写入的数据将会无效。用户不应该给这些未定义的地 址写叺数据“1”由于这些寄存器在将来可能被赋予新的功能,复位后这些位 都为“0”。 定时器2 寄存器:寄存器T2CON 和T2MOD 包含定时器2 的控制位和状態位 (如表2 和表3 所示)寄存器对RCAP2H 和RCAP2L 是定时器2 的捕捉/自动 重载寄存器。 中断寄存器:各中断允许位在IE 寄存器中六个中断源的两个优先级吔可在IE 中设置。 3.1.2 显示电路 LCD 与LED 的区别 第12 页共27 页 LED 仅仅是由8 个led 灯组成的数码显示器件,电路简单操作容易。 LCD 是有点阵组成的显示器件该器件电路和软件复杂,但是交互性好 该系统展示给用于的数据为频率值,用LED 数码管显示即可 LED 数码管按段数分为七段数码管和八段数码管,八段数码管比七段数码 管多一个发光二极管单元(多一个小数点显示);按能显示多少个“8”可分为1 位、2 位、4 位等等数码管;按发光二極管单元连接方式分为共阳极数码管和共 阴极数码管共阳数码管是指将所有发光二极管的阳极接到一起形成公共阳极 (COM)的数码管。共阳数碼管在应用时应将公共极COM 接到+5V当某一字段 发光二极管的阴极为低电平时,相应字段就点亮当某一字段的阴极为高电平 时,相应字段就鈈亮。共阴数码管是指将所有发光二极管的阴极接到一起形 成公共阴极(COM)的数码管共阴数码管在应用时应将公共极COM 接到地线 GND 上,当某一芓段发光二极管的阳极为高电平时相应字段就点亮。当某一 字段的阳极为低电平时相应字段就不亮。 数码管要正常显示就要用驱动電路来驱动数码管的各个段码,从而显示 出我们要的数字因此根据数码管的驱动方式的不同,可以分为静态式和动态 式两类 ① 静态显礻驱动 静态驱动也称直流驱动。静态驱动是指每个数码管的每一个段码都由一个 单片机的I/O 端口进行驱动或者使用如BCD 码二-十进制译码器译碼进行驱 动。静态驱动的优点是编程简单显示亮度高,缺点是占用I/O 端口多如驱动 5 个数码管静态显示则需要5×8=40 根I/O 端口来驱动,要知道┅个89S51 单片 机可用的I/O 端口才32 个呢:)实际应用时必须增加译码驱动器进行驱动, 增加了硬件电路的复杂性 ② 动态显示驱动 数码管动态显礻接口是单片机中应用最为广泛的一种显示方式之一,动态 驱动是将所有数码管的8 个显示笔划"a,b,c,d,e,f,g,dp"的同名端连在一起另外为 每个数码管的公囲极COM 增加位选通控制电路,位选通由各自独立的I/O 线控 制当单片机输出字形码时,所有数码管都接收到相同的字形码但究竟是那 个数码管会显示出字形,取决于单片机对位选通COM 端电路的控制所以我们 只要将需要显示的数码管的选通控制打开,该位就显示出字形没有选通的数 码管就不会亮。通过分时轮流控制各个数码管的的COM 端就使各个数码管轮 流受控显示,这就是动态驱动在轮流显示过程中,每位數码管的点亮时间为 1~2ms由于人的视觉暂留现象及发光二极管的余辉效应,尽管实际上各位数 码管并非同时点亮但只要扫描的速度足够赽,给人的印象就是一组稳定的显 示数据不会有闪烁感,动态显示的效果和静态显示是一样的能够节省大量 的I/O 端口,而且功耗更低甴于我们使用的FPGA 芯片的型号为EPF10K10, 有足够的IO 口分别去控制数码管的段选这里我们采用动态显示方式。 由于FPGA 的IO 口没有足够的驱动能力去驱动數码管所以需要数码管的 驱动电路,该驱动电路我们选择由三极管组成的电路该电路简单,软件容易 实现其中一个数码管的驱动电蕗图如图3.6 所示。 数码管为共阴极当CS1=1 时,即三极管Q9 被饱和导通则数码管的公共 极被间接接地,数码管被选中数据将在该管上显示,当CS=0 時三极管Q9 被截至,则数码管的公共极被没有接地即使CSA,CSBCSC,CSDCSE, 第13 页共27 页 CSFCSG,CSDP 被送入数据也不会有显示 CSA,CSBCSC,CSDCSE,CSFCSG,CSDP 分别为数码管的位选 哪一位为“1”,即相应的三极管饱和导通则相应的数码管段被点亮。“0”为截 止相应的数码管段灭,这样数码管就有数字顯示出来 我们在该系统使用了4 个数码管,使用动态显示即通过片选,是每个数码 管都亮一段时间不断循环扫描,由于人的眼睛有一段时间的视觉暂留所以 给人的感觉是每个数码管同时亮的,这样4 个数码管就把4 位十进制数据就显示 出来了 数码管驱动电路:由于单片機芯片没有足够的能力驱动4 个数码管,因此需 要增加数码管驱动电路 驱动电路我们可以选择由三极管组成的电路,该电路简单程序容噫实现. 3.1.3 待测信号产生电路 可变基准发生器模块的功能为:主要用于仿真外界的周期性变化的信号,用 于电路的测试对频率的精度没有要求,只要能产生周期性变化的信号即可 该部分不为频率计的组成部分,再加上为了节省成本我们使用LM555 芯片 组建的多谐振振荡器电路电路洳图3.7 所示电容C,电阻RA 和RB 为外接元 件,其工作原理为接通电源后5V 电源经RA 和RB 给电容C 充电,由于电容 CSF CSG CSG CSDP CSDP 图3.6 显示电路 第14 页共27 页 内部放电管截止 当電容两端电压Vc 上升到大于5V 的电压的三分之一时,RD=1,SD=1,基本 RS 触发器状态不变即输出端Q 仍为高电平,当电容两端电压Vc 上升到略大 于2*5V/3 是RN=0,SD=1,基本RS 触发器置0,输出端Q 为低电平这时Q=1, 使内部放电管饱和导通于是电容C 经RB 和内部的放电管放电,电容两端电压 按指数规律减小当电容两端电壓下降到略小于5V 电压的三分之一时,内部比 较器A1 输出高电平A2 输出低电平,基本RS 触发器置1输出高电平,这 时Q=0,内部放电管截止于是電容结束放电,如此循环不止输出端就得 到了一系列矩形脉冲。如图3.8 所示 电路参数的计算: 为了使Q 端输出频率可变,RB =1.443/??RA+RB??C?计算鈳得:当RB=0 时f=1.443KHz, 当RB=5K 时, f=240Hz, 由此可得 该电路的输出频率范围为: 240~1443(Hz)。 元器件的简介 LM555/LM555C 系列是美国国家半导体公司的时基电路我国和世界各大 集成電路生产商均有同类产品可供选用,是使用极为广泛的一种通用集成电 路LM555/LM555C 系列功能强大、使用灵活、适用范围宽,可用来产生时间 延迟囷多种脉冲信号被广泛用于各种电子产品中。 555 时基电路有双极型和CMOS 型两种LM555/LM555C 系列属于双极 型。优点是输出功率大驱动电流达200mA。而另一種CMOS 型的优点是功 耗低、电源电压低、输入阻抗高但输出功率要小得多,输出驱动电流只有几 毫安 另外还有一种双时基电路LM556,14 脚封装內部有两个相同的时基电路 单元。 特性简介: 直接替换SE555/NE555 定时时间从微秒级到小时级。 可工作于无稳态和单稳态两种方式 可调整占空比。 输出端可接收和提供200mA 电流 输出电压与TTL 电平兼容。 温度稳定性好于0.005%/℃ 应用范围 精确定时。 脉冲发生 连续定时 频率变换 脉冲宽度调制 脉沖相位调制 电路特点: LM555 时基电路内部由分压器、比较器、触发器、输出管和放电管等组 成是模拟电路和数字电路的混合体。其中6 脚为阀徝端(TH)是上比较 器的输入。2 脚为触发端( TR ) 是下比较器的输入。3 脚为输出端 (OUT)有0 和1 两种状态,它的状态由输入端所加的电平决萣7 脚为 放电端(DIS),是内部放电管的输出它有悬空和接地两种状态,也是由输 入端的状态决定4 脚为复位端(R),叫上低电平(< 0.3V)时鈳使输出端为 低电平5 脚为控制电压端(CV ),可以用它来改变上下触发电平值8 脚为电 源(VCC),1 脚为地(GND) 一般可以把LM555 电路等效成一个大放電开关的R-S 触发器。这个特殊 的触发器有两个输入端:阀值端(TH)可看成是置零端R要求高电平;触发 端(TR)可看成是置位端S,低电平有效它只有一个输出端OUT,OUT 可 第16 页共27 页 等效成触发器的Q 端放电端(DIS)可看成由内部放电开关控制的一个接 点,放电开关由触发器的反Q 端控制:反Q=1 时DIS 端接地;反Q=0 时 DIS 端悬空此外这个触发器还有复位端R,控制电压端CV电源端VCC 和接地端GND。 这个特殊的R-S 触发器有两个特点:(1)两个输入端的触发电平要求一高一 低:置零端R 即阀值端TH 要求高电平而置位端S 即触发端TR 则要求 低电平。(2)两个输入端的触发电平也就是使它们翻转的阀值电压值也不 同,当CV 端不接控制电压是对TH(R) 端来讲,> 2/3VCC 是高电平 1< 2/3VCC 是低电平0;而对TR(S)端来讲,> 1/3VCC 是高电平1< 1/3VCC 是低电平0。如果在控制端CV 加上控制电压VC这时上触发电平 就变成VC 值,而下触发电平则变成1/2VC可见改变控制端的控制电压值可 以改变上下触发电平值。 3.1.4 待测信號整形放大电路 顾名思义该模块的主要功能为:将周期性变化的信号变成方波送入 AT89S52 芯片检测信号也许电压比较高在这里我们使用一个电阻和5.1V 的稳 压管组成的一个降压电路。如果输入的信号功率比较低或输入电阻比较低需要电 压跟随器提高功率或输入电阻然后经过一个电壓比较器将不规则的周期性变化 的信号变成方波送入FPGA 处理,电路如图3.9 所示 电压跟随器,顾名思义就是输出电压与输入电压是相同的,僦是说电 压跟随器的电压放大倍数恒小于且接近1。电压跟随器的显著特点就是输入 阻抗高,而输出阻抗低一般来说,输入阻抗要达箌几兆欧姆是很容易做到 的输出阻抗低,通常可以到几欧姆甚至更低。在电路中电压跟随器一般 做缓冲级及隔离级。因为电压放夶器的输出阻抗一般比较高,通常在几千欧 到几十千欧如果后级的输入阻抗比较小,那么信号就会有相当的部分损耗在 前级的输出电阻Φ在这个时候,就需要电压跟随器来从中进行缓冲起到承 上启下的作用。应用电压跟随器的另外一个好处就是提高了输入阻抗,这 2 4 5 3 12 U1A R1 D1 VCC 2 4 5 3 12 U2A 10K R3 10K R4 VCC 51K R5 VCC 5V VCC 圖3.9 待测信号整形放大电路 第17 页共27 页 样输入电容的容量可以大幅度减小,为应用高品质的电容提供了前提保证 电压跟随器的另外一个作鼡就是隔离,在HI-FI 电路中关于负反馈的争议已经 很久了,其实如果真的没有负反馈的作用,相信绝大多数的放大电路是不能 很好的工作嘚但是由于引入了大环路负反馈电路,扬声器的反电动势就会通 过反馈电路与输入信号叠加。造成音质模糊清晰度下降,所以有┅部分 功放的末级采用了无大环路负反馈的电路,试图通过断开负反馈回路来消除大 环路负反馈的带来的弊端但是,由于放大器的末级嘚工作电流变化很大其 失真度很难保证。 电压比较器是集成运放非线性应用电路他常用于各种电子设备中,它将 一个模拟量电压信号囷一个参考固定电压相比较在二者幅度相等的附近,输 出电压将产生跃变相应输出高电平或低电平。比较器可以组成非正弦波形变 换電路及应用于模拟与数字信号转换等领域 图3.10 所示为一最简单的电压比较器原理图,UR 为参考电压加在运放的 同相的输入端,输入电压ui 加茬反相的输入端 电路图传输特性当ui<UR 时,运放输出高电平稳压管Dz 反向稳压工作。 输出端电位被其箝位在稳压管的稳定电压UZ即uO=UZ。当ui>UR 时运放 输出低电平,DZ 正向导通输出电压等于稳压管的正向压降UD,即uo=- UD 因此以UR 为界,当输入电压ui 变化时输出端反映出两种状态,高电位 和低电位 表示输出电压与输入电压之间关系的特性曲线,称为传输特性图3-1(b) 为(a)图比较器的传输特性。 常用的电压比较器有过零电压比较器、具有滞回特性的过零比较器、滞回电压 比较器窗口(双限)电压比较器。这里我们使用LM339 构成各种电压比较 器 3.1.5 分频电路 ⑴频率的功能 为了提高系统的可测信号的频率,添加分频器可以扩大频率的测量范围 ⑵电路的选择与比较 分频电路可以使用CPLD 和74LS74 完成。 CPLD 和74LS74 吔可以实现高速频率的分频工作但是一般情况CPLD 用 于多分频的,如10 分频以上使用1 片74LS74 可以将信号4 分频,在本系统 中为了考虑成本使用74LS74将待测信号4 分频,即可时频率计的测量范围扩 图3.10 电压比较器原理 第18 页共27 页 大四倍电路图如图3.11 所示。 74LS74 是两个D 触发器组成的仿真如图3.12 所示。 3.1.6 5V 電源产生电路 该模块的主要功能是:为电路中的所有的元器件提供电源 在选择5V 稳压芯片时,可以选择5.1V 稳压管或LM7805 集成芯片由于的 不考虑負载的情况下,两种选择能得到同样的效果但是,加上许多负载时 5.1V 稳压管的输出电压会随着后面负载的输入电阻的变化而变化,如果電源的 输出电阻比较大而负载的输入电阻比较小的时候,负载的变化将会引起电源 输出电压的很大的变化由于LM7805 的输出电阻非常的大,接近于无穷大 所以在制作电源时使用LM7805 在性能上将会比5.1V 稳压管好。即使负载的功 率很高我们也可以通过加入扩流电路使电源提高输出功率。 电路的选择与特点: 二极管的选择:选择1N400 系列中的1N40071N4007 的反向截止电压为 1000V,对于我们电路输入整流桥之前就已经通过变压器使220V 市电变为9V 嘚交流电1N4007 有足够的能力使9V 电压反向截至。通过4 个二极管组成的 整流桥后虽然把有正有负的交流电变成了全是正的角流电这样的交流电即使 有效电压为正5V 的,也不能把这样的电压给FPGA 和单片机等芯片供电需要 把这样的电压继续整流变成比较平稳的直流电。所以要经过电容初步滤波和整 4 3 使电压保持在一个恒定的值我们在电路中使用的两个不同的电容为:C4、 C5,C5 使用的是电解质电容因为一般情况下电解质电嫆容量比较大,存储电 量比较多在滤波电路中多用于高频滤波,这里我们使用的是容量100uF最 高电压为25V 的电解质电容。C4 使用的是独石电容容量比电解质的小,一般 在uF 以下多用于低频滤波。这里我们使用比较常用的104即0.1uF。 由Q1,Q2,Q3 组成的是过流保护的扩大输出电流的电路Q2 的输絀电流I0 增加为I0=I01+I02。正常时Q1,Q3 截至电阻R1 上产生压降使T2 导通, 若I0 过流I01 增加,限流电阻R3 上压降增大使T3 导通导致T1 趋于饱和, T2 管基-射间電压|VBE1|降低限制了功率管T2 的电流IC1,保护功率管不致 因过流而损坏 将电容输出的电压送入LM7805 芯片继续稳压整流,使电压变成FGPA、单 片机可以接收的5V 电源 9V 的交流电输入到4 个二极管组成的整流桥,通过整流桥后有效电压为 输入电压的0.9 倍,即:0.9?9 ? 8.1?V ?当通过接着的两个电容时,这时的电 压为输入电压的1.2 倍即: 。由于LM7805 要求输入电压高于9?1.2 ?10.8?V ? 标准输出电压2V由于使用的是7805,输出电压为标准的正5V即输入电压 偠高于5 ? 2 ? 7(V ),通过整流桥和电容之后的电压为10.8V>7V由此可以看出 LM7805 将正常工作,输出电压为5V电路如图3.10 所示。 元器件的选型与电路参数的计算: LM7805 芯片简介: 外形图及引脚排列H 7805 系列为3 端正稳压电路,TO-220 封装能提供 C5 1 2 5V 图3.10 第20 页共27 页 输出电流可达2A。 输出电压有:5V 过热保护。 短路保护 输出晶体管SOA 保护。 7805 的功能框图如图3.11: 注意: 输入电压即为纹波电压中的低值点,都必须高于所需输出电压2V 以 上 当稳压器远离电源滤波器时,要求用C1 CO 可改善稳定性和瞬态响应。 该模块的不足和对进一步完善提出建议: 该模块的不足: 转换的效率低:线性稳压器的效率直接与其调整管所消耗的功率有 关调整管的功耗等于电流×(输入电压-输出电压),由此可见有些情况下调整 管会产生较大损耗。例如负载为1A 時,将10V 的电压降至5V 输出线性稳 压器的功耗为5W。效率将低于50%该电路将会很耗电。 散热问题:由上可知线性稳压器的功耗将在高于总电路嘚50%例如,我 们的电路功率为10W那么线性稳压器的功率将会高于5W,这5W 的99%将通 过热量散失到外界如果散热管理不适当将会使整个系统在高溫下工作,影响 整个系统的性能之外也严重的影响着整个系统的寿命。 提出建议: 线性稳压器的低效率迫使寻求新的改进方案开关电源引起人们的关注。 根据开关电源的工作原理在不同负载和电压下,一个设计良好的开关电源的 效率可达90%甚至更高这相比线性稳压器,效率提高了40%通过直观的比 较,开关电源降压的优势便体现出来了其他开关电源的拓扑结构同样具有相 近或是更高的效率。开关电源設计不仅仅具有高效率这一主要优势由于功耗 的降低还带来许多直接的好处。例如与低效率的竞争产品相比,开关电源的 散热片面积夶大减小降低了对热管理的要求;而且更重要的是,由于器件不 会工作在低效的高温环境中大大提高了器件的可靠性,进而延长工作壽命 图3.11 第21 页共27 页 3.2 软件设计 3.2.1 编程语言的选择: 汇编和C 语言 汇编语言(Assembly Language)是面向机器的程序设计语言 在汇编语合中,用助记符(Memoni)代替操作码用地址符号(Symbol)或标号 (Label)代替地址码。这样用符号代替机器语言的二进制码就把机器语言变成 了汇编语言。于是汇编语言亦称为符号语言 使用汇編语言编写的程序,机器不能直接识别要由一种程序将汇编语言 翻译成机器语言,这种起翻译作用的程序叫汇编程序汇编程序是系统軟件中 语言处理系统软件。汇编程序把汇编语言翻译成机器语言的过程称为汇编 汇编语言比机器语言易于读写、易于调试和修改,同时吔具有机器语言执 行速度快占内存空间少等优点,但在编写复杂程序时具有明显的局限性汇 编语言依赖于具体的机型,不能通用也鈈能在不同机型之间移植。 C 语言发展如此迅速, 而且成为最受欢迎的语言之一, 主要因为它具有强大 的功能许多著名的系统软件, 如DBASE Ⅲ PLUS、DBASE Ⅳ 都昰由C 语 言编写的。用C 语言加上一些汇编语言子程序, 就更能显示C 语言的优势了, 象PC- DOS 、WORDSTAR 等就是用这种方法编写的归纳起来C 语言具有 下列特点: ①C 昰中级语言 它把高级语言的基本结构和语句与低级语言的实用性结合起来。C 语言可 以象汇编语言一样对位、字节和地址进行操作, 而这三者昰计算机最基本的工 作单元 ② C 是结构式语言 结构式语言的显著特点是代码及数据的分隔化, 即程序的各个部分除了必 要的信息交流外彼此獨立。这种结构化方式可使程序层次清晰, 便于使用、维 护以及调试C 语言是以函数形式提供给用户的, 这些函数可方便的调用, 并具有多种循環、条件语句控制程序流向, 从而使程序完全结构化。 ③C 语言功能齐全 C 语言具有各种各样的数据类型, 并引入了指针概念, 可使程序效率更 高叧外C 语言也具有强大的图形功能, 支持多种显示器和驱动器。而且计算 功能、逻辑判断功能也比较强大, 可以实现决策目的 ④C 语言适用范围夶 C 语言比汇编更容易编写和移植,虽然该程序对时间要求比较严格但是如果 我们使用定时器的话对这样就既可以解决用延时带来的不精確的问题,也提 高了编写程序的效率 3.2.2 程序流程图: ⑴主程序 该计数器时通过计数或定时来完成计算待测信号的频率的,所以频率的计算 嘟是在中断里完成的主函数的流程图如图3.12 为: 第22 页共27 页 检测一个信号首先在1 秒钟中内对待测频率计数,通过定时器0 来定时1 秒 通过计数器1 对待测频率计数,通过这种方法检测出待测信号的频率如果频率 小于2 的话,通过这种方法检测出来的频率精度会很低所以如果频率低于2Hz, 用计数器1 来检测两个下降沿在两个下降沿内,运行定时器0通过这种方法 计算频率比较低的信号。 两种方案的选择由变量flag 控制對一个未知频率信号,我们先假设该频率 高于2Hz当用第一种方法检测出来的值小于2Hz,我通过对变量的控制执行第 二种方案 定时器/计数器0 囷定时器/计数器1 的主要作用: 首先当待测信号送入到频率计时,频率计将该信号作为频率大于2Hz 出来 定时器/计数器0 设为定时模式,定时器/計数器1 设为计数模式定时器0 的作 用为定时1 秒,在这一秒里计数器1 对待测信号计数。由此可以测出待测的频 图3.12 主程序流程图 第23 页共27 页 率徝当检测到的频率值小于2Hz 时,频率计自动转换到对低频信号处理模式 定时器1 的作用将变为自动检测待测频率的下降沿,定时器0 的作用昰在相邻的 两个下降沿里计时由此可以测出频率小于2 的信号。 定时器0 的程序流程图如图3.13计数器1 的程序流程图如图3.14 所示。 如图3.13 定时器0 中斷流程序 图3.14 定时器1 中断流程图 Y N 第24 页共27 页 打开Keil C单击“工程”菜单中的“目标Target1 属性”,跳出一个设置“目标 Target1 属性”的对话框打开“输入”頁,在产生执行文件的框里把“E 生成HEX 文件”前的钩打上,重新编译即工程所在的文件夹里会产生一个HEX 格式的文 件。 用keil C 即可产生的HEX 的二進制文件既可以在PROTES 中仿真使用, 也可以下载到单片机中运行 3.3 电路板的制作 3.3.1 元器件的封装 在设计装配方式之前,要求将系统的电路基本萣型同时还要根据整机的 体积以及机壳的尺寸来安排元器件在印刷电路板上的装配方式。 具体做这一步工作时可以先确定好印刷电路板的尺寸,然后将元器件配 齐根据元器件种类和体积以及技术要求将其布局在印刷电路板上的适当位 置。可以先从体积较大的器件开始如电源变压器、磁棒、全桥、集成电路、 三极管、二极管、电容器、电阻器、各种开关、接插件、电感线圈等。待体积 较大的元器件布局好之后小型及微型的电子元器件就可以根据间隙面积灵活 布配。二极管、电感器、阻容元件的装配方式一般有直立式、俯卧式和混合式 三种 ①直立式。电阻、电容、二极管等都是竖直安装在印刷电路板上的这种 方式的特点是:在一定的单位面积内可以容纳较多的电孓元件,同时元件的排 列也比较紧凑缺点是:元件的引线过长,所占高度大且由于元件的体积尺 寸不一致,其高度不在一个平面上欠美观,元器件引脚弯曲且密度较大, 元器件之间容易引脚碰触可靠性欠佳,且不太适合频率较高的电路采用 ②俯卧式。二极管、電容、电阻等元件均是俯卧式安装在印刷电路板上 的这样可以明显地降低元件的排列高度,可实现薄形化同时元器件的引线 也最短,適合于较高工作频率的电路采用也是目前采用得最广泛的一种安装 方式。 ③混合式为了适应各种不同条件的要求或某些位置受面积所限,在一块 印刷电路板上有的元器件采用直立式安装,也有的元器件则采用俯卧式安 装这受到电路结构各式以及机壳内空间尺寸的制約,同时也与所用元器件本 身的尺寸和结构形式有关可以灵活处理。 1、单片机: 单片机使用双列直插式DIP 封装40 个引脚,每个引脚的距离為100mil 封装模型如图3.18 所示: 图3.18 单片机PCB 模型 第25 页共27 页 2、数码管的封装: 数码管的封装采用LEDDIP-10,但是因为每个厂家生产出来的段选并不是都 是相同嘚但是没必要重新设计数码管的封装,仅仅检查引脚分配即可在本设 计使用的数码管引脚分配如图3.19 所示。 其他元器件封装: 电阻AXIAL 无极性电容RAD 电解电容RB 电位器VR 二极管DIODE 三极管、场效应管TO 电源稳压块78 系列TO-220 单排多针插座SIP 双列直插元件DIP 晶振XTAL1 3.5 软硬件结合测试 当给电板通电时LM555 的3 号輸出引脚的电压为2.5V 左右。说明输出脉 冲的占空比为50%通过通过示波器查看波形,和理论的波形一致通过调节 电位器可以改变输出波形嘚频率。 图3.19 元器件引脚映射 第26 页共27 页 数码管显示当调节电位器时数码管的显示也是在理论范围只内的。 第27 页共27 页 致谢 在本论文结束之际回想本科阶段的学习和生活,感慨甚多毕业课题和 论文是在导师郑老师的指导下完成的,同时也要感谢自动化教研室的老师感 谢他們的耐心指导。感谢所有帮助和支持过我的人 郑老师对论文的进展付出了大量的汗水和心血,并给予了许多具体的实验 指导方案在论攵的最后成稿中提出了许多宝贵的意见,从而使论文的质量得 以提高从郑老师身上,我学到的不仅是做学问、搞科研的态度、方法和毅 仂而且更多的是做人的准则。借此论文完成之际向郑老师表示深深的谢 意! 最后,再一次向关心和帮助我的各位表示我衷心的感谢和罙深的敬意!

将串级控制系统与单回路控制系統的工作频率相比较并分别通过MATLAB,C++,以及组态软件三种方式进行仿真验证

 软件介绍: SoftFSB是一款超频软件。它采用了比较新颖的思路通過软件的方式直接控制主板的时钟发生器的状态,在工作过程就改变了CPU的工作频率达到了超频的目的,而且是“即超即用”如果遇到超频故障,只要重启就可以了不需要拔线或是清除BIOS等操作十分方便。   软件使用:该软件在使用过程中无须安装只须将文件解压至桌面即可,在软件启动完毕后须点击获取FSB (FSB只指CPU与北桥芯片之间的数据传输总线又称前端总线,这个参数指的就是前端总线的频率,它是处悝器与主板交换数据的通道既然是通道,那就是越大越好),在获取FSS后我们可以点击下面的拉条进行超频

简单描述步进电机工作原理和控淛操作步骤步进电机是将电脉冲信号转变为角位移或线位移的开环控制组件。 在非超载的情况下电机的转速、停止的位置只取决于脉沖信号的频率和脉冲数,而不受负载变化的影响即给电机加一个脉冲信号, 电机则转过一个步距角 这一线性关系的存在,加上步进电機只有周期性的误差而无累积误差等特点使得在速度、位置等控制领域用步进电机来控制变的非常的简单。

步进电动机是一种将电脉冲信号转换成相应角位移或线位移的电动机它的 运行需要专门的驱动电源,驱动电源的输出受外部的脉冲信号控制每一个脉冲 信号可使步进电机旋转一个固定的角度,这个角度称为步距角脉冲的数量决定 了旋转的总角度,脉冲的频率决定了电动机旋转的速度改变绕组嘚通电顺序可 以改变电机旋转的方向。在数字控制系统中它既可以用作驱动电动机,也可以 用作伺服电动机它在工业过程控制中得到廣泛的应用,尤其在智能仪表和需要 精确定位的场合应用更为广泛步进电机分三种:永磁式(PM) ,反应式(VR)和混合式(HB)永磁式 步进┅般为两相转矩和体积较小,步进角一般为7.5 度 或15 度;反应式步进 一般为三相可实现大转矩输出,步进角一般为1.5 度但噪声和振动都很夶。 在欧美等发达国家80 年代已被淘汰;混合式步进是指混合了永磁式和反应式的 优点它又分为两相和五相:两相步进角一般为1.8 度而五相步进角一般为 0.72 度。这种步进电机的应用最为广泛

工作电压:2-7.5V 静态电流:9mA 频率范围:88.0MHz--108.0MHz 该集成电路灵敏度高带调谐指示,电子音量控制及功率放大电路和CXA1691可以直接互换。 电路原理图和原理:

第1 页共27 页 1 概述 频率计的基本原理是用一个频率稳定度高的频率源作为基准时钟对比測 量其他信号的频率。通常情况下计算每秒内待测信号的脉冲个数此时我们称 闸门时间为1 秒。闸门时间也可以大于或小于一秒闸门时間越长,得到的频 率值就越准确但闸门时间越长则没测一次频率的间隔就越长。闸门时间越 短测的频率值刷新就越快,但测得的频率精度就受影响本文数字频率计是 用数字显示被测信号频率的仪器,被测信号可以是正弦波方波或其它周期性 变化的信号。因此数字頻率计是一种应用很广泛的仪器 电子系统非常广泛的应用领域内,到处可见到处理离散信息的数字电路 数字电路制造工业的进步,使得系统设计人员能在更小的空间内实现更多的功 能从而提高系统可靠性和速度。 集成电路的类型很多从大的方面可以分为模拟电路和数芓集成电路2 大 类。数字集成电路广泛用于计算机、控制与测量系统以及其它电子设备中。 一般说来数字系统中运行的电信号,其大小往往并不改变但在实践分布上 却有着严格的要求,这是数字电路的一个特点 2 系统的总体设计: 2.1 原理设计 本频率计的设计以AT89S52 单片机为核惢,利用它内部的定时/计数器完成 待测信号周期/频率的测量单片机AT89S52 内部具有2 个16 位定时/计数器, 定时/计数器的工作可以由编程来实现定时、計数和产生计数溢出中断要求的功 能。在构成为定时器时,每个机器周期加1 (使用12MHz 时钟时,每1us 加1)这 样以机器周期为基准可以用来测量时间间隔。在构成为计数器时,在相应的外部 引脚发生从1 到0 的跳变时计数器加1这样在计数闸门的控制下可以用来测 量待测信号的频率。外部输入每個机器周期被采样一次这样检测一次从1 到0 的跳变至少需要2 个机器周期(24 个振荡周期) ,所以最大计数速率为时钟频率 的1/24 (使用12MHz 时钟时,最大计数速率为500 KHz) 。定时/计数器的工作由 相应的运行控制位TR 控制,当TR 置1 ,定时/计数器开始计数;当TR 清0 ,停止计 数设计综合考虑了频率测量精度和测量反应时间嘚要求。例如当要求频率测 量结果为4 位有效数字,这时如果待测信号的频率为1Hz 则计数闸门宽度必须 大于1000s。为了兼顾频率测量精度和测量反應时间的要求,把测量工作分为两 种方法当待测信号的频率大于等于2Hz 时,定时/ 计数器构成为计数器,以机 器周期为基准,由软件产生计数闸门,這时要满足频率测量结果为4 位有效数字, 则计数闸门宽度大于1s 即可当待测信号的频率小于2Hz 时,定时/ 计数器构 成为定时器,由频率计的予处理電路把待测信号变成方波,方波宽度等于待测信号 的周期用方波作计数闸门,完全满足测量精度的要求 频率计的量程自动切换在使用计數方法实现频率测量时,这时外部的待测信 号为定时/ 计数器的计数源利用定时器实现计数闸门。频率计的工作过程为: 首先定时/计数器T0 嘚计数寄存器设置一定的值,运行控制位TR0 置1启动定 时/ 计数器0;利用定时器0 来控制1S 的定时,同时定时/计数器T1 对外部的待 第2 页共27 页 测信号进行計数,定时结束时TR1 清0 ,停止计数;最后从计数寄存器读出测量数 据在完成数据处理后,由显示电路显示测量结果在使用定时方法实现频率測 量时,这时外部的待测信号通过频率计的予处理电路变成宽度等于待测信号周期 的方波,该方波同样加至定时/ 计数器1 的输入脚这时频率計的工作过程为: 首先定时/ 计数器1 的计数寄存器清0 ,然后检测到方波的第二个下降沿是否加 至定时/ 计数器的输入脚;当判定下降沿加至定时/计數器的输入脚,运行控制位 TR0 置1 ,启动定时/计数器T0 对单片机的机器周期的计数同时检测方波的第 三个下降沿;当判定检测到第三个下降沿时TR0 清0 ,停止计数然后从计数 寄存器T0 读出测量数据,在完成数据处理后由显示电路显示测量结果。测量 结果的显示格式采用科学计数法,即囿效数字乘以10 为底的幂这里设计的频 率计用4 位数码管显示测量结果。 定时方法实现频率测量定时方法测量的是待测信号的周期,这种方法只设 一种量程测量结果通过浮点数运算模块将信号周期转换成对应的频率值,再将 结果送去显示。这样无论采用何种方式只要完成┅次测量即可,频率计自动开 始下一个测量循环,因此该频率计具有连续测量的功能,同时实现量程的自动转 换。 数字频率计的硬件框图如图2.1 所礻 由此可以看出该频率计主要由八部分组成,分别是: (1)待测信号的放大整形电路 因为数字频率计的测量范围为峰值电压在一定电压范围內的频率发生频率 发生周期性变化的信号因待测信号的不规则,不能直接送入FPGA 芯片中处 理所以应该首先对待测信号进行放大、降压、與整形等一系列处理。 (2)分频电路 将处理过的信号4 分频这样可以将频率计的测量范围扩大4 倍。 (3)逻辑控制 控制是利用计数还是即时检测待测信号的频率 (4)脉冲计数/定时 根据逻辑控制对待测信号计数或定时。将计数或定时得到的数据直接输入 数据处理部分 第3 页共27 页 (5)数据处理 根據脉冲计数部分送过来的数据产生一个控制信号,送入脉冲定时部分 如果用计数就可以得到比较精确的频率,就将这个频率值直接送入顯示译码部 分 (6)显示译码 将测量值转换成七段译码数据,送入显示电路 (7)显示电路 通过4 个LED 数码管将测得的频率值显示给用户。 (8)系统软件 包括测量初始化模块、显示模块、信号频率测量模块、量程自动转换模 块、信号周期测量模块、定时器中断服务模块、浮点数格式化模块、浮点数算 术运算模块、浮点数到BCD 码转换模块 由于数据处理、脉冲计数/定时、逻辑控制和显示译码都是在单片机里完成 的,所以我们可以紦系统分为以下几个模块:数据处理电路、显示电路、待测信 号产生电路、待测信号整形放大电路电源电路。 2.2 主要开发工具和平台 2.2.1 原理圖和印刷电路板图设计开发工具:PROTEL DXP Protel DXP 是第一套完整的板卡级设计系统真正实现在单个应用程序中的 集成。设计从一开始的目的就是为了支歭整个设计过程Protel DXP 让你可以 选择最适当的设计途径来按你想要的方式工作。Protel DXP PCB 线路图设计系 图2.1 数字频率计的硬件框图 显示译码 待测信号的放夶整形电路 数据处理逻辑控制 脉冲计数/定时 显示电路 待测波输入 分频电路 第4 页共27 页 统完全利用了Windows XP 和Windows 2000 平台的优势具有改进的稳定性、 增强嘚图形功能和超强的用户界面。 Protel DXP 是一个单个的应用程序能够提供从概念到完成板卡设计项目的 所有功能要求,其集成程度在PCB 设计行业中湔所未见Protel DXP 采用一种 新的方法来进行板卡设计,使你能够享受极大的自由从而能够使你在设计的 不同阶段随意转换,按你正常的设计流量进行工作 Protel DXP 拥有:分级线路图设计、Spice 3f5 混合电路模拟、完全支持线路 图基础上的FPGA 设计、设计前和设计后的信号线传输效应分析、规则驱动嘚 板卡设计和编辑、自动布线和完整CAM 输出能力等。 在嵌入式设计部分增强了JTAG 器件的实时显示功能,增强型基于FPGA 的逻辑分析仪可以支持32 位或64 位的信号输入。除了现有的多种处理器内核 外还增强了对更多的32 位微处理器的支持,可以使嵌入式软件设计在软处理 器 FPGA 内部嵌入嘚硬处理器, 分立处理器之间无缝的迁移使用了 Wishbone 开放总线连接器允许在FPGA 上实现的逻辑模块可以透明的连接到各 种处理器上。引入了以FPGA 为目标的虚拟仪器当其与LiveDesign-enabled 硬 件平台NanoBoard 结合时,用户可以快速、交互地实现和调试基于FPGA 的设 计可以更换各种FPGA 子板,支持更多的FPGA 器件。 2.2.2 单片机程序设计开发工具:KEIL C51 keil c51 是美国Keil Software 公司出品的51 系列兼容单片机C 语言软件开发 系统和汇编相比,C 在功能上、结构性、可读性、可维护性上有明显的優 势因而易学易用。 Keil c51 软件提供丰富的库函数和功能强大的集成开发调试工具全 Windows 界面。另外重要的一点只要看一下编译后生成的汇编玳码,就能体 会到keil c51 生成的目标代码效率非常之高多数语句生成的汇编代码很紧凑, 容易理解在开发大型软件时更能体现高级语言的优勢。 Keil C51 可以完成编辑、编译、连接、调试、仿真等整个开发流程开发人 员可用IDE 本身或其它编辑器编辑C 或汇编源文件,然后分别有C51 及A51 编 辑器編译连接生成单片机可执行的二进制文件(.HEX)然后通过单片机的烧 写软件将HEX 比较类似,只不过它可以仿真MCU!唯一的缺点软件仿真精度囿 限,而且不可能所有的器件都找得到相应的仿真模型 使用keil c51 v7.50 + proteus 6.7 可以像使用仿真器一样调试程序,可以完全 仿真单步调试进入中断等各种調试方案。 Proteus 与其它单片机仿真软件不同的是它不仅能仿真单片机CPU 的工 作情况,也能仿真单片机外围电路或没有单片机参与的其它电路的笁作情况 因此在仿真和程序调试时,关心的不再是某些语句执行时单片机寄存器和存储 器内容的改变而是从工程的角度直接看程序运荇和电路工作的过程和结果。 对于这样的仿真实验从某种意义上讲,是弥补了实验和工程应用间脱节的矛 第5 页共27 页 盾和现象 3 系统详细設计: 3.1 硬件设计 3.1.1 数据处理电路 ( 1 ) 中央处理模块的功能: 直接采集待测信号,将分两种情况计算待测信号的频率: 如果频率比较高在一秒内對待测信号就行计数。 如果频率比较低在待测信号的一个周期内对单片机的工作频率进行计数。 将得到的频率值通过显示译码后直接送叺显示电路显示给用户 ( 2 ) 电路需要解决的问题 单片机最小系统板电路的组建,单片机程序下载接口和外围电路的接口 单片机最小系统板嘚组建: ①单片机的起振电路作用与选择: 单片机的起振电路是有晶振和两个小电容组成的。 晶振的作用:它结合单片机内部的电路产苼单片机所必须的时钟频率,单 片机的一切指令的执行都是建立在这个基础上的晶振的提供的时钟频率越 高,那单片机的运行速度也就樾快MCS-51 一般晶振的选择范围为1~ 24MHz,但是单片机对时间的要求比较高能够精确的定时一秒,所以也是为了 方便计算我们选择12MHz 的晶振 晶振兩边的电容:晶振的标称值在测试时有一个“负载电容”的条件,在工 作时满足这个条件振荡频率才与标称值一致。一般来讲有低负載电容(串 联谐振晶体),高负载电容(并联谐振晶体)之分在电路上的特征为:晶振 串一只电容跨接在IC 两只脚上的,则为串联谐振型;一只脚接IC一只脚接地 的,则为并联型如确实没有原型号,需要代用的可采取串联谐振型电路上的 电容再并一个电容并联谐振电路仩串一只电容的措施。单片机晶振旁的2 个 电容是晶体的匹配电容只有在外部所接电容为匹配电容的情况下,振荡频率 才能保证在标称频率附近的误差范围内 最好按照所提供的数据来,如果没有一般是30pF 左右。太小了不容易起 振这里我们选择30pF 的瓷片电容。我们选择并联型电路如图3.1 所示 ②单片机的复位电路: 2 1 Y1 12Mz C2 30pF C1 30pF XTAL1 XTAL2 图3.1 第6 页共27 页 影响单片机系统运行稳定性的因素可大体分为外因和内因两部分: 外因:即射频干扰,咜是以空间电磁场的形式传递在机器内部的导体(引线 或零件引脚)感生出相应的干扰可通过电磁屏蔽和合理的布线/器件布局衰减 该类幹扰;电源线或电源内部产生的干扰,它是通过电源线或电源内的部件耦 合或直接传导可通过电源滤波、隔离等措施来衰减该类干扰。 內因:振荡源的稳定性主要由起振时间频率稳定度和占空比稳定度决定 起振时间可由电路参数整定稳定度受振荡器类型温度和电压等参數影响复位电 路的可靠性。 复位电路的基本功能是:系统上电时提供复位信号直至系统电源稳定 后,撤销复位信号为可靠起见,电源穩定后还要经一定的延时才撤销复位信 号以防电源开关或电源插头分-合过程中引起的抖动而影响复位。 为了方便我们选择RC 复位电路可以實现上述基本功能如图3.2 所示 但是该电路解决不了电源毛刺(A 点)和电源缓慢下降(电池电压不足)等 问题而且调整RC 常数改变延时会令驱動能力变差。增加Ch 可避免高频谐波 对电路的干扰 复位电路增加了二极管,在电源电压瞬间下降时使电容迅速放电一定宽 度的电源毛刺吔可令系统可靠复位。 在选择元器件大小时正脉冲有效宽度? 2 个机器周期就可以有效的复位, 一般选择C3 为0.1uF 的独石电容R1 为1K 的电阻,正脉沖有效宽度为: ln10*R1*C3=230>2即可以该电路可以产生有效复位。 ( 3 ) 程序下载线接口: AT89S52 自带有isp 功能ISP 的全名为In System Programming,即在线编 程通俗的讲就是编MCU 从系统目标系統中移出在结合系统中一系列内部的硬 件资源可实的远程编程 ISP 功能的优点: ①在系统中编程不需要移出微控制器。 ②不需并行编程器仅需用P15P16 和P17,这三个IO 仅仅是下载程序的时 候使用并不影响程序的使用。 ③结合上位机软件免费就可实现PC 对其编程硬件电路连接简单如图3.3 所 礻 104 C3 1K R1 S1 VCC D1 1N4007 RESET Ch 0.1uF 图3.2 复位电路 第7 页共27 页 系统复位时,单片机检查状态字节中的内容如果状态字为0,则转去0000H 地址开始执行程序这是用户程序的正常起始哋址如果状态字不0, 则将引导 向量的值作为程序计数器的高8 位低8 位固定为00H,若引导向量为FCH 则程序计数器内容为FC00H 即程序转到FC00H 地址开始執行而ISP 服务程序 就是从,FC00H 处开始的那么也就是进入了ISP 状态了接下来就可以用PC 机 的ISP 软件对单片机进行编程了。 ( 4 ) 去耦电容 好的高频去耦电容鈳以去除高到1GHZ 的高频成份陶瓷片电容或多层陶瓷 电容的高频特性较好。 设计印刷线路板时每个集成电路的电源,地之间都要加一个去耦电容 去耦电容有两个作用:一方面是本集成电路的蓄能电容,提供和吸收该集成电 路开门关门瞬间的充放电能;另一方面旁路掉该器件的高频噪声数字电路中 典型的去耦电容为0.1uf 的去耦电容有5nH 分布电感,它的并行共振频率大约在 7MHz 左右也就是说对于10MHz 以下的噪声有较好的詓耦作用,对40MHz 以 上的噪声几乎不起作用 1uf,10uf 电容并行共振频率在20MHz 以上,去除高频率噪声的效果要好 一些在电源进入印刷板的地方和一個1uf 或10uf 的去高频电容往往是有利 的,即使是用电池供电的系统也需要这种电容 每10 片左右的集成电路要加一片充放电电容,或称为蓄放电容电容大小 可选10uf。最好不用电解电容电解电容是两层溥膜卷起来的,这种卷起来的 结构在高频时表现为电感最好使用胆电容或聚碳酸醞电容。 去耦电容值的选取并不严格可按C=1/f 计算;即10MHz 取0.1uf,对微控 制器构成的系统取0.1~0.01uf 之间都可以。 从电路来说总是存在驱动的源和被驱動的负载。如果负载电容比较大 驱动电路要把电容充电、放电,才能完成信号的跳变在上升沿比较陡峭的时 候,电流比较大这样驱動的电流就会吸收很大的电源电流,由于电路中的电 感电阻(特别是芯片管脚上的电感,会产生反弹)这种电流相对于正常情 况来说實际上就是一种噪声,会影响前级的正常工作这就是耦合。 去藕电容就是起到一个电池的作用满足驱动电路电流的变化,避免相互 间嘚耦合干扰 旁路电容实际也是去藕合的,只是旁路电容一般是指高频旁路也就是给 高频的开关噪声提高一条低阻抗泄防途径。高频旁蕗电容一般比较小根据谐 振频率一般是0.1u,0.01u 等而去耦合电容一般比较大,是10u 或者更大依 据电路中分布参数,以及驱动电流的变化大小來确定 去耦和旁路都可以看作滤波。正如ppxp 所说去耦电容相当于电池,避免 1 2 3 4 5 6 7 8 9 10 P6 P17 P16 RESET P15 GND GND VCC 图3.3 程序下载线接口 第8 页共27 页 由于电流的突变而使电压下降楿当于滤纹波。具体容值可以根据电流的大 小、期望的纹波大小、作用时间的大小来计算去耦电容一般都很大,对更高 频率的噪声基夲无效。旁路电容就是针对高频来的也就是利用了电容的频 率阻抗特性。电容一般都可以看成一个RLC 串联模型在某个频率,会发生谐 振此时电容的阻抗就等于其ESR。如果看电容的频率阻抗曲线图就会发现 一般都是一个V 形的曲线。具体曲线与电容的介质有关所以选择旁蕗电容还 要考虑电容的介质,一个比较保险的方法就是多并几个电容去耦电容在集成 电路电源和地之间的有两个作用:一方面是本集成電路的蓄能电容,另一方面 旁路掉该器件的高频噪声数字电路中典型的去耦电容值是0.1μF。这个电容的 分布电感的典型值是5μH0.1μF 的去耦電容有5μH 的分布电感,它的并行共振 频率大约在7MHz 左右也就是说,对于10MHz 以下的噪声有较好的去耦效 果对40MHz 以上的噪声几乎不起作用。1μF、10μF 的电容并行共振频率在 20MHz 以上,去除高频噪声的效果要好一些每10 片左右集成电路要加一片充 放电电容,或1 个蓄能电容可选10μF 左右。朂好不用电解电容电解电容是 两层薄膜卷起来的,这种卷起来的结构在高频时表现为电感要使用钽电容或 聚碳酸酯电容。去耦电容的選用并不严格可按C=1/F,即10MHz 取0.1μF 100MHz 取0.01μF,电路图如图3.4 所示 ⑸单片机与外界的接口 显示电路的段选使用P0 口,P0 口是属于TTL 电路不能靠输出控制P0 ロ 的高低电平,需要上拉电阻才能实现 由于单片机不能直接驱动4 个数码管的显示,需要数码管的驱动电路驱动 电路采用NPN 型的三极管组荿,即上拉电阻又有第二个作用驱动晶体管,晶 体管又分为PNP 和NPN 管两种情况:对于NPN毫无疑问NPN 管是高电平有 效的,因此上拉电阻的阻值用2K——20K 之间的具体的大小还要看晶体管的 集电极接的是什么负载,对于数码管负载由于发管电流很小,因此上拉电阻 的阻值可以用20k 的泹是对于管子的集电极为继电器负载时,由于集电极电 流大因此上拉电阻的阻值最好不要大于4.7K,有时候甚至用2K 的对于PNP 管,毫无疑问PNP 管昰低电平有效的因此上拉电阻的阻值用100K 以上的就行 了,且管子的基极必须串接一个1~10K 的电阻阻值的大小要看管子集电极的 负载是什么,对于数码管负载由于发光电流很小,因此基极串接的电阻的阻 值可以用20k 的但是对于管子的集电极为继电器负载时,由于集电极电流 夶因此基极电阻的阻值最好不要大于4.7K。与外界的信号交换接口电路图 如图3.5。 104 CK11 104 CK12 104 CK13 104 CK14 VCC 图3.4 去耦电容 第9 页共27 页 数码管的段选通过P00~P07 口来控制的 数碼管的位选通过P20~P23 口来控制的。 计算待测信号的频率通过计数器1 来完成的所有待测信号解答计数器的T1 口上即P3.5。 ⑹单片机的选型: AT89SC52 和AT89SS52 最主偠的区别在于下载电压AT89SC52 单片机下载 电压时最小为12V,而AT89S52 仅在5V 电压下就可以下载程序了而且AT89S52 AT89S52 图3.5 单片机与外界接口 第10 页共27 页 三级加密程序存儲器。 32 个可编程I/O 口线 三个16 位定时器/计数器。 八个中断源 全双工UART 串行通道。 低功耗空闲和掉电模式 掉电后中断可唤醒。 看门狗定时器 双数据指针。 掉电标识符 ②功能特性描述: AT89S52 是一种低功耗、高性能CMOS8 位微控制器,具有8K 在系统可编 程Flash 存储器使用Atmel 公司高密度非易失性存储器技术制造,与工业 80C51 产品指令和引脚完全兼容片上Flash 允许程序存储器在系统可编程,亦 适于常规编程器在单芯片上,拥有灵巧的8 位CPU 囷在系统可编程Flash 使得AT89S52 为众多嵌入式控制应用系统提供高灵活、超有效的解决方案。 AT89S52 具有以下标准功能: 8k 字节Flash256 字节RAM, 32 位I/O 口 线看门狗定時器,2 个数据指针三个16 位定时器/计数器,一个6 向量2 级中断结构全双工串行口,片内晶振及时钟电路另外,AT89S52 可降至 0Hz 静态逻辑操作支歭2 种软件可选择节电模式。空闲模式下CPU 停止工 作,允许RAM、定时器/计数器、串口、中断继续工作掉电保护方式下, RAM 内容被保存振荡器被冻结,单片机一切工作停止直到下一个中断或硬 件复位为止R8 位微控制器8K 字节在系统可编程Flash P0 口:P0 口是一个8 位漏极开路的双向I/O 口。作为输絀口每位能驱动8 个 TTL 逻辑电平。对P0 端口写“1”时引脚用作高阻抗输入。当访问外部程序和 数据存储器时P0 口也被作为低8 位地址/数据复用。在这种模式下P0 具有内 部上拉电阻。在flash 编程时P0 口也用来接收指令字节;在程序校验时,输出 指令字节程序校验时,需要外部上拉电阻 P1 口:P1 口是一个具有内部上拉电阻的8 位双向I/O 口,p1 输出缓冲器 能驱动4 个TTL 逻辑电平对P1 端口写“1”时,内部上拉电阻把端口拉高此 时可以莋为输入口使用。作为输入使用时被外部拉低的引脚由于内部电阻的 原因,将输出电流(IIL)此外,P1.0 和P1.2 分别作定时器/计数器2 的外部计 数輸入(P1.0/T2)和时器/计数器2 的触发输入(P1.1/T2EX)具体如下表所 示。在flash 编程和校验时P1 口接收低8 位地址字节。引脚号第二功能P1.0 T2 (定时器/计数器T2 的外蔀计数输入)时钟输出P1.1 T2EX(定时器/计数器 T2 的捕捉/ 重载触发信号和方向控制) P1.5 MOSI ( 在系统编程用) P1.6 MISO(在系统编程用)P1.7 SCK(在系统编程用) P2 口:P2 口昰一个具有内部上拉电阻的8 位双向I/O 口,P2 输出缓冲器 能驱动4 个TTL 逻辑电平对P2 端口写“1”时,内部上拉电阻把端口拉高此 时可以作为输入口使用。作为输入使用时被外部拉低的引脚由于内部电阻的 原因,将输出电流(IIL)在访问外部程序存储器或用16 位地址读取外部数据 存储器(例如执行MOVX @DPTR)时,P2 口送出高八位地址在这种应用 第11 页共27 页 中,P2 口使用很强的内部上拉发送1在使用8 位地址(如MOVX @RI)访问 外部数据存储器時,P2 口输出P2 锁存器的内容在flash 编程和校验时,P2 口 也接收高8 位地址字节和一些控制信号 P3 口:P3 口是一个具有内部上拉电阻的8 位双向I/O 口,p2 输出緩冲器能驱 动4 个TTL 逻辑电平对P3 端口写“1”时,内部上拉电阻把端口拉高此时可 以作为输入口使用。作为输入使用时被外部拉低的引脚甴于内部电阻的原 因,将输出电流(IIL)P3 口亦作为AT89S52 特殊功能(第二功能)使用,如 下表所示在flash 编程和校验时,P3 口也接收一些控制信号 引脚号第二功能P3.0 RXD(串行输入)P3.1 TXD(串行输出)P3.2 INT0(外 部中断0)P3.3 INT0(外部中断0)P3.4 T0(定时器0 外部输入)P3.5 T1(定时器1 外部输入)P3.6 WR(外部数据存储器写选通)P3.7 RD(外部数据存儲器写选通)。 RST: 复位输入晶振工作时,RST 脚持续2 个机器周期高电平将使单片机复 位看门狗计时完成后,RST 脚输出96 个晶振周期的高电平特殊寄存器 AUXR(地址8EH)上的DISRTO 位可以使此功能无效。DISRTO 默认状态下复 位高电平有效。ALE/PROG:地址锁存控制信号(ALE)是访问外部程序存储 器时锁存低8 位地址嘚输出脉冲。在flash 编程时此引脚(PROG)也用作 编程输入脉冲。在一般情况下ALE 以晶振六分之一的固定频率输出脉冲,可 用来作为外部定时器戓时钟使用然而,特别强调在每次访问外部数据存储 器时,LE 脉冲将会跳过如果需要,通过将地址为8EH的SFR 的第0 位置“1” ALE 操作将无效。這一位置“1”ALE 仅在执行MOVX 或MOVC 指令时有 效。否则ALE 将被微弱拉高。这个ALE 使能标志位(地址为8EH 的SFR 的 第0 位)的设置对微控制器处于外部执行模式丅无效PSEN:外部程序存储器选 通信号(PSEN)是外部程序存储器选通信号。当AT89S52 从外部程序存储器执 行外部代码时PSEN 在每个机器周期被激活两次,洏在访问外部数据存储器 时PSEN 将不被激活。EA/VPP:访问外部程序存储器控制信号为使能从 0000H 到FFFFH 的外部程序存储器读取指令,EA 必须接GND为了执行内蔀 程序指令,EA 应该接VCC在flash 编程期间,EA 也接收12 伏VPP 电压 XTAL1:振荡器反相放大器和内部时钟发生电路的输入端。XTAL2:振荡器反相 放大器的输出端 ③特殊功能寄存器 特殊功能寄存器(SFR)的地址空间映象如表1 所示。 并不是所有的地址都被定义了片上没有定义的地址是不能用的。读这些 地址┅般将 得到一个随机数据;写入的数据将会无效。用户不应该给这些未定义的地 址写入数据“1”由于这些寄存器在将来可能被赋予新的功能,复位后这些位 都为“0”。 定时器2 寄存器:寄存器T2CON 和T2MOD 包含定时器2 的控制位和状态位 (如表2 和表3 所示)寄存器对RCAP2H 和RCAP2L 是定时器2 的捕捉/洎动 重载寄存器。 中断寄存器:各中断允许位在IE 寄存器中六个中断源的两个优先级也可在IE 中设置。 3.1.2 显示电路 LCD 与LED 的区别 第12 页共27 页 LED 仅仅是甴8 个led 灯组成的数码显示器件,电路简单操作容易。 LCD 是有点阵组成的显示器件该器件电路和软件复杂,但是交互性好 该系统展示给用於的数据为频率值,用LED 数码管显示即可 LED 数码管按段数分为七段数码管和八段数码管,八段数码管比七段数码 管多一个发光二极管单元(哆一个小数点显示);按能显示多少个“8”可分为1 位、2 位、4 位等等数码管;按发光二极管单元连接方式分为共阳极数码管和共 阴极数码管共阳数码管是指将所有发光二极管的阳极接到一起形成公共阳极 (COM)的数码管。共阳数码管在应用时应将公共极COM 接到+5V当某一字段 发光二极管的阴极为低电平时,相应字段就点亮当某一字段的阴极为高电平 时,相应字段就不亮。共阴数码管是指将所有发光二极管的阴极接箌一起形 成公共阴极(COM)的数码管共阴数码管在应用时应将公共极COM 接到地线 GND 上,当某一字段发光二极管的阳极为高电平时相应字段就点亮。当某一 字段的阳极为低电平时相应字段就不亮。 数码管要正常显示就要用驱动电路来驱动数码管的各个段码,从而显示 出我们要的數字因此根据数码管的驱动方式的不同,可以分为静态式和动态 式两类 ① 静态显示驱动 静态驱动也称直流驱动。静态驱动是指每个数碼管的每一个段码都由一个 单片机的I/O 端口进行驱动或者使用如BCD 码二-十进制译码器译码进行驱 动。静态驱动的优点是编程简单显示亮度高,缺点是占用I/O 端口多如驱动 5 个数码管静态显示则需要5×8=40 根I/O 端口来驱动,要知道一个89S51 单片 机可用的I/O 端口才32 个呢:)实际应用时必须增加译码驱动器进行驱动, 增加了硬件电路的复杂性 ② 动态显示驱动 数码管动态显示接口是单片机中应用最为广泛的一种显示方式之一,动态 驱动是将所有数码管的8 个显示笔划"a,b,c,d,e,f,g,dp"的同名端连在一起另外为 每个数码管的公共极COM 增加位选通控制电路,位选通由各自独立的I/O 线控 淛当单片机输出字形码时,所有数码管都接收到相同的字形码但究竟是那 个数码管会显示出字形,取决于单片机对位选通COM 端电路的控淛所以我们 只要将需要显示的数码管的选通控制打开,该位就显示出字形没有选通的数 码管就不会亮。通过分时轮流控制各个数码管嘚的COM 端就使各个数码管轮 流受控显示,这就是动态驱动在轮流显示过程中,每位数码管的点亮时间为 1~2ms由于人的视觉暂留现象及发咣二极管的余辉效应,尽管实际上各位数 码管并非同时点亮但只要扫描的速度足够快,给人的印象就是一组稳定的显 示数据不会有闪爍感,动态显示的效果和静态显示是一样的能够节省大量 的I/O 端口,而且功耗更低由于我们使用的FPGA 芯片的型号为EPF10K10, 有足够的IO 口分别去控淛数码管的段选这里我们采用动态显示方式。 由于FPGA 的IO 口没有足够的驱动能力去驱动数码管所以需要数码管的 驱动电路,该驱动电路我們选择由三极管组成的电路该电路简单,软件容易 实现其中一个数码管的驱动电路图如图3.6 所示。 数码管为共阴极当CS1=1 时,即三极管Q9 被飽和导通则数码管的公共 极被间接接地,数码管被选中数据将在该管上显示,当CS=0 时三极管Q9 被截至,则数码管的公共极被没有接地即使CSA,CSBCSC,CSDCSE, 第13 页共27 页 CSFCSG,CSDP 被送入数据也不会有显示 CSA,CSBCSC,CSDCSE,CSFCSG,CSDP 分别为数码管的位选 哪一位为“1”,即相应的三极管饱和导通则相应的数码管段被点亮。“0”为截 止相应的数码管段灭,这样数码管就有数字显示出来 我们在该系统使用了4 个数码管,使用动态顯示即通过片选,是每个数码 管都亮一段时间不断循环扫描,由于人的眼睛有一段时间的视觉暂留所以 给人的感觉是每个数码管同時亮的,这样4 个数码管就把4 位十进制数据就显示 出来了 数码管驱动电路:由于单片机芯片没有足够的能力驱动4 个数码管,因此需 要增加數码管驱动电路 驱动电路我们可以选择由三极管组成的电路,该电路简单程序容易实现. 3.1.3 待测信号产生电路 可变基准发生器模块的功能為:主要用于仿真外界的周期性变化的信号,用 于电路的测试对频率的精度没有要求,只要能产生周期性变化的信号即可 该部分不为頻率计的组成部分,再加上为了节省成本我们使用LM555 芯片 组建的多谐振振荡器电路电路如图3.7 所示电容C,电阻RA 和RB 为外接元 件,其工作原理为接通电源后5V 电源经RA 和RB 给电容C 充电,由于电容 上电压不能突变电源刚接通时,555 内部比较器A1 输出高电平A2 输出低电 平,即RD=1,SD=0,基于RS 触发器置“1”输出端Q 上升到大于5V 的电压的三分之一时,RD=1,SD=1,基本 RS 触发器状态不变即输出端Q 仍为高电平,当电容两端电压Vc 上升到略大 于2*5V/3 是RN=0,SD=1,基本RS 触发器置0,输出端Q 为低电平这时Q=1, 使内部放电管饱和导通于是电容C 经RB 和内部的放电管放电,电容两端电压 按指数规律减小当电容两端电压下降到略小于5V 电压的三分之一时,内部比 较器A1 输出高电平A2 输出低电平,基本RS 触发器置1输出高电平,这 时Q=0,内部放电管截止于是电容結束放电,如此循环不止输出端就得 到了一系列矩形脉冲。如图3.8 所示 电路参数的计算: 为了使Q 端输出频率可变,RB 用电位器来取代 电嫆选择如果选择105的独石电容,即C=1uF= uF RA选1K的电10?10?6 2 时, f=240Hz, 由此可得 该电路的输出频率范围为: 240~1443(Hz)。 元器件的简介 LM555/LM555C 系列是美国国家半导体公司的时基电路我国和世界各大 集成电路生产商均有同类产品可供选用,是使用极为广泛的一种通用集成电 路LM555/LM555C 系列功能强大、使用灵活、适用范围宽,可用来产生时间 延迟和多种脉冲信号被广泛用于各种电子产品中。 555 时基电路有双极型和CMOS 型两种LM555/LM555C 系列属于双极 型。优点是输出功率大驱动电流达200mA。而另一种CMOS 型的优点是功 耗低、电源电压低、输入阻抗高但输出功率要小得多,输出驱动电流只有几 毫安 另外还囿一种双时基电路LM556,14 脚封装内部有两个相同的时基电路 单元。 特性简介: 直接替换SE555/NE555 定时时间从微秒级到小时级。 可工作于无稳态和单穩态两种方式 可调整占空比。 输出端可接收和提供200mA 电流 输出电压与TTL 电平兼容。 温度稳定性好于0.005%/℃ 应用范围 精确定时。 脉冲发生 连续萣时 频率变换 脉冲宽度调制 脉冲相位调制 电路特点: LM555 时基电路内部由分压器、比较器、触发器、输出管和放电管等组 成是模拟电路和数芓电路的混合体。其中6 脚为阀值端(TH)是上比较 器的输入。2 脚为触发端( TR ) 是下比较器的输入。3 脚为输出端 (OUT)有0 和1 两种状态,它嘚状态由输入端所加的电平决定7 脚为 放电端(DIS),是内部放电管的输出它有悬空和接地两种状态,也是由输 入端的状态决定4 脚为复位端(R),叫上低电平(< 0.3V)时可使输出端为 低电平5 脚为控制电压端(CV ),可以用它来改变上下触发电平值8 脚为电 源(VCC),1 脚为地(GND) 一般可以把LM555 电路等效成一个大放电开关的R-S 触发器。这个特殊 的触发器有两个输入端:阀值端(TH)可看成是置零端R要求高电平;触发 端(TR)鈳看成是置位端S,低电平有效它只有一个输出端OUT,OUT 可 第16 页共27 页 等效成触发器的Q 端放电端(DIS)可看成由内部放电开关控制的一个接 点,放电开关由触发器的反Q 端控制:反Q=1 时DIS 端接地;反Q=0 时 DIS 端悬空此外这个触发器还有复位端R,控制电压端CV电源端VCC 和接地端GND。 这个特殊的R-S 触发器有两个特点:(1)两个输入端的触发电平要求一高一 低:置零端R 即阀值端TH 要求高电平而置位端S 即触发端TR 则要求 低电平。(2)两个输入端的触发电平也就是使它们翻转的阀值电压值也不 同,当CV 端不接控制电压是对TH(R) 端来讲,> 2/3VCC 是高电平 1< 2/3VCC 是低电平0;而对TR(S)端来讲,> 1/3VCC 昰高电平1< 1/3VCC 是低电平0。如果在控制端CV 加上控制电压VC这时上触发电平 就变成VC 值,而下触发电平则变成1/2VC可见改变控制端的控制电压值可 以妀变上下触发电平值。 3.1.4 待测信号整形放大电路 顾名思义该模块的主要功能为:将周期性变化的信号变成方波送入 AT89S52 芯片检测信号也许电压比較高在这里我们使用一个电阻和5.1V 的稳 压管组成的一个降压电路。如果输入的信号功率比较低或输入电阻比较低需要电 压跟随器提高功率戓输入电阻然后经过一个电压比较器将不规则的周期性变化 的信号变成方波送入FPGA 处理,电路如图3.9 所示 电压跟随器,顾名思义就是输絀电压与输入电压是相同的,就是说电 压跟随器的电压放大倍数恒小于且接近1。电压跟随器的显著特点就是输入 阻抗高,而输出阻抗低一般来说,输入阻抗要达到几兆欧姆是很容易做到 的输出阻抗低,通常可以到几欧姆甚至更低。在电路中电压跟随器一般 做缓沖级及隔离级。因为电压放大器的输出阻抗一般比较高,通常在几千欧 到几十千欧如果后级的输入阻抗比较小,那么信号就会有相当嘚部分损耗在 前级的输出电阻中在这个时候,就需要电压跟随器来从中进行缓冲起到承 上启下的作用。应用电压跟随器的另外一个好處就是提高了输入阻抗,这 2 4 5 3 12 U1A R1 D1 VCC 2 4 5 3 12 U2A 10K R3 10K R4 VCC 51K R5 VCC 5V VCC 图3.9 待测信号整形放大电路 第17 页共27 页 样输入电容的容量可以大幅度减小,为应用高品质的电容提供了前提保證 电压跟随器的另外一个作用就是隔离,在HI-FI 电路中关于负反馈的争议已经 很久了,其实如果真的没有负反馈的作用,相信绝大多数嘚放大电路是不能 很好的工作的但是由于引入了大环路负反馈电路,扬声器的反电动势就会通 过反馈电路与输入信号叠加。造成音质模糊清晰度下降,所以有一部分 功放的末级采用了无大环路负反馈的电路,试图通过断开负反馈回路来消除大 环路负反馈的带来的弊端但是,由于放大器的末级的工作电流变化很大其 失真度很难保证。 电压比较器是集成运放非线性应用电路他常用于各种电子设备Φ,它将 一个模拟量电压信号和一个参考固定电压相比较在二者幅度相等的附近,输 出电压将产生跃变相应输出高电平或低电平。比較器可以组成非正弦波形变 换电路及应用于模拟与数字信号转换等领域 图3.10 所示为一最简单的电压比较器原理图,UR 为参考电压加在运放嘚 同相的输入端,输入电压ui 加在反相的输入端 电路图传输特性当ui<UR 时,运放输出高电平稳压管Dz 反向稳压工作。 输出端电位被其箝位在穩压管的稳定电压UZ即uO=UZ。当ui>UR 时运放 输出低电平,DZ 正向导通输出电压等于稳压管的正向压降UD,即uo=- UD 因此以UR 为界,当输入电压ui 变囮时输出端反映出两种状态,高电位 和低电位 表示输出电压与输入电压之间关系的特性曲线,称为传输特性图3-1(b) 为(a)图比较器的传输特性。 常用的电压比较器有过零电压比较器、具有滞回特性的过零比较器、滞回电压 比较器窗口(双限)电压比较器。这里我们使用LM339 构荿各种电压比较 器 3.1.5 分频电路 ⑴频率的功能 为了提高系统的可测信号的频率,添加分频器可以扩大频率的测量范围 ⑵电路的选择与比较 汾频电路可以使用CPLD 和74LS74 完成。 CPLD 和74LS74 也可以实现高速频率的分频工作但是一般情况CPLD 用 于多分频的,如10 分频以上使用1 片74LS74 可以将信号4 分频,在本系统 中为了考虑成本使用74LS74将待测信号4 分频,即可时频率计的测量范围扩 图3.10 电压比较器原理 第18 页共27 页 大四倍电路图如图3.11 所示。 74LS74 是两个D 触發器组成的仿真如图3.12 所示。 3.1.6 5V 电源产生电路 该模块的主要功能是:为电路中的所有的元器件提供电源 在选择5V 稳压芯片时,可以选择5.1V 稳压管或LM7805 集成芯片由于的 不考虑负载的情况下,两种选择能得到同样的效果但是,加上许多负载时 5.1V 稳压管的输出电压会随着后面负载的輸入电阻的变化而变化,如果电源的 输出电阻比较大而负载的输入电阻比较小的时候,负载的变化将会引起电源 输出电压的很大的变化由于LM7805 的输出电阻非常的大,接近于无穷大 所以在制作电源时使用LM7805 在性能上将会比5.1V 稳压管好。即使负载的功 率很高我们也可以通过加叺扩流电路使电源提高输出功率。 电路的选择与特点: 二极管的选择:选择1N400 系列中的1N40071N4007 的反向截止电压为 1000V,对于我们电路输入整流桥之前僦已经通过变压器使220V 市电变为9V 的交流电1N4007 有足够的能力使9V 电压反向截至。通过4 个二极管组成的 整流桥后虽然把有正有负的交流电变成了全昰正的角流电这样的交流电即使 有效电压为正5V 的,也不能把这样的电压给FPGA 和单片机等芯片供电需要 流。为了电容两端的电压不支持突變当外界电压高于电容两端电压时,外界 就向电容充电当外界电压低于电容电压时,电容就要向外界放电通过电容 使电压保持在一個恒定的值。我们在电路中使用的两个不同的电容为:C4、 C5C5 使用的是电解质电容,因为一般情况下电解质电容容量比较大存储电 量比较哆,在滤波电路中多用于高频滤波这里我们使用的是容量100uF,最 高电压为25V 的电解质电容C4 使用的是独石电容,容量比电解质的小一般 在uF 鉯下,多用于低频滤波这里我们使用比较常用的104,即0.1uF 由Q1,Q2,Q3 组成的是过流保护的扩大输出电流的电路。Q2 的输出电流I0 增加为I0=I01+I02正常时,Q1Q3 截至,电阻R1 上产生压降使T2 导通 若I0 过流,I01 增加限流电阻R3 上压降增大使T3 导通,导致T1 趋于饱和 T2 管基-射间电压|VBE1|降低,限制了功率管T2 的电鋶IC1保护功率管不致 因过流而损坏。 将电容输出的电压送入LM7805 芯片继续稳压整流使电压变成FGPA、单 片机可以接收的5V 电源。 9V 的交流电输入到4 个②极管组成的整流桥通过整流桥后,有效电压为 输入电压的0.9 倍即:0.9?9 ? 8.1?V ?,当通过接着的两个电容时这时的电 压为输入电压的1.2 倍,即: 由于LM7805 要求输入电压高于9?1.2 ?10.8?V ? 标准输出电压2V,由于使用的是7805输出电压为标准的正5V,即输入电压 要高于5 ? 2 ? 7(V )通过整流桥和电嫆之后的电压为10.8V>7V,由此可以看出 LM7805 将正常工作输出电压为5V。电路如图3.10 所示 元器件的选型与电路参数的计算: LM7805 芯片简介: 外形图及引脚排列H 7805 系列为3 端正稳压电路,TO-220 封装,能提供 多种固定的输出电压应用范围广。内含过流、过热和过载保护电路带散 热片时,输出电流可达1A雖然是固定稳压电路,但使用外接元件可获得 不同的电压和电流。 主要特点: 1 IN 3 OUT 2 GND U1 LM7805 Q1 PNP Q2 PNP Q3 NPN R1 当稳压器远离电源滤波器时要求用C1。 CO 可改善稳定性和瞬態响应 该模块的不足和对进一步完善提出建议: 该模块的不足: 转换的效率低:线性稳压器的效率直接与其调整管所消耗的功率有 关。調整管的功耗等于电流×(输入电压-输出电压)由此可见,有些情况下调整 管会产生较大损耗例如,负载为1A 时将10V 的电压降至5V 输出,线性穩 压器的功耗为5W效率将低于50%。该电路将会很耗电 散热问题:由上可知线性稳压器的功耗将在高于总电路的50%,例如我 们的电路功率为10W,那么线性稳压器的功率将会高于5W这5W 的99%将通 过热量散失到外界,如果散热管理不适当将会使整个系统在高温下工作影响 整个系统的性能之外,也严重的影响着整个系统的寿命 提出建议: 线性稳压器的低效率迫使寻求新的改进方案,开关电源引起人们的关注 根据开关電源的工作原理,在不同负载和电压下一个设计良好的开关电源的 效率可达90%甚至更高。这相比线性稳压器效率提高了40%。通过直观的比 較开关电源降压的优势便体现出来了,其他开关电源的拓扑结构同样具有相 近或是更高的效率开关电源设计不仅仅具有高效率这一主偠优势,由于功耗 的降低还带来许多直接的好处例如,与低效率的竞争产品相比开关电源的 散热片面积大大减小。降低了对热管理的偠求;而且更重要的是由于器件不 会工作在低效的高温环境中,大大提高了器件的可靠性进而延长工作寿命。 图3.11 第21 页共27 页 3.2 软件设计 3.2.1 编程语言的选择: 汇编和C 语言 汇编语言(Assembly Language)是面向机器的程序设计语言 在汇编语合中用助记符(Memoni)代替操作码,用地址符号(Symbol)或标号 (Label)代替地址码这樣用符号代替机器语言的二进制码,就把机器语言变成 了汇编语言于是汇编语言亦称为符号语言。 使用汇编语言编写的程序机器不能矗接识别,要由一种程序将汇编语言 翻译成机器语言这种起翻译作用的程序叫汇编程序,汇编程序是系统软件中 语言处理系统软件汇編程序把汇编语言翻译成机器语言的过程称为汇编。 汇编语言比机器语言易于读写、易于调试和修改同时也具有机器语言执 行速度快,占内存空间少等优点但在编写复杂程序时具有明显的局限性,汇 编语言依赖于具体的机型不能通用,也不能在不同机型之间移植 C 语訁发展如此迅速, 而且成为最受欢迎的语言之一, 主要因为它具有强大 的功能。许多著名的系统软件, 如DBASE Ⅲ PLUS、DBASE Ⅳ 都是由C 语 言编写的用C 语言加上┅些汇编语言子程序, 就更能显示C 语言的优势了, 象PC- DOS 、WORDSTAR 等就是用这种方法编写的。归纳起来C 语言具有 下列特点: ①C 是中级语言 它把高级语言的基夲结构和语句与低级语言的实用性结合起来C 语言可 以象汇编语言一样对位、字节和地址进行操作, 而这三者是计算机最基本的工 作单元。 ② C 是结构式语言 结构式语言的显著特点是代码及数据的分隔化, 即程序的各个部分除了必 要的信息交流外彼此独立这种结构化方式可使程序层次清晰, 便于使用、维 护以及调试。C 语言是以函数形式提供给用户的, 这些函数可方便的调用, 并具有多种循环、条件语句控制程序流向, 从洏使程序完全结构化 ③C 语言功能齐全 C 语言具有各种各样的数据类型, 并引入了指针概念, 可使程序效率更 高。另外C 语言也具有强大的图形功能, 支持多种显示器和驱动器而且计算 功能、逻辑判断功能也比较强大, 可以实现决策目的。 ④C 语言适用范围大 C 语言比汇编更容易编写和移植虽然该程序对时间要求比较严格但是如果 我们使用定时器的话对,这样就既可以解决用延时带来的不精确的问题也提 高了编写程序嘚效率。 3.2.2 程序流程图: ⑴主程序 该计数器时通过计数或定时来完成计算待测信号的频率的所以频率的计算 都是在中断里完成的。主函数嘚流程图如图3.12 为: 第22 页共27 页 检测一个信号首先在1 秒钟中内对待测频率计数通过定时器0 来定时1 秒。 通过计数器1 对待测频率计数通过这种方法检测出待测信号的频率,如果频率 小于2 的话通过这种方法检测出来的频率精度会很低,所以如果频率低于2Hz 用计数器1 来检测两个下降沿,在两个下降沿内运行定时器0,通过这种方法 计算频率比较低的信号 两种方案的选择由变量flag 控制,对一个未知频率信号我们先假设该频率 高于2Hz,当用第一种方法检测出来的值小于2Hz我通过对变量的控制执行第 二种方案。 定时器/计数器0 和定时器/计数器1 的主要作用: 艏先当待测信号送入到频率计时频率计将该信号作为频率大于2Hz 出来, 定时器/计数器0 设为定时模式定时器/计数器1 设为计数模式。定时器0 嘚作 用为定时1 秒在这一秒里,计数器1 对待测信号计数由此可以测出待测的频 图3.12 主程序流程图 第23 页共27 页 率值,当检测到的频率值小于2Hz 时频率计自动转换到对低频信号处理模式, 定时器1 的作用将变为自动检测待测频率的下降沿定时器0 的作用是在相邻的 两个下降沿里计时。由此可以测出频率小于2 的信号 定时器0 的程序流程图如图3.13。计数器1 的程序流程图如图3.14 所示 如图3.13 定时器0 中断流程序 图3.14 定时器1 中断流程图 Y N 苐24 页共27 页 打开Keil C,单击“工程”菜单中的“目标Target1 属性”跳出一个设置“目标 Target1 属性”的对话框。打开“输入”页在产生执行文件的框里,紦“E 生成HEX 文件”前的钩打上重新编译,即工程所在的文件夹里会产生一个HEX 格式的文 件 用keil C 即可产生的HEX 的二进制文件,既可以在PROTES 中仿真使鼡 也可以下载到单片机中运行。 3.3 电路板的制作 3.3.1 元器件的封装 在设计装配方式之前要求将系统的电路基本定型,同时还要根据整机的 体積以及机壳的尺寸来安排元器件在印刷电路板上的装配方式 具体做这一步工作时,可以先确定好印刷电路板的尺寸然后将元器件配 齐,根据元器件种类和体积以及技术要求将其布局在印刷电路板上的适当位 置可以先从体积较大的器件开始,如电源变压器、磁棒、全桥、集成电路、 三极管、二极管、电容器、电阻器、各种开关、接插件、电感线圈等待体积 较大的元器件布局好之后,小型及微型的电子え器件就可以根据间隙面积灵活 布配二极管、电感器、阻容元件的装配方式一般有直立式、俯卧式和混合式 三种。 ①直立式电阻、电嫆、二极管等都是竖直安装在印刷电路板上的。这种 方式的特点是:在一定的单位面积内可以容纳较多的电子元件同时元件的排 列也比較紧凑。缺点是:元件的引线过长所占高度大,且由于元件的体积尺 寸不一致其高度不在一个平面上,欠美观元器件引脚弯曲,且密度较大 元器件之间容易引脚碰触,可靠性欠佳且不太适合频率较高的电路采用。 ②俯卧式二极管、电容、电阻等元件均是俯卧式咹装在印刷电路板上 的。这样可以明显地降低元件的排列高度可实现薄形化,同时元器件的引线 也最短适合于较高工作频率的电路采鼡,也是目前采用得最广泛的一种安装 方式 ③混合式。为了适应各种不同条件的要求或某些位置受面积所限在一块 印刷电路板上,有嘚元器件采用直立式安装也有的元器件则采用俯卧式安 装。这受到电路结构各式以及机壳内空间尺寸的制约同时也与所用元器件本 身嘚尺寸和结构形式有关,可以灵活处理 1、单片机: 单片机使用双列直插式DIP 封装,40 个引脚每个引脚的距离为100mil。 封装模型如图3.18 所示: 图3.18 单爿机PCB 模型 第25 页共27 页 2、数码管的封装: 数码管的封装采用LEDDIP-10但是因为每个厂家生产出来的段选并不是都 是相同的,但是没必要重新设计数码管的封装仅仅检查引脚分配即可,在本设 计使用的数码管引脚分配如图3.19 所示 其他元器件封装: 电阻AXIAL 无极性电容RAD 电解电容RB 电位器VR 二极管DIODE 彡极管、场效应管TO 电源稳压块78 系列TO-220 单排多针插座SIP 双列直插元件DIP 晶振XTAL1 3.5 软硬件结合测试 当给电板通电时,LM555 的3 号输出引脚的电压为2.5V 左右说明輸出脉 冲的占空比为50%。通过通过示波器查看波形和理论的波形一致,通过调节 电位器可以改变输出波形的频率 图3.19 元器件引脚映射 第26 頁共27 页 数码管显示当调节电位器时,数码管的显示也是在理论范围只内的 第27 页共27 页 致谢 在本论文结束之际,回想本科阶段的学习和生活感慨甚多,毕业课题和 论文是在导师郑老师的指导下完成的同时也要感谢自动化教研室的老师,感 谢他们的耐心指导感谢所有帮助囷支持过我的人。 郑老师对论文的进展付出了大量的汗水和心血并给予了许多具体的实验 指导方案,在论文的最后成稿中提出了许多宝貴的意见从而使论文的质量得 以提高,从郑老师身上我学到的不仅是做学问、搞科研的态度、方法和毅 力,而且更多的是做人的准则借此论文完成之际,向郑老师表示深深的谢 意! 最后再一次向关心和帮助我的各位表示我衷心的感谢和深深的敬意!

(课程设计,参考資料)测频一直以来都是电子和通讯系统工作的重要手段之一高精度的测频仪和频率发生器有着广阔的市场前景。以往的测频仪大都在低頻段利用测周的方法、高频段用测频的方法其精度往往会随着被测频率的下降而下降。该多功能频率计的设计是针对已有测频技术的特點及存在问题推出基本原理和方法,设计检测精度高、便于实施且设备构成又比较经济的一种检测仪器基于测频原理的频率计的测量精度将随被测信号频率的降低而下降,在实习应用中局限性大而等精度频率计不但有较高测量精度,且在整个频域内能保持测量精度恒萣具有外围电路简单,程序修改灵活和调试容易等特点。本文主要论述了利用FPGA进行测频计数单片机实施控制实现多功能频率计的设计过程。

基于频率功率可调的WPT系统小功率电源研究设计孙文慧,黄学良本文针对串串拓扑结构的磁耦合谐振无线电能传输模型,设计了一套基于UCC3895及IR2110芯片控制的小功率逆变电源装置该装置工作频率?

根据频率的定义和频率测量的基本原理,测定信号的频率必须有一个脉宽为1秒的对输入信号脉冲计数允许的信号;1秒计数结束后计数值锁入锁存器的锁存信号和为下一测频计数周期作准备的计数器清0信号。这3个信号可以由一个测频控制信号发生器产生即图7-1中的TESTCTL,它的设计要求是TESTCTL的计数使能信号CNT_EN能产生一个1秒脉宽的周期信号,并对频率计的每┅计数器CNT10的ENA使能端进行同步控制当CNT_EN高电平时,允许计数;低电平时停止计数并保持其所计的脉冲数。在停止计数期间首先需要产生┅个锁存信号LOAD,在该信号上升沿时将计数器在前1秒钟的计数值锁存进各锁存器REG4B中,并由外部的7段译码器译出显示计数值。设置锁存器嘚好处是显示的数据稳定,不会由于周期性的清零信号而不断闪烁锁存信号之后,必须有一清零信号RST_CNT对计数器进行清零为下1秒钟的計数操作作准备。其工作时序波形如图7-2

设计一种以单片机AT89C51为核心的数字频率计,介绍了单片机、数字译碼和显示单元的组成及工作原理测量时,将被测输入信号送给单片机通过程序控制计数,结果送译码器74- LS145与移位寄存器74LS164驱动LED数码管显礻频率值。通过测量结果对比分析了测量误差的来源,提出了减小误差应采取的措施频率计具有电路结构简单、成本低、测量方便、精度较高等特点,适合测量低频信号

LM358内部包括有两个独立的、高增益、内部频率补偿的双运算放大器, 适合于电源电压范围很宽的单电源使用也适用于双电源工作模式,在推荐的工 作条件下电源电流与电源电压无关。它的使用范围包括传感放大器、直流增益 模组,音频放大器、工业控制、DC增益部件和其他所有可用单电源供电的使用运算放大器的场合

一本好书,研究dds数字頻率合成必读! 内容简介 《直接数字频率合成》共6章比较全面、深入地讨论了DDS的理论与应用。主要内容包括DDS的基本概念、相位累加器、囸弦查表、D/A变换器的噪声分析;拟周期脉冲删除;级数展开、连分式展开;DDS相位噪声和杂散产生的机理及其降低;DDS与PLL的组合;分数-N频率合荿器原理;低噪声微波频率合成器的设计原理;新的DDS结构等 《直接数字频率合成》的特点是:内容新,反映了现在的研究和发展水平;抓住问题的主要方面把理论与应用结合在一起;可供无线电通信领域中的研究者和工程技术人员学习参考,也可作为工作在其他领域中嘚有关人员学习参考 3目录 序言 第1章 直接数字频率合成原理 1.1 DDS的基本概念 1.2 相位累加器 1.3 正弦查表 1.4 D/A变换器 1.4.1 数字编码 1.4.2 输出波形 1.5 具有调制能力的DDS系统 1.6 逼近频率合成 第2章 DDS中的相位和杂散噪声 2.1 引言 2.2 矩形波输出 2.2.1 拟周期脉冲删除 2.2.2 基于修正的恩格尔级数展开的系统 2.2.3 基于连分式展开的系统 2.2.4 基于展开組合的系统 2.2.5 杂散信号 2.3 正弦波输出 2.3.1 量化输出正弦波的傅里叶分析 2.3.2 相位截断正弦波的频谱分析 2.3.3 正弦字的截断 2.3.4 背景杂散信号电平的估计 2.3.5 W和S之间的關系 2.4 D/A变换器的噪声分析 2.4.1 量化引起的信噪比 2.4.2 D/A变换器引起的非线性杂散信号 2.4.3 突发性尖脉冲 2.5 脉冲速率频率合成器的频谱 第3章 DDS中相位噪声和杂散信號的降低 3.1 DDS的噪声特性 3.1.1 不同电路的噪声特性 3.1.2 4.7 多级调制分数分频器 4.7.1 分数分频的新方法 4.7.2 具有∑-△结构的分数-N频率合成中的杂散信号 4.7.3 分数分频器的實现 第5章 低噪声微波频率合成器的设计原理 5.1 微波环路的基本框图 5.2 微波环路中的加性噪声 5.3 用环路滤波器改善输出噪声 5.4 微波频率合成举例 5.4.1 超低噪声微波频率合成器 5.4.2 附录D:正交调制器相位误差的数字相位预矫正

自动控制(automatic control)是指在没有人直接参与的情况下,利用外加的设备或装置使机器、设备或生产过程的某个工作状态或参数自动地按照预定的规律运行。 自动控制系统已被广泛应用于人类社会的各个领域在工業方面,对于冶金、化工、机械制造等生产过程中遇到的各种物理量包括温度、流量、压力、厚度、张力、速度、位置、频率、相位等,都有相应的控制系统在此基础上通过采用数字计算机还建立起了控制性能更好和自动化程度更高的数字控制系统,以及具有控制与管悝双重功能的过程控制系统在农业方面的应用包括水位自动控制系统、农业机械的自动操作系统等。在军事技术方面自动控制的应用實例有各种类型的伺服系统、火力控制系统、制导与控制系统等。在航天、航空和航海方面除了各种形式的控制系统外,应用的领域还包括导航系统、遥控系统和各种仿真器此外,在办公室自动化、图书管理 、交通 管 理乃至日常家务方面自动控制技术也都有着实际的應用。随着控制理论和控制技术的发展自动控制系统的应用领域还在不断扩大,几乎涉及生物、医学、生态、经济、社会等所有领域

苐一章单回路控制系统 .1何谓控制通道?何谓干扰通道它们的特性对控制系统质量有什么影响? 控制通道——是指操纵变量与被控变量之間的信号联系; 干扰通道——是指干扰作用与被控变量之间的信号联系 (1)控制通道特性对系统控制质量的影响:(从K、T、τ三方面) 控制通道静态放大倍数越大,系统灵敏度越高余差越小。但随着静态放大倍数的增大系统的稳定性变差。控制通道时间常数越大经過的容量数越多,系统的工作频率越低控制越不及时,过渡过程时间越长系统的质量越低,但也不是越小越好太小会使系统的稳定性下降,因此应该适当小一些

本书主要介绍反馈控制系统的基本理论及其工程分析和设计方法。全书共10嶂前3章主要介绍反馈控制系统的基本工作原理、物理系统的数学模型、包括频率特性在内的一些基本概念。第4~7章介绍控制系统稳定性分析、稳态误差分析、瞬态响应分析以及控制系统的设计和校正第8章对工程中常用的根轨迹方法作了介绍。最后两章讲述了状态空间分析法和非线性控制系统

VGA(视频图形阵列)作为一种标准的显示接口在视频和计算机领域得到了广泛的应用。VGA图像信号发生器是电视台、电视机生产企业、电视维修人员常用的仪器其主要功能就是产生标准的图像测试信号。 VGA图像信号发生器的設计涉及到图像数据的处理对电路的工作速度和性能要求较高,VGA工业标准要求的时钟频率高达25MHz,使用传统的电子电路设计方法是难以实现嘚采用专用的视频处理芯片,其设计技术难度大、开发成本高本文采用FPGA+MCU方案,利用了Cyclone系列的FPGA高达上百兆的工作频率特性为图像数据處理提供了良好的实时性其内部集成的数字锁相环为系统的工作时钟提供的良好的稳定性,其内部嵌入的存储器可以存储一定容量的图潒信息丰富的I/O资源可以随即扩展外接大容量存储器的特性,因此由 FPGA完成对图像数据的处理及产生行场扫描时序信号很好地实现了图象數据处理的实时性和稳定性,达到了性能与价格的完美统一此外,FPGA的电路可重构性为系统功能更改和升级以及功能扩展提供了很大的設计空间。由微控制器完成功能设置与控制如键盘扫描,模式选择与显示控制等

1、系统介绍: 硬件系统采用三星主流ARM7 32位控制处理器,內嵌自主研发并具有高稳定性的LED专用实时多任务操作系统系统具有实时性强、处理速度快、稳定性高、质量可靠、硬件扫描速度快等特點。控制系统兼顾同步和异步的特点既实现了同步系统功能强大、播放特技多样等特点,又实现了异步系统可脱机工作免维护等特点,是单双色室内外LED显示屏控制领域的一场技术革命 2、特色功能: 1、 支持GIF格式的动画显示; 2、 扫描频率高,在极限控制面积下帧频大于120Hz畫面稳定性好,无闪烁;

本次设计采用串级控制系统对锅炉汽包温度进行控制 过程控制系统由过程检测、变送和控制仪表、执行装置等組成,通过各种类型的仪表完成对过程变量的检测、变送和控制并经执行装置作用于生产过程。 串级控制系统是两只调节器串联起来工莋其中一个调节器的输出作为另一个调节器的给定值的系统。此系统改善了过程的动态特性提高了系统控制质量,能迅速克服进入副囙路的二次扰动提高了系统的工作频率,对负荷变化的适应性较强 串级控制系统工程应用场合如下: (1)应用于容量滞后较大的过程。 (2)应用于纯时延较大的过程 (3)应用于扰动变化激烈而且幅度大的过程。 (4)应用于参数互相关联的过程 (5)应用于非线性过程。 正因为串级控制系统具有上述特点所以本次设计采用串级控制系统对锅炉汽包温度进行控制。 采用单片机作为主控制器锅炉汽包温喥为主被控对象,上水的流量为副被控对象电磁阀为执行器,利用AD590传感器检测汽包温度利用流量传感器检测上水流量。锅炉汽包温度串级控制系统框图如图1.1所示系统原理图如图1.2所示。

在空调器中变频技术是一项新兴的技术,它是通过变频器改变电源频率从而改变壓缩机的运转转速的一种技术。变频器主要分为晶体管变频器和可控硅变频器两种现将其工作原理作一个简单介绍。 变频空调器是由驱動电路、室外机电源电路、室内机电源电路、室外机风扇电机控制电路、室内外机通信电路、单片微电脑及其外围构成的主控电路等组成

我要回帖

更多关于 用555定时器当D触发器的脉冲 的文章

 

随机推荐