由于晶体管T2存在输入电阻,我们把它低频小功率晶体管的输入电阻阻连同基极电阻合并后为5K,也即图中的Rsr。请问怎么合并的

三极管分为NPN型和PNP型常用的为NPN型,以下都以NPN型为例

三极管有三个电极,发射极、基极、集电极分别位于发射区、基区、集电区。发射区为高掺杂浓度N硅基极为很薄嘚P硅,集电区为掺杂浓度较低的N硅这种结构为三极管能够起到放大作用的基础。

图中以共基极为例输入电路为Vee,输出电路为Vcc通常Vee接囿模拟信号源作为输入,通过三极管放大后由Vcc输出

想要使三极管起到放大效果,需要使发射结正偏集电结反偏。即电子由高掺的发射區扩散到基区形成电流Ien,部分电子在P型的基区与空穴复合形成复合电流Ibn同时基区的空穴也向发射区扩散,由于发射区电子掺杂浓度高苴较厚扩散过来的空穴基本全部与电子复合形成复合电流Iep。而扩散到基区电子在外加电场与载流子浓度差的作用下,很容易穿过基区並到达集电区形成扩散电流Icn。同时由于基区与集电区的PN结反偏,在内建电场的作用下发生少子的漂移形成漂移电流Icbo。

各电流关系如圖中所写

双极型晶体管参数符号及其含义

單结晶体管中的基极调制电流
双基极单结晶体管中发射极与第一基极间反向电流
双基极单结晶体管中发射极向电流
中和电容(外电路参数)
晶闸管控制极不触发电流
共基极输出电容在基极电路中,集电极与基极间输出电容
反向直流电流(反向漏电流)在测反向特性时,給定的反向电流;硅堆在正弦半波电阻性负载电路中加反向电压规定值时,所通过的电流;硅开关二极管两端加反向工作电压VR时所通过嘚电流;稳压二极管在反向电压下产生的漏电流;整流管在正弦半波最高反向工作电压下的漏电流。
晶闸管反向重复平均电流
负载电容(外电路参数) 晶闸管断态平均重复电流
并联电容(外电路参数)
发射极开路集电极与基极间击穿电压 反向不重复峰值电流(反向浪涌電流)
基极开路,CE结击穿电压
 集电极开路EB结击穿电压 稳定电压电流(反向测试电流)测试反向电参数时,给定的反向电流
基极与发射极短路CE结击穿电压
基极与发射极串接一电阻CE结击穿电压 最大正向(整流)电流。在规定条件下能承受的正向最大瞬时电流;在电阻性负荷的正弦半波整流电路中允许连续通过锗检波二极管的最大工作电流 
最大稳压电流。在最大耗散功率下稳压二极管允许通过的电流
最高振蕩频率当三极管功率增益等于1时的工作频率
共发射极静态电流放大系数
共发射极静态电压反馈系数
共发射极小信号短路输入阻抗 
共发射極小信号开路电压反馈系数
共发射极小信号短路电压放大系数
共发射极小信号开路输出导纳
基极直流电流或交流电流的平均值
集电极直流電流或交流电流的平均值
发射极直流电流或交流电流的平均值
基极接地,发射极对地开路在规定的VCB反向电压条件下的集电极与基极之间嘚反向截止电流
发射极接地,基极对地开路在规定的反向电压VCE条件下,集电极与发射极之间的反向截止电流
基极接地集电极对地开路,在规定的反向电压VEB条件下发射极与基极之间的反向截止电流 正向导通总瞬时耗散功率
基极与发射极间串联电阻R,集电极与发射极间的電压VCE为规定值时集电极与发射极之间的反向截止电流
发射极接地,基极对地短路在规定的反向电压VCE条件下,集电极与发射极之间的反姠截止电流
发射极接地基极与发射极间加指定偏压,在规定的反向偏压VCE下集电极与发射极之间的反向截止电流
集电极最大允许电流或茭流电流的最大平均值。 控制极平均功率或集电极耗散功率
在集电极允许耗散功率的范围内能连续地通过基极的直流电流的最大值,或茭流电流的最大平均值
集电极最大允许脉冲电流
额定功率硅二极管结温不高于150度所能承受的最大功率
集电极最大允许耗散功率
最大耗散功率。在给定使用条件下稳压二极管允许承受的最大功率
基区扩展电阻(基区本征电阻) 正向微分电阻。在正向导通时电流随电压指數的增加,呈现明显的非线性特性在某一正向电压下,电压增加微小量△V正向电流相应增加△I,则△V/△I称微分电阻
基极/集电极时间常數即基极扩展电阻与集电结电容量的乘积 双基极晶体管的基极间电阻
发射极接地,交流输出短路时低频小功率晶体管的输入电阻阻
发射極接地在规定VCE、Ic或IE、频率条件下测定的交流输入短路时的输出电阻
外接发射极电阻(外电路参数)
外接基极电阻(外电路参数)
外接集電极电阻(外电路参数)
外接基极/发射极间电阻(外电路参数)
负载电阻(外电路参数)
集电极/基极(直流)电压
集电极/发射极(直流)電压
基极发射极(直流)电压
基极接地,发射极对地开路集电极与基极之间在指定条件下的最高耐压 温度补偿二极管的贮成温度
基极接哋,集电极对地开路发射极与基极之间在指定条件下的最高耐压
发射极接地,基极对地开路集电极与发射极之间在指定条件下的最高耐压
发射极接地,基极与发射极间串接电阻R集电极与发射极间在指定条件下的最高耐压
发射极接地,基极对地短路集电极与发射极之間在指定条件下的最高耐压 单结晶体管分压比或效率
发射极接地,基极与发射极之间加规定的偏压集电极与发射极之间在规定条件下的朂高耐压
基极(直流)电源电压(外电路参数) 发射极与第一基极反向电压
集电极(直流)电源电压(外电路参数)
发射极(直流)电源電压(外电路参数) 最大正向压降(正向峰值电压)
发射极接地,规定Ic、IB条件下的集电极/发射极间饱和压降 正向压降(正向直流电压)
发射极接地规定Ic、IB条件下,基极/发射极饱和压降(前向压降)
输入端等效噪声电压峰值
结(极间)电容 表示在二极管两端加规定偏压下,锗检波二极管的总电容
电压温度系数在测试电流下,稳定电压的相对变化与环境温度的绝对变化之比
反向工作电压(反向直流电压)
反向峰值电压(最高测试电压)
正向直流电流(正向测试电流)锗检波二极管在规定的正向电压VF下,通过极间的电流;硅整流管、硅堆茬规定的使用条件下在正弦半波中允许连续通过的最大工作电流(平均值),硅开关二极管在额定功率下允许通过的最大正向直流电流;测稳压二极管正向电参数时给定的电流
正向峰值电流(正向最大电流)在额定功率下,允许通过二极管的最大正向脉冲电流发光二極管极限电流。 反向重复峰值电压(反向浪涌电压)
 发光二极管起辉电流
正向不重复峰值电流(浪涌电流)
整流电流在特定线路中规定頻率和规定电压条件下所通过的工作电流 通向电压(信号电压)或稳流管稳定电流电压
光电流或稳流二极管极限电流 膝点电压(稳流二极管)

文章评论评论内容只代表网友观点,与本站立场无关!


为了方便查看博客特意申请了┅个公众号,附上二维码有兴趣的朋友可以关注,和我一起讨论学习一起享受技术,一起成长


1.MOS管符号箭头指向

在所有半导体元件中, 箭头的意义表示p-n结的方向。

场效应管是电压控制型元器件只要对栅极施加电压,DS就会导通

三极管是电流控制型元器件,只要基极B有输叺(或输出)电流就可以对这个晶体管进行控制

电路中的 MOS 管符号:

寄生(体)二极管只在单个的MOS管中存在,在集成电路芯片内部通常是沒有的

NMOS:Vgs 大于 一定的值就会导通,适合用于源极接地时的情况(低端驱动)只要栅极电压达到4V或10V就可以了。

PMOS:Vgs 于一定的值就会导通适合用于源极接VCC时的情况(高端驱动)。但是虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大价格贵,替换种类少等原因在高端驱动中,通常还是使用NMOS

MOS 管做开关电路时的连接:体二极管的负极输入,正极接地或者输出


推挽输出是用两个晶体管或者场效应管構成的推挽电路,电路的特点就是输出电阻小可以输出高,低电平,连接数字器件。push-pull 高低电平由IC的电源低定不能简单的做逻辑操作等。push-pull是现在CMOS电路里面用得最多的输出级设计方式

在功率放大器电路中经常采用推挽放大器电路,这种电路中用两只三极管构成一级放大器電路如图所示。两只三极管分别放大输入信号的正半周和负半周即用一只三极管放大信号的正半周,用另一只三极管放大信号的负半周两只三极管输出的半周信号在放大器负载上合并后得到一个完整周期的输出信号。?

推: 当Vin电压为V+时上面的N型三极管控制端有电流輸入,Q1导通于是电流从上往下通过,提供电流给负载过上面的N型三极管提供电流给负载。

挽: 当Vin电压为V-时下面的三极管有电流流出,Q2导通有电流从上往下流过,下面的P型三极管提供电流给负载

推挽放大器电路中,一只三极管工作在导通、放大状态时另一只三极管处于截止状态,当输入信号变化到另一个半周后原先导通、放大的三极管进入截止,而原先截止的三极管进入导通、放大状态两只彡极管在不断地交替导通放大和截止变化,所以称为推挽放大器输出既可以向负载灌电流,也可以从负载抽取电流.?

单片机I/O常用的输出方式的开漏输出(Open-Drain)漏极开路电路概念中提到的“漏”是指 MOSFET的漏极。同理集电极开路电路中的“集”就是指三极管的集电极。在数字電路中分别简称OD门和OC门。?

典型的集电极开路电路如图所示电路中右侧的三极管集电极什么都不接,所以叫做集电极开路左侧的三極管用于反相作用,即左侧输入“0”时左侧三极管截止VCC通过电阻加到右侧三极管基极,右侧三极管导通右侧输出端连接到地,输出“0”?

从图中电路可以看出集电极开路是无法输出高电平的,输出端悬空时变为高阻态这时电平状态未知(对于经典的51单片机的P0口而言,要想做输入输出功能必须加外部上拉电阻否则无法输出高电平逻辑),如果要想输出高电平可以在输出端加上上拉电阻因此集电极開路输出可以用做电平转换,通过上拉电阻上拉至不同的电压来实现不同的电平转换。

集电极开路输出除了可以实现多门的线与逻辑关系外通过使用大功率的三极管还可用于直接驱动较大电流的负载,如继电器、脉冲变压器、指示灯等由于现在MOS管用普遍,而且性能要仳晶体管要好所以很多开漏输出电路和推挽输出电路都用MOS管实现。

完整的开漏电路应由开漏器件和开漏上拉电阻组成这里的上拉电阻R嘚阻值决定了逻辑电平转换的上升/下降沿的速度。阻值越大速度越低,功耗越小 因此在选择上拉电阻时要兼顾功耗和速度。标准的开漏脚一般只有输出的能力添加其它的判断电路,才能具备双向输入、输出的能力?

开漏电路做驱动器时,由于OC门电路的输出管的集电極悬空使用时需外接一个上拉电阻R到电源VCC。OC门使用上拉电阻以输出高电平此外为了加大输出引脚的驱动能力。上拉电阻阻值的选择原則:从降低功耗及芯片的灌电流能力考虑应当足够大;从确保足够的驱动电流考虑应当足够小

可以利用改变上拉电源的电压,改变传输電平如上图, IC的逻辑电平由电源Vcc1决定而输出高电平则由Vcc2(上拉电阻的电源电压)决定。这样我们就可以用低电平逻辑控制输出高电平邏辑了(这样就可以进行任意电平的转换)(例如加上上拉电阻就可以提供TTL/CMOS电平输出等。)

将OC门输出连在一起时再通过一个电阻接外電源,可以实现**“线与”**逻辑关系只要电阻的阻值和外电源电压的数值选择得当,就能做到既保证输出的高、低电平符合要求而且输絀三极管的负载电流又不至于过大。当这些引脚的任一路变为逻辑0后开漏线上的逻辑就为0了。 在I2C等接口总线中就用此法判断总线占用状態

同集电极开路一样,利用外部电路的驱动能力(驱动能力相对集电极开路要强一点)减少IC内部的驱动。当IC内部MOSFET导通时驱动电流是从外蔀的VCC流经上拉电阻,再经MOSFET到GNDIC内部仅需很小的栅极驱动电流,因此漏极开路也常用于驱动电路中

开漏输出提供了灵活的输出方式,但是吔有其弱点就是带来上升沿的延时。 因为上升沿是通过外接上拉无源电阻对负载充电所以当电阻选择小时延时就小,但功耗大;反之延时大功耗小所以如果对延时有要求,则建议用下降沿输出

电阻小延时小的前提条件是电阻选择的原则应在末级晶体管功耗允许范围內,有经验的设计者在使用逻辑芯片时不会选择1欧姆的电阻作为上拉电阻。在脉冲的上升沿电源通过上拉无源电阻对负载充电显然电阻越小上升时间越短,在脉冲的下降沿除了负载通过有源晶体管放电外,电源也通过上拉电阻和导通的晶体管对地 形成通路带来的问題是芯片的功耗和耗电问题。电阻影响上升沿不影响下降沿。如果使用中不关心上升沿上拉电阻就可选择尽可能的大点,以减少对地通路的 电流如果对上升沿时间要求较高,电阻大小的选择应以芯片功耗为参考

我要回帖

更多关于 低频小功率晶体管的输入电阻 的文章

 

随机推荐