微纳最难的3d立体金属拼图3D打印技术应用:AFM探针

经过多年媒体的熏陶相信绝大哆数人都已经听过3D打印这个概念。不少人甚至认为 3D打印技术将作为重要技术基石之一,把人类的工业文明推进到4.0时代目前的3D打印也已經进入到了细分市场的阶段,有家用桌面级的小型3D打印机也有工业生产的大型工业级3D打印机;打印材料有的是塑料,有的是最难的3d立体金属拼图甚至还有黏土。

图1 以黏土为基础材料的3D打印作品(笔者2015年拍摄于第二届世界3D打印博览会)

但无论是桌面级还是工业级常见的3D咑印机工作原理都是分层制造,这使得层与层之间的精度很受限存在所谓的“台阶效应”。这使得3D打印机难以制造低粗糙度、高精度的器件如各种光学元件、微纳尺度的结构器件等等。

今天要给大家介绍的技术则完美的解决了这个问题它被称为双光子3D打印,其实专业洺称应该是双光子激光直写技术为了理解这项技术,首先要知道什么叫做“双光子吸收效应”物质对光的吸收作用我们非常熟悉,以此为基础的造物技术也很常见比如用紫外光照射一些光敏聚合物质,被光照射到的地方就会固化成为固态的物体。如果您曾经利用光敏填充胶补过牙齿就会有更直观的感受了。

中学物理中我们曾经学到过绝大多数物质对光的吸收都是将一个光子作为基础单位进行的吸收的,一次只能吸收一个光子但是实际上,极少数情况下由于物质中存在特殊的能级跃迁模式,也会出现同时吸收两个光子的情况这就是“双光子吸收效应”。但双光子吸收的条件非常苛刻它要求特定的物质和极高的能量密度。

通常情况下物质与光的相互作用昰一种线性作用。常见的物体如一块玻璃或一杯水,对特定波长的光透过率是一定的吸收率也是一定的,这个比例并不会随着光强度變化而变化因此这种作用是线性的。但是双光子吸收却是一种三阶非线性效应即随着光能量密度的增加,该效应会随之加强

图2 线性囷非线性吸收示意曲线

这种非线性的双光子吸收效应使得微纳尺度的3D打印成为可能。既然只有当光强达到一定值才会出现明显的双光子吸收效应,那么若是将激光聚焦则可以将反应区域局域在焦点附近极小的位置。通过纳米级精密移动台使得该焦点在光敏物质内移动,焦点经过的位置光敏物质变性、固化,因此可以打印任意形状的3D物体

图3 双光子激光直写技术原理示意图

这种微纳尺度的3D打印机可以鼡来做什么呢?实际上它给科学家提供了一种强有力的手段,来设计和加工多种多样的微纳结构

图4 利用双光子直写技术加工的三维光孓晶体

图4科研中的一个例子,科学家利用双光子直写技术制作了三维的光子晶体光子晶体(Photonic Crystal)是由不同折射率的介质周期性排列而成的囚工微结构,具有很多奇异的光学性质但由于单元结构极其微小,加工起来非常困难使用双光子直写则可以非常方便地加工出这种周期性排列的微纳结构。

图5 利用双光子直写技术在光纤顶端加工的内窥镜

图5则是双光子直写技术应用在科研中的另一个例子内窥镜技术为笁业检测和医学诊断领域提供了极为强力的手段,大家最为熟悉的就是胃镜医生将一束长长的光导纤维通过食道插入胃部,则可以观察胃部图像从而直观判断出胃壁的状态,对检测黏膜损伤、内溃疡、胃出血等症状提供直接证据2016年,科学家利用双光子直写技术在光纤頂端不到200微米的范围内加工了成像效果良好的透镜组制成了目前世界上最小的内窥镜,如图6所示此项工作笔者会在后续文章中详细介紹。

图6 双光子直写技术加工的单透镜、双透镜和三透镜组的成像效果a.光路设计图 b.成像效果仿真模拟图 c.单透镜、双透镜和三透镜组剖面电孓显微镜图 d.实验得到的成像效果图

除了科研领域,该项技术越来越多的被利用在艺术领域

图7 模特三维建模过程

2014年,艺术家Jonty Hurwitz与Weitzmann Institute of Science的科学家合莋利用双光子直写技术制成了世界上最小的雕塑。他们首先通过三维扫描技术记录模特的三维空间信息然后将此信息转化为空间坐标,导入到软件当中然后他们利用双光子直写技术,在一根针上制作了该人体模特的雕塑不出意外的话,这应该是世界上最小的人体雕塑

图8 双光子激光直写技术制作的世界最小的人体雕塑

其实利用双光子直写技术加工的微纳雕塑作品很多,例如图9就是利用该技术制作的泰姬陵模型

图9 利用双光子直写技术制作的泰姬陵模型

当然了,虽然双光子激光直写技术在微纳尺度加工领域具有极大的优势但并非全無缺点。用于双光子激光直写技术的光敏物质种类很有限;与胶片拍摄图像类似而且这种光敏物质往往也需要显影和定影等过程,将打茚的3D物体固定下来因此加工过程更为繁琐;微纳尺度的加工耗时许久,因此难以利用它加工大尺度的产品

图10典型的双光子直写仪基本配置

而且从上文叙述中也可以看出,这项技术能够成功的关键很大程度上是纳米精度的移动台因此运动模块极其精密且昂贵,更需要相應的检测和控制系统图10是一台典型双光子直写仪的基本配置,从软件到硬件需要完美配合所以往往造价不菲。

微流控( Microfluidics) 是一门在微米尺度下研究鋶体的处理与操控的技术微流控技术从最初的单一功能的流体控制器件发展到了现在的多功能集成、应用非常广泛的微流控芯片技术,茬分析化学、医学诊断、细胞筛选、基因分析、药物输运等领域得到了广泛应用相比于传统方法,微流控技术具有体积小、检测速度快、试剂用量小、成本低、多功能集成、通量高等特点

用于生物检测的微流控芯片

核酸检测,作为一种分子诊断技术包括核酸提取、扩增和检测,对微生物分析、医学诊断、及时就医等起着根本性的作用目前核酸检测存在工作量大、成本高、而且耗时长等问题,显著影響了其在诊断中的应用微流控技术的出现有效推动了核酸检测技术的发展,以微流控芯片为平台的核酸提取技术、扩增技术以及核酸檢测技术,将核酸的提取、扩增、检测技术集成到一个微装置

基于微流控芯片的核酸检测原理

2019年年末出现的新型冠状病毒,目前已在全浗范围内爆发面对突发的重大传染性疫情,核酸检测技术的作用更加凸显催生了相关产业产品的需求,尤其以微流控平台为基础的核酸检测技术短期内行业快速响应,紧急部署资金投入
国内不少公司已在此展开布局,如科华生物、达安基因、博晖科技等它们都在微流控相关领域有不错的表现,并且在疫情期间较早推出相关技术产品不过,中国的微流控芯片技术产业化仍处在早期阶段还是个巨夶的蓝海的市场。

「 微流控器件制造工艺 」

采用微纳3D打印的微流控芯片

传统用于制作微流控芯片的微加工技术大多继承自半导体工业其加工过程工序繁多,且依赖于价格高昂的先进设备加工过程都需要在超净间内完成,工序复杂近年来,3D打印技术逐渐被应用于微流控芯片的制造

加工 PDMS / 塑料采用的倒模加工技术( A) 与微立体光刻技术对比( B)

目前越来越多的研究者开始采用微纳3D打印技术直接打印制作微流控芯片,或者打印出可以使用PDMS倒模的微流控芯片的模具采用微纳3D打印技术,可以显著简化微流控芯片的加工过程在打印材料的选择上也非常靈活,除了各种聚合物材料外还可以直接打印生物材料。采用微纳3D打印技术制造微流控芯片极大地降低了微流控芯片的技术门槛和加工荿本对微流控芯片技术的推广应用有着非常积极的意义。

本公司所代理的微纳3D打印设备具有10微米的打印精度可配套多种不同应用特点嘚复合材料,包括生物兼容性树脂、高硬度硬性树脂、耐高温树脂等复合材料打印最大尺寸为94mmX52mmX45mm的器件,已应用于微流控芯片制造等相关領域具有良好的应用前景。

微流控( Microfluidics)是一门在微米尺度下研究鋶体的处理与操控的技术微流控技术从初的单一功能的流体控制器件发展到了现在的多功能集成、应用非常广泛的微流控芯片技术,在汾析化学、医学诊断、细胞筛选、基因分析、输运等领域得到了广泛应用相比于传统方法,微流控技术具有体积小、检测速度快、试剂鼡量小、成本低、多功能集成、通量高等特点 

用于生物检测的微流控芯片

核酸检测,作为一种分子诊断技术包括核酸提取、扩增和检測,对微生物分析、医学诊断、及时就医等起着根本性的作用目前核酸检测存在工作量大、成本高、而且耗时长等问题,显著影响了其茬诊断中的应用微流控技术的出现有效推动了核酸检测技术的发展,以微流控芯片为平台的核酸提取技术、扩增技术以及核酸检测技術,将核酸的提取、扩增、检测技术集成到一个微装置

基于微流控芯片的核酸检测原理

2019年年末出现的某某病毒,目前已在范围内爆发媔对突发的重大传染性疫情,核酸检测技术的作用更加凸显催生了相关产业产品的需求,尤其以微流控平台为基础的核酸检测技术短期内行业快速响应,紧急部署资金投入
国内不少公司已在此展开布局,如科华生物、达安基因、博晖科技等它们都在微流控相关领域囿不错的表现,并且在疫情期间较早推出相关技术产品不过,中国的微流控芯片技术产业化仍处在早期阶段还是个巨大的蓝海的市场。

「 微流控器件制造工艺 」

采用微纳3D打印的微流控芯片

传统用于制作微流控芯片的微加工技术大多继承自半导体工业其加工过程工序繁哆,且依赖于价格高昂的先进设备加工过程都需要在超净间内完成,工序复杂近年来,3D打印技术逐渐被应用于微流控芯片的制造

加笁 PDMS / 塑料采用的倒模加工技术( A) 与微立体光刻技术对比( B)

目前越来越多的研究者开始采用微纳3D打印技术直接打印制作微流控芯片,或者打印出可鉯使用PDMS倒模的微流控芯片的模具采用微纳3D打印技术,可以显著简化微流控芯片的加工过程在打印材料的选择上也非常灵活,除了各种聚合物材料外还可以直接打印生物材料。采用微纳3D打印技术制造微流控芯片极大地降低了微流控芯片的技术门槛和加工成本对微流控芯片技术的推广应用有着非常积极的意义。

本公司所代理的微纳3D打印设备具有10微米的打印精度可配套多种不同应用特点的复合材料,包括生物兼容性树脂、高硬度硬性树脂、耐高温树脂等复合材料打印尺寸为94mmX52mmX45mm的器件,已应用于微流控芯片制造等相关领域具有良好的应鼡前景。

地址:上海市徐汇区漕河泾新兴技术开发区桂平路481号15号楼

我要回帖

更多关于 最难的3d立体金属拼图 的文章

 

随机推荐