1+2=

创造的来源是天真你还记得自巳在幼儿园时,将一个苹果和数字“1”联系起来然后数着苹果计算“1+1=2”时遭遇的困惑吗?这种困惑或许并非偶然我们接受的数学教育瑺常是抽象出概念而忽略具体差异的过程,但我们的思考方式却天是范畴学的它关注一个苹果和另一个苹果的不同,关注事物之间的相互关系

在还原论和演论角逐的今天,范畴学正变得越来越重要可以说,微积分对还原论的物理有多重要范畴学对演论的物理就有多偅要。范畴学带来了超乎数学家想象的波澜壮阔它在概念上统了分析和代数,统了离散和连续今天我们就带着曾经对 1+1=2 抱有的好奇,进叺范畴学的奇妙世界吧!

撰文 | 孔良(深圳量子科学与工程研究院南方科技大学)

这篇章真的是讲你在幼园学的1+1=2,不需要任何数学背景也鈳以读只需要你有对1+1=2的好奇。但是我们的动机却是要介绍数学的范畴学的基本精神所以有必要先简单提下范畴学,不关的读者可以直接跳过引

()范畴学的语重建了代数何基础以来,数学中就出现了范畴学替代集合论作为数学的新基础的潮流这个潮流不但在数学愈演愈烈,还在90年代被注了新的强动:物理们发现描述二维有理共形量场论和任意维拓扑序的数学语也是范畴学。当然这也没有什么奇怪嘚了解范畴学的都不会惊讶。因为范畴学带来的变是如此底层它从根本上改变了我们看待数学(甚是其他学科)的基本范式。不了解范畴学的可能会对这句话有很的抵触这个也是正常的,没有真正了解范畴学会很难想象范畴学是可能的,也许看完此你的抵触会稍稍减少些。我认为范畴学是继顿的微积分命之后次语的命,其实范畴学本身就是个新的微积分她的量体现在许多,如:个简单的范畴學的公式就可以完成个复杂的量场论的构造或同时计算穷多量场论的融合 (fusion) ;很多复杂的物理和数学结构然然就是范畴学的;更重要的是,很多超越集合论的数学或物理事实只能在范畴学的意义下陈述和理解仅仅是最后条就告诉我们,有个集合论之外的数学新陆等我们去發现、去探索现在还有更疯狂的猜测,那就是范畴学是多体量纠缠和量引的基础

范畴学的变是如此底层,它会毫疑问地在乎所有科学領域发挥作包括逻辑学、数学、物理、计算机科学、语学、社会学、经济学等等。所以让更多数学以外的了解它是有意义的本就抛砖引地讲讲,这个变是如何的底层底层到需要我们不断地回归,直到每个开始数学启蒙的那刻

我相信我们每个的数学教育都是从1+1=2开始的,从那刻开始我们就开启了场“去范畴化”的抽象数学之旅,范畴学则是场回归

我希望家和我起回到学龄前童的状态。只有这样你才能看清问题的本质

1+1=2 是很难理解的。我们真正理解了吗也许你觉得没有什么困难,但是只有当你给个从来没有听过 1+1=2 的学龄前童解释的时候你才能明这个问题有多么困难。

第个难点是:什么是“1”

第个难点是:什么是“+”?

第三个难点是:什么是“=”

第四个难点昰:什么是“2”?

什么是“1”你确定自己知道什么是“1”吗?你过1吗朋友不知道什么是“1” 。为了让小朋友理解数字通常情况下,師的教法是实物如带磁铁的猪、鸭、苹果、蕉等等,把它们吸到带属的板上真实可的东才是我们对存在的基本体验,其他都不太可靠

让我符号 O 来表示苹果,J 来表示蕉我们再把个苹果放到起,于是板上出现了如下公式:

好吧我们过苹果,所以O没什么问题但什么是“+”?什么是“=”呢

其实朋友般还可以接受(1),接受的办法就是忽略“+”(1)不就是 “OO=OO”吗?理解“+”是很难的我先跳過,先来谈谈“=”其实这个更难!

“=”(等于)是个很难理解的东。在现实世界我们基本没有过两个完全样的东“OO=OO” 两边的苹果其实是不样的。真实情况往往是也许它们的颜有些区别,或者磁铁的吸有些差别等等。那么“=” 就很难理解了在活说中时,我们鈈说等于我们说“样”。那么左边的“OO” 和右边的“OO”在什么意义下是“样”的呢

请让讲个让我震惊的故事。我第次在深圳中学做报告的时候我说我不知道什么是“样”,请中学为我这样个“学龄前童”解释然后有位勇敢的同学上来,他分别从左边的OO和右边的OO 各拿絀个苹果然后把这两个苹果放在起,再把剩下的两个苹果放在起他说这个就是“样”。事实上他给出了左边OO和右边OO的个对应可以个圖来代表他的这个对应:

这个已经够精彩了吧,但是精彩的还在后问题是你为什么要这么做?我们在学习涯中就遇到很多的困惑常常鈈清楚有些选择到底是有背后原理指导的,还是偶然的、随机的其实孩们是敏锐的。定有看上去很“笨”的孩会纳闷为什么要这样?當时这个同学解释完,我就问家对这个“样”的定义有何意然后就有很多学对此发出质疑。先这样定义是不是然的,合理的其次,这样定义也不是唯的如你还可以选择下这个来定义“样”:

说句实话,我当时震惊了我藏在后的东全被中学发现了。家看出来问题昰什么了吗

真实世界里可能没有两个东是完全样的(请让我忽略量学的全同粒,我们现在在幼园没听说过量学)。般家要看两个东样鈈样就把这两个东较下。但是这两个东不可能完全样所以较的时候要忽略些属性,一个极端的情况是我们忽略一个苹果的所有内部結构和属性,把它看成一个既没有内部结构也没有附加属性的东西(就是集合论里面的元素)这种情况下,一一对应就是一个很好的“┅样”的定义如果我们接受了这样定义“样”是可的, 即“对应”来定义“样”。那么问题来了:

有两种不样的“样”还是样吗

现代数學或范畴学就是对这样个基础的问题做了深刻的思考。现代数学或范畴学的观点是:有两种不样的“样”就是不样除有个另个更然。如:左边的苹果个是红的个是绿的;右边也是个红的,个绿的个然的“样”是保持颜的“样”。但是在没有颜这个附加“结构”之前峩们有两种不样的“样”,其实就是不样

为那些有线性代数基础的读者加段:

这个问题看似简单,但是却是个核问题在数学泛出现,慥成很多初学者的困惑如中国的不少教科书把线性代数教成了矩阵代数。很多学想到个线性空间就动给它装上个向量基。事实上(線性空间+给定的基)是和线性空间完全不样的数学结构!不明这个就法明个线性空间和它的对偶空间的区别,到了微分何也会困惑切涳间和余切空间的区别。个有限维线性空间和它的对偶空间有数线性同构但是没有个是然的!但是个有限维线性空间到它的对偶空间的對偶空间有个然的同构。

我们注意到上反复出现了“然”这个词范畴学的起源,就是Ellenberg-Mac Lane试图定义什么是“然”由此引发了“然变换” (natural transformation) 这個概念,为了定义“然变换”需要引“函“(functor)的概念,为了定义函需要引“范畴”(category)这个概念。

本不想进这些概念细节但是我們希望能够展示下范畴学的基本精神。粗略地说:所有苹果可以看成个“范畴”所有蕉是另个“范畴”,它们都可以放到个更的叫“果”的范畴

我们想说,从OO抽象出来个“2”的概念其实是常困难的且往往需要很暴的做法。师在引“2”之前为了加深理解,还会再放两個蕉我们姑且J来代表蕉。于是板上出现了如下公式:

但是同样的问题仍然会令我们烦恼更加令困惑的是师有的时候还要在向“2”的路仩做更多让我们困惑的事情,如为了硬说这些都是“2”还可能有这样的公式出现:

这样不在个“范畴”能“样”吗?甚不留神如苹果鈈够了,可能临时还会出现下的公式:

疯掉了苹果和蕉能加吗?苹果和蕉不在个“范畴”怎么能加呢事实上,我们可以说个苹果是“1”个蕉也是“1”,它们都是“1”的代表但是从这些可以作为“1”的代表中抽象出来“1”这样的概念是常困难的。也许那些连1+1=2都听不懂嘚孩不是笨是把握住了些深刻和本源的东。

我们来看看范畴学怎么解读1+1

二、范畴学的观点:万有性质

范畴学的观点就和我们最天真的看法样,个苹果是“1”个蕉也是“1”。它们都是“1”的代表既然只是代表,是不是说它们都还不是“1”那么到底什么是“1”呢?

“1”应该反映出来所有这些“1”的不同代表所具有的“共有性质”数学家给这个“共有性质”起了个正式的名字叫“万有性质” (universal property) 。如何写丅这些“1”的不同代表的共有性质呢

范畴学提供了种全新的视。不要“个研究对象”“有什么东”这样常集合论或还原论的式去看问题要以对象和其他对象的相互关系的式来了解个对象。这个式其实是我们理解世界更根本的法如你想了解个未知的“存在”(如粒、材料等),你怎么办你会你熟悉的东打进去去看看会测量出来什么。物理学家会测个新材料的发光谱和吸收谱打X光进去看看X射线衍射;數学家会把球扔进个未知空间来测量,或看看能不能让个群作上去等等。能加速器的云室测的不是粒的轨迹是粒和其他东相互作的轨跡。没有相互作测量也从谈起。可以分安全地说:

这个世界上没有相互关系或相互作更基本的存在

既然如此,我们可以尝试相互关系來定义什么是“1”

我们先回顾个概念:集合之间的映射 (a map) 。集合就是堆元素的“集合”呵呵。不过值得指出的是空集也是个集合,就昰个没有元素的集合那么什么是两个集合A和B之间的映射呢?如考虑两个集合X={a,b}, Y={1,2,3}, 个从X到Y的映射记成

这其实就是个分配规则:给X中的每个え素分配唯个Y中的元素。如f(a)=1, f(b)=1 就是个合理的映射, g(a)=2, g(b)=3 也是个映射。但是不能给a分配两个Y中的元素!如果集合X没有元素(空集)等于分配规则動定义好了,这个什么都不需要分配的分配规则就叫空映射

有了这些准备,我们可以给出下定义

定义:1 就是这样个集合,任何个集合箌它都存在且有唯个映射[1]我们有个简洁的图来记录这个定义:对任意集合X,我们有

”是指“存在”“!”是指“唯”[1]。另外要注意萣义中“对任意集合X”也常重要!不是对个特别的集合,是所有集合!

家看到没有这个定义到了“1”和所有集合的关系,这件事相当重偠不过第次看到这个读者可能更关的是,为什么这是“1”的个合理的定义呢我们来看看,个苹果的集合满不满这个定义个蕉的集合呢?或者零个或三个蕉呢,或者所有中国的集合

如果你愿意尝试,你很快会发现零个蕉是不的,因为它破坏了定义中映射“存在性”条件“三个蕉”也是不的,因为它破坏了映射的“唯性”什么集合可以呢?就是那些只有个元素的集合如个苹果的集合、个蕉的集合、个鸡蛋的集合、个的集合,等等它们可以同时保证存在性和唯性。

所以这样定义的“1”不唯这个好像是个缺陷,但是妙的地是所有可能的“1”都有且仅有种式互相对应起来,这是由“存在性”和“唯性”决定的和“1”的具体内容关。就像教朋友时可以个苹果代表1,也可以个蕉代表1且我们知道如何把它们等同起来! 你能相信吗,幼园虽然很努地教“去范畴化”的数学但教的法是法回避的范疇学!因为这就是它的本来。

这个定义也被称为“1”的“万有性质”也就是说,我们“1”的性质来定义“1”不是“1”有什么东来定义“1”。所有的数学概念都可以它的“万有性质”来定义我说的是“所有”,是的你没有听错!

好极了,如果你还能跟上我我们就再來个。

定义:0就是这样个集合它到任何个集合都存在且有唯个映射。即对任意集合X我们有:

这个留给家做练习吧。——科普还要留作業没听说过,呵呵不过想明了这个习题,上就福利了可以去摧残朋友和她们的啊。哈哈

三、范畴学怎么解读 1+1 ?

好了真正的挑战戓摧残来了,我们终于可以看看什么是1+1了和“1”样,“1+1”也会有很多不同的代表如,2个苹果或2个蕉等等。那么“1+1”应该是什么呢應该是所有这些代表所拥有的共性,即万有性质下我们就来揭示“1+1”的万有性质。我先擦擦汗

定义:1+1 就是这样个集合,它动附带两个指定的从1来的映射:

(1)虽然我们没有规定a和b必须是什么但是万有性质导致了a和b不能任意选。不同的a 和 b且满万有性质的选择将被视为不哃的1+1的代表!也就是说定义1+1需要有三个东:(1+1, a, b)

(2)满1+1的定义的集合是不唯的(都是代表),但是存在性和唯性使得它们任意两个代表之間都有唯的种式对应起来。这点相当的重要但是我不是很想展开来说,可能也需要读者中的达来解读

(3)万有性质的另奇妙的地是,咜不但定义了概念还告诉你它是怎么的,就是来构造那个

的箭头!且这是唯的法!这点概没有过的是很难体会的这个集定义与应于身嘚特点也强烈证明了这是个好的定义。

作业1: 我们到底是定义了2还是定义了“+”

作业3:1 x 1咋定义?(提示:把定义1+1的那个图的箭头都反过来)

作业3相当有意思,箭头都反过来就可以了其实这也就是在说,乘法是加法的对偶概念范畴学逼的地是说,数学的所有概念都是这樣的!数学的所有概念只有两种:种叫做“极限”(如1 x 1)种叫“余极限”(如1+1)。其他没了呵呵。所以范畴学把数学中的所有概念都放在了个统的框架来看

众位看官可能要纳闷,这个怎么能叫“极限”呢极限不是个限的(逼近)过程吗?事实上家熟悉的所谓“极限”不过是个有限节点的交换图,并以和1+1 或1 x 1同样的式来定义的概念已如,对任意构成如下图的实数X我们有:

其中“1”是通常意义下的個实数(不要理解成集合),箭头的意思就是“≤ ” (于等于)(不是集合之间的映射!)这个图说的是,个序列:0.9, 0.99, 0.999, ... 的极限是1范畴学的語说就是1是图表 0.9→0.99→0.999→... 的余极限。

怎么看呢X是这样的个实数,序列 0.9, 0.99, 0.999, ...中的每个数到X都有个箭头意思是说,序列 0.9, 0.99, 0.999, ...中的每个都 ≤ X 1就是这样嘚个数,且是最的那个对吧?

所以范畴学是动包含你熟悉的微积分的但是她能做更多!事实上范畴学在概念上统了分析和代数,统了離散和连续1+1和传统意义上的极限没有本质的区别,不过是涉及的交换图有有已

作业4: 如果箭头的意思改成“ ≥ ”,相当于上图的箭头都反过来则在范畴学的意义下,我们得到“1”是个图表的极限

另外你应该还注意到,范畴学中的箭头可以不是映射可以是任意可能的關系。如“≤ ”再如,在所有中国构成的范畴我和你本没有关系,但是如果我们都追同个孩这样我们就有了情敌的关系,这也可以昰范畴学中所研究的相互关系这个例还可以想象,可很多时候在范畴学中出现的所谓“相互关系”是千奇百怪的,甚是超越想象的

㈣、范畴学、物理和计算

我想定有觉得快发疯了,1+1搞的这么复杂我想强调的是,这个故事并不是“复杂”是1+1的本来。不过读者也可以反对说“去范畴化”才是真的有,1+1搞的这么复杂的话没法便地计算了。所以这样理解1+1就算是本来,怎么可能有呢

这样定义的1+1确实囿些复杂,并不实但这是去杀鸡,当然就看不到它的量了在可以通杀切众。其实范畴学是研究穷维数学结构的强具在那她的量就能夠真正地显露出来。如在研究量多体系统的时候有能隙的量多体系统的边界和内部的关系可以由下这个万有性质来定义[2]。

这图啥意思啥意思不重要。重要的是你发现没有,个具有穷由度的复杂物理系统边界和内部的关系竟然没有1+1和1的关系更复杂!这是因为范畴学有能把有限维的数学和限维的数学统在同个框架下处理。值得提的是上图表揭示的关系也同时刻画了弦论开弦和闭弦的对偶!这些都是穷維数学结构之间的对偶。如果真的把对偶两边的数学结构成元和它们的关系写下来会复杂得吓死的。呵呵

在演论 PK 还原论的今天,范畴學越来越重要这是因为范畴学就是为演论准备的。你看看“1+1”难道不是从所有集合中演的概念吗同理,所有数学概念都是在包含定意義下的“所有”对象的图表中演的对象甚范畴学强调要放弃还原论的观点,不要问个集合的元素要去看映射,后者更加丰富如,个集合X 的个元素其实就是1到X的个映射!

这样的观点难道不就是加速器的原理吗想知道粒有什么东,就拿其他东甚是“它”,去轰“它”我想微积分对还原论的物理有多重要,范畴学对演论的物理就有多重要范畴学和物理学家理解然的基本法和原理是完全相合的,她们嘟强调:

没有相互关系或相互作更基本的存在其他都是演的。

范畴学和物理的关系当然值得书特书很多最前沿的论都在不断地讲述这個关系。这我们点到为虽意犹未尽,只盼能抛砖引诱发家的兴趣。

如果说范畴学在数学很基本那么在物理或其他学科是不是也应该佷基本?现实是在物理中的上范畴学的可能只是很少的个常小众的课题。这是为什么呢这是暂时的还是久的?范畴学会带来描述物理學的新的微积分吗范畴学对未来的计算机科学会有何影响?希望将来我们有机会来解读这些问题

你们喜欢范畴学吗?欢迎家来到范畴學的奇妙世界

章结尾我们来谈谈学习范畴学的过程中常的困惑和误解。

很多(包括部分数学家)都抱怨范畴学抽象我希望前的讨论能夠帮助家意识到,我们的思考天就是范畴学的引“1”和“2”这样的抽象概念反是“去范畴化”了。我们的数学教育从开始就是“去范畴囮”通常的微积分可以看作是“去范畴化”的经典之作。最终的结果是我们多数第次学“范畴学”都会觉得好“抽象”,呵呵有可能是因为 “去范畴化”的数学教育让我们变得失去童真了。

我记得有次在做数学报告有听众抱怨范畴学太抽象了。我说抽象是个没有意义的概念,不过你所谓的不抽象的东是啥他回答说如上同调。我的天上同调不抽象?好吧我耐地问,为什么你觉得上同调不抽象他说,因为可以算啊我说,原来可以算就是不抽象啊这样的话,范畴学也不抽象因为它也可以算。但是这也不重要因为这个说法本身很荒唐,如果上同调是可以算的话总没有1+1=2更好算吧?那么请问什么是“1”平时我们嘴上说的所谓“不抽象”或“抽象”,其实僦是“熟悉”或“不熟悉”范畴学之所以显得“抽象”,就是因为我们在“去范畴化”的路上了很远了想要回归也没有那么容易,放丅包袱是很难的

我记得有次和物理学家Michael Levin吃午饭,他说他花不少时间看范畴学但是总觉得范畴学空泛的好像什么都没有。他的感觉没错当然也不只他个这样抱怨。事实上范畴学是和集合论样底层的东。就象你去看集合论样除了些形式的定义,仿佛什么都没有对物悝学家来讲,看集合论乎没有任何处真正有的是微积分和线性代数。所以也只有当你看到了范畴学的“微积分”和“线性代数”的时候你才能理解它的强。我认为Grothendieck的代数何就可以粗略地看成是个新的“微积分”,张量范畴理论 可以看成是个新的“线性代数”范畴学嘚“微积分”(或“线性代数”)都不是唯的,是千变万化的对物理学最有的“微积分”和“线性代数”可能还没有诞。与集合论不同嘚是对物理学家来说,集合论可以完全地忽略直接跳到微积分和线性代数上,因为集合论的语和基础被函数论的语覆盖了但是对范疇学来讲,想要跳过她的基础语:范畴、函、然变换、Yoneda引理直接学习她的“微积分”和“线性代数”是不可能的。遗憾的是到前为,還没有个适合物理学家读的范畴学的书

还有种误解是,范畴学已经建好了学好了本范畴学的数学书,在物理上的应可能就够了如果伱抱着这样的态,那你注定要失望了先,把任何(不论她有多么优美)数学套到物理上的想法都是缘求的做法只有从物理实验或物理圖像出发发现的数学才是对物理有意义的,如果碰巧这个数学已经被数学家发现那也只是偶然情况已。通向未知之多是没有现成的钥匙嘚物理学真正需要的范畴学绝多数还不存在,需要我们去边发展物理边发展数学。在这种情况新的物理和新的数学没有区别,它们嘟是然的隐藏结构现在的范畴学还在发展的初级阶段,微积分可以发展百年的话范畴学概也需要百年。我这些年的实践告诉我物理能给我们带来的新的、超越数学家想象的范畴学才是真的波澜壮阔。

感谢德国哥廷根学的朱晨畅师、清华学等研究院的汪忠师和丘成桐数學中的垠师、南科量科学与程研究院的吴咏时师和郑浩师、麻省理学院的刚师、中科院物理所的曹则贤师和斯坦福学的祁晓亮师提出的很哆宝贵意

[1] 这我们还是到了“唯”这个概念,好像是循环定义“1”的意思其实我们可以从技术上回避它,如:我们可以说万有性质中的(让图表交换的)映射构成的集合存在到集合{O}的双射

我们这并不是想探讨数学的基础,是展现种对1和1+1的全新解读不过从万有性质不断哋“存在”和“唯”可以看出,在然哲学的意义下“唯”有可能是和“存在”同等基本的概念。

1. 进入『返朴』微信公众号底部菜单“精品专栏“可查阅不同主题系列科普文章。

2. 『返朴』开通了按月检索文章功能关注公众号,回复四位数组成的年份+月份如“1903”,可获取2019年3月的文章索引以此类推。

版权说明:欢迎个人转发任何形式的媒体或机构未经授权,不得转载和摘编转载授权请在「返朴」微信公众号内联系后台。

《返朴》科学家领航的好科普。国际著名物理学家文小刚与生物学家颜宁共同出任总编辑与数十位不同领域一鋶学者组成的编委会一起,与你共同求索

我有一个奇葩同学有一天他跟峩说:“世界上不存在两个相同的东西(好像也是哦),所以他认为1就是唯一的1+1=2这个式子若有前者的1,后者就不能称为与前者相同的1那么1+1就不等于... 我有一个奇葩同学,有一天他跟我说:“ 世界上不存在两个相同的东西 (好像也是哦)所以他认为1就是唯一的,1+1=2这个式子 若有前者的1后者就不能称为与前者相同的1,那么1+1就不等于2。”

后来仔细想想貌似也不无道理,百度上查了一下 居然目前没人能证明1+1=2求专家解析下。

1+1=2这里面的数字不是实物是指数量等非实物。比如一个苹果+一个苹果而不是苹果物质+苹果物质。

证明这个比较麻烦的你要对数学有一定理解。数学专业的都会学到为什么1+1=2告诉你一个百度百科上的证明方法。

用皮亚诺公理推导1+1=2编辑

皮亚诺公理也称皮亞诺公设,是数学家皮亚诺(皮阿罗)提出的关于自然数的五条公理系统根据这五条公理可以建立起一阶算术系统,也称皮亚诺算术系统

皮亚诺的这五条公理用非形式化的方法叙述如下:

②每一个确定的自然数 a,都有一个确定的后继数x' x' 也是自然数(一个数的后继数就是紧接在这个数后面的数,例如1的后继数是2,2的后继数是3等等);

③如果b、c都是自然数a的后继数那么b = c;

④1不是任何自然数的后继数;

⑤设S昰自然数集的一个子集,且(i)1属于S;(2)如果n属于S那么n'也属于S。

(这条公理也叫归纳公理保证了数学归纳法的正确性)

若将0也视作自然數,则各公理中的1要换成0

更正式的定义如下:  一个戴德金-皮亚诺结构是这样的一个三元组(X, x, f),其中X是一个集合x为X中一个元素,f是X到自身的映射且符合以下条件:

该结构所引出的关于自然数集合的基本假设:

1.N(自然数集)不是空集;

2.N到N内存在a→a'的一一映射;

3.后继元素映射的像嘚集合是N的真子集,事实上即N\{1}(或N\{0});

4.若N的子集P既含有非后继元素的元素又有含有子集中每个元素的后继元素,则此子集与N相等

∵1+1的后繼数是1的后继数的后继数,即3

根据皮亚诺公理④,可得:1+1=2

任何一个大于等于6的偶数,都能分解成2个质数的和,简称为"1+1".(因为质数是除了1和它夲身外,没有其它的约数)

哥德巴赫猜想证明(1+1到底等于几?)

A 任一大于4的偶数均可表为二素数之和 摘要

本文使用素数相遇期望法演绎P2x(1,1)及其下确堺以证明2x≡p1+p2,(x>2).

文中申明 π(1)≠0, π(1)=1.

引理1 建立素数分布密率函数: y=xπ(x)/x, 获

∴ (1)式成立。 引理1得证

引理2。 命P2x(1,1)为:当x一定时適合2x=p1+p2的素数p1或p2的个数,(p1,p2的组数) x为大于

每一区间的奇数数目均为 (x-1)/2.

从两区间各取一奇数,继续直至取完。

依据⑴式 作三项轉换,即为p1,p2相遇数目的下确界(方括取整小数进1)。

每一区间的奇数数目均为 (x-2)/2.

从两区间各取一奇数继续,直至取完

依据⑴式,莋三项转换即为p1,p2相遇数目的下确界(方括取整,小数进1)

∴⑶式成立。 引理2得证

说明“1非素数”: 不顶用,纯捣乱 ∴ π(1)≠0.

当 31≤x=2n-1, 无反例,上式成立

大自然从不破坏自己的规律性。 ∴ π(1)=11必为素数。

讨论 P2x(1,1)的下确界的性质:

1一致连续性。 ∵ k(x)为一初等函數其定义区间[31,2n-1]为闭区间,故在该区间上k(x),

2单调递增性。 微分函数 k(x):

定理2 任一大于4的偶数均可表为二素数之和。

注** 凡不会微分的数学爱恏者演绎时,可舍弃单调递增性的微分过程而选择:

这样, 哥德巴赫猜想便打破了用 初等方法无法证明的迷信,使其拥有更广泛的普及性

根据定理2, P2x(1,1)≥1, (2<x<∞ ). 任一大于4的偶数均可表为二素数之和

又∵ 1是素数,我们有 2=1+14=1+3. ∴ 任一偶数均可表为二奇素数之和。

即任一偶数都是哥德巴赫数自然界根本不存在非哥德巴赫数(例外偶数)。

自1923年以来有的数学家曾设E(x)为小于x的非哥德巴赫数的个數,并认真探索

至今现在,可以定论: E(x)=0.

本回答被提问者和网友采纳


· 醉心答题欢迎关注

· 醉心答题,欢迎关注

下载百度知道APP抢鲜體验

使用百度知道APP,立即抢鲜体验你的手机镜头里或许有别人想知道的答案。

这是一个答案开放的题目

当单位统一时,人们约定:1+1=2.

还可能=二=十,=11=王,=田=旧,=丰=贰……

生活中,1堆土+1堆土=1堆土1堆土+1桶水=1堆泥……

逻辑运算中,1+1=1

二进制中1+1=10 哥德巴赫猜想:每个不小于 6 的偶数都是两个奇素数之和,即“1+1”。

你对这个回答的评价是

你对这个回答的评价是?


凤姐说1+1=2 你还纠结这个干什麼、记着就是

你对这个回答的评价是?


· 醉心答题欢迎关注

你对这个回答的评价是?


· 醉心答题欢迎关注

你对这个回答的评价是?

丅载百度知道APP抢鲜体验

使用百度知道APP,立即抢鲜体验你的手机镜头里或许有别人想知道的答案。

我要回帖

 

随机推荐