超导体的原理是什么?

超导磁悬浮列车究竟是什么?_百度知道
超导磁悬浮列车究竟是什么?
说的通俗一点,谢谢啦
超导磁悬浮的相关知识
您可能关注的推广回答者:
等待您来回答
下载知道APP
随时随地咨询
出门在外也不愁高温超导材料是什么原理?低温呢?
高温超导材料是什么原理?低温呢?
  关于超导:  1911年,荷兰莱顿大学的卡茂林·昂尼斯意外地发现,将汞冷却到-268.98°C时,汞的电阻突然消失;后来他又发现许多金属和合金都具有与上述汞相类似的低温下失去电阻的特性,由于它的特殊导电性能,卡茂林·昂尼斯称之为超导态。卡茂林由于他的这一发现获得了1913年诺贝尔奖。  这一发现引起了世界范围内的震动。在他之后,人们开始把处于超导状态的导体称之为“超导体”。超导体的直流电阻率在一定的低温下突然消失,被称作零电阻效应。导体没有了电阻,电流流经超导体时就不发生热损耗,电流可以毫无阻力地在导线中形成强大的电流,从而产生超强磁场。  关于高温超导体:  20世纪80年代是超导电性的探索与研究的黄金年代。1981年合成了有机超导体,1986年缪勒和柏诺兹发现了一种成分为钡、镧、铜、氧的陶瓷性金属氧化物LaBaCuO4,其临界温度约为35K。由于陶瓷性金属氧化物通常是绝缘物质,因此这个发现的意义非常重大,缪勒和柏诺兹因此而荣获了1987年度诺贝尔物理学奖。  1987年在超导材料的探索中又有新的突破,美国休斯顿大学物理学家朱经武小组与中国科学院物理研究所赵忠贤等人先后研制成临界温度约为90K的超导材料YBCO(钇铋铜氧)。  1988年初日本研制成临界温度达110K的Bi-Sr-Ca-Cu-O超导体。至此,人类终于实现了液氮温区超导体的梦想,实现了科学史上的重大突破。这类超导体由于其临界温度在液氮温度(77K)以上,因此被称为高温超导体。  自从高温超导材料发现以后,一阵超导热席卷了全球。科学家还发现铊系化合物超导材料的临界温度可达125K,汞系化合物超导材料的临界温度则高达135K。如果将汞置于高压条件下,其临界温度将能达到难以置信的164K。
等待您来回答
妇产科领域专家铁基超导 _百度百科
特色百科用户权威合作手机百科
收藏 查看&铁基超导本词条缺少名片图,补充相关内容使词条更完整,还能快速升级,赶紧来吧!
铁基超导,即铁基超导电性,具备这种特性的材料叫超导体。铁基超导体是指中含有,在低温时具有,且扮演形成超导的主体的材料。[1]性&&&&质超导体特殊现象
现有的铁基超导体从结构上可分为四类:(1111)、(122)、(111) 和 (11)。[2]  “1111”体系 成员包括LnOFePn(Ln=La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Y; Pn=P, As)以及DvFeAsF (Dv = Ca, Sr)等;  “122”体系
成员包括AFe2As2 (A = Ba, Sr, K, Cs, Ca, Eu)等;  “111”体系
成员包括AfeAs (A = Li, Na)等;  “11”体系
成员包括FeSe(Te)等.
  (oxypnictide)
LaO0.89F0.11FeAs
LaO0.9F0.2FeAs
CeFeAsO0.84F0.16
SmFeAsO0.9F0.1
La0.5Y0.5FeAsO0.6
NdFeAsO0.89F0.11
PrFeAsO0.89F0.11
ErFeAsO1-y
Al-32522 (CaAlOFeAs)
30(As), 16.6 (P)
Al-42622 (CaAlOFeAs)
28.3(As), 17.2 (P)
GdFeAsO0.85
BaFe1.8Co0.2As2
SmFeAsO~0.85
非  (non-oxypnictide)
Ba0.6K0.4Fe2As2
Ca0.6Na0.4Fe2As2
CaFe0.9Co0.1AsF
Sr0.5Sm0.5FeAsF
2006年细野秀雄教授的团队发现第一个以为超导主体的LaFeOP ,打破以往普遍认定不利形成超导迷思。根据,产生超导性的必要条件是材料中的电子必须配对,这样配对的电子称为。中的两个电子相反,所以总为零,因而科学家认为与可能无法共存,材料中如果加入磁性元素(如、)会大大降低超导性。铁基超导体虽然含有元素且是产生超导的主体,但是和其他元素(如、)形成铁基平面后,已不再具有。2008年二月初,细野秀雄教授的团队再度发表铁基层状材料La[O1-xFx]FeAs(x = 0.05 – 0.12)在26K时存在。日,中国科学院物理研究所赵忠贤领导的科研小组报告,氟掺杂镨氧铁砷化合物的高温超导临界温度可达52开尔文(零下221.15℃)。4月13日该科研小组又有新发现:氟掺杂钐氧铁砷化合物假如在压力环境下产生作用,其超导临界温度可进一步提升至55开尔文(零下218.15℃)。此外,中科院物理所闻海虎领导的科研小组还报告,锶掺杂镧氧铁砷化合物的超导临界温度为25开尔文(零下248.15℃)。 ,从此研究铁基超导体便在世界上形成一股热潮。引起许多科学家的兴趣的重要原因之一在于铁基超导体的结构与的铜氧平面类似,发生在铁基平面上,属于二维的超导材料。因此尽管铁基超导体的临界温度只有数十,研究铁基超导体可能有助于了解的机制。  铁基超导于北京日在国家自然科学一等奖连续三年空缺之后,以赵忠贤、陈仙辉、王楠林、闻海虎和方忠为代表的中国科学院物理研究所和中国科学技术大学研究团队凭借“40K以上铁基高温超导体的发现及若干基本物理性质研究”,把2013年度国家自然科学一等奖收入囊中。早在1989年,物理所赵忠贤等科研人员凭借“液氮温区氧化物超导体的发现及研究”就曾获得国家自然科学一等奖。[1]铁基超导——凝聚态物理天空中闪耀的新星
在日国家科学技术奖励大会上,多年空缺的国家自然科学一等奖被铁基超导研究团队获(右)超导体的完全抗磁性得。随着新闻报道的铺开,“铁基高温超导”一词再次被人们所关注。自2008年凝聚态物理学领域掀起铁基高温超导研究热潮以来,铁基超导的科学研究已经步入第六个年头,发表的有关铁基超导研究论文已经数万篇。截止到2013年2月,全世界在铁基超导研究领域被引用数排名前20的论文中,9篇来自中国。铁基超导至今仍然是凝聚态物理基础研究的前沿科学之一,吸引了世界上诸多优秀科学家的目光。为什么铁基超导如此特别?它的发现对基础物理研究有着什么样的重要影响?中国人在铁基超导洪流中起到了什么样的角色?
这还得从神秘又奇特的超导体说起。日,荷兰莱顿实验室的昂尼斯等人利用他们刚刚液化的最后一种气体——液氦研究金属在低温下的电阻,当他们把金属汞降温到4.2 K(热力学温标中0 K对应着零下273.2摄氏度,4.2 K即相当于零下269摄氏度)时,发现其电阻值突然降到仪器测量范围的最小值之外,即可认为电阻降为零。昂尼斯把这种物理现象叫做超导,寓意超级导电,他本人因此获得了1913年的诺贝尔物理学奖。继第一个超导体金属汞被发现之后,人们又陆续发现了许多单质金属及其合金在低温下都是超导体。1933年,德国物理学家迈斯纳指出,超导体区别于理想金属导体,除了零电阻外,它还具有另一种独立的神奇特性——完全抗磁性。超导体一旦进入超导态,就如同练就了“金钟罩、铁布衫”一样,外界磁场根本进不去,材料内部磁感应强度为零。同时具有零电阻和抗磁性是判断超导体的双重标准,单凭这两大高超本领,超导就具有一系列强电应用前景。利用零电阻的超导材料替代有电阻的常规金属材料,可以节约输电过程中造成的大量热损耗;可以组建超导发电机、变压器、储能环;可以在较小空间内实现强磁场,从而获得高分辨的核磁共振成像、进行极端条件下的物性研究、发展安全高速的磁悬浮列车等等。可是,如此神通广大的超导体,在人们日常生活中却远远不如半导体那么声名远播呢?这是因为半导体在室温下就能用,但超导体往往需要非常低的温度环境(低于其超导临界温度),这种低温环境一般依赖于昂贵的液氦来维持,这极大地增加了超导应用的成本。解决这一问题关键在于寻找更高临界温度的超导体,特别是室温超导体——这是所有超导研究人员的终极梦想。
在探索新超导体过程中,物理学家同时担任着另一项重要科学任务——从微观层面解释为什么电子能够在固体材料中“畅行无阻”。包括爱因斯坦、玻尔和费曼等在内的世界上许多顶级聪明的物理学家都曾试图完成这个任务,绝大部分都是失败的尝试,在等待了漫长的46年之后的1957年,常规金属超导微观理论在美国三名物理学家手上被成功建立,这个理论以他们的名字(巴丁、库伯、施里弗)命名为BCS理论。BCS理论认为,常规金属合金中的自由电子除了人们熟知的库仑排斥作用外,还存在一种较弱的吸引相互作用。因为固体材料中的原子总是在平衡位置附近不停地热振动,原子核和其内部电子构成带正电的原子实会对“路过”带负电的电子存在吸引相互作用,如果两个电子运动方向相反(动量相反),那么它们各自与周围原子实的相互作用就可以等效为它们之间存在一种弱的吸引相互作用,就像冰面上两个舞者互相抛接球一样,这种作用力导致材料中电子两两配对。配对后的电子对又叫库伯对,如果所有库伯对在运动过程中保持步调一致,那么配对电子即便受到运动阻碍也会两两相消,使得整个配对的自由电子群体都可以保证能量损失为零,从而实现零电阻状态。尽管BCS理论如此美妙地用“电子配对、干活不累”的创意解决了常规金属合金超导机理问题,但其创新大胆的思想却迟迟难以被人们所接受,直到被实验所证实才于1972年被颁发诺贝尔物理学奖。有了理论指引,更高临界温度的超导体似乎已经可以“按图索骥”,然而,兴奋的实验物理学家只在三铌化锗合金中找到了23.2 K的超导,历时60余年的超导探索之路,如同乌龟踱步一样,路漫漫其修远。何处是曙光?理论物理学家再次无情地泼了一大瓢冷水——在BCS理论框架下,所有的超导体临界温度存在一个40 K的理论上限,称作麦克米兰极限。
实验物理学家一直在努力。一点一滴的小惊喜在不断引起大家的激动。研究表明,元素超导体发现年代及其临界温度周期表中许多单质在低温下都是超导体,有的需要加高压也能实现超导,这些单质炼成合金,临界温度将更高,它们统称为“金属合金超导体”;一些金属化合物中电子尽管显得“很笨重”也能实现超导,被归为“重费米子超导体”;C60和碱金属的化合物甚至一些有机材料也是超导体,被划为“有机超导体”;更令人欣喜的是,许多往往被认为导电性能很差的金属氧化物如钛氧化物、铌氧化物、铋氧化物、钌氧化物、钴氧化物等也是超导体。超导,几乎无处不在!既然“条条大路通超导”,物理学家开始了更大胆的探索,他们在通常认为是绝缘体的铜氧化物陶瓷材料中寻找可能的超导电性。1986年开始,曙光终于破雾而出。位于瑞士苏黎世的IBM公司的两名工程师柏诺兹和缪勒在镧-钡-铜-氧体系发现可能存在35 K的超导电性。尽管临界温度尚未突破40 K,但是35 K已经是当时所有超导体临界温度的新纪录,为此柏诺兹和缪勒获得了1987年的诺贝尔物理学奖。一场攀登超导巅峰之战由此拉开帷幕,其中不乏中国人和华人科学家的身影。1987年2月,美国休斯顿大学的朱经武、吴茂昆研究组和中国科学院物理研究所的赵忠贤研究团队分别独立发现在钇-钡-铜-氧体系存在90 K 以上的临界温度,超导研究首次成功突破了液氮温区(液氮的沸点为77 K)。采用较为廉价的液氮将极大地降低超导的应用成本,使得超导大规模应用和深入科学研究成为可能,赵忠贤研究团队也因此获得1989年国家自然科学一等奖。之后的十年内,超导临界温度记录以火箭般速度往上窜,目前世界上最高临界温度的超导体是汞-钡-钙-铜-氧体系(常压下135 K,高压下164 K),由朱经武研究小组于1994年所创下。由于铜氧化物超导体临界温度远远突破了40 K的麦克米兰极限,被人们统称为“高温超导体”(这里的高温,实际上只是相对金属合金超导体较低的临界温度而言)。很快,人们也认识到,铜氧化物高温超导体(或称铜基超导体)不能用传统的BCS超导微观理论来描述。要获得如此之高的临界温度,仅仅依靠原子热振动作为中间媒介形成配对电子是远远不够的。进而,人们发现重费米子超导体、有机超导体和某些氧化物超导体均不能用BCS理论来描述,尽管电子配对的概念仍然成立,但是如何配对、配对媒介和配对方式却千奇百怪。这些超导体又被统称为非常规超导体,区别于可以用BCS理论描述的常规金属合金超导体。2001年,日本科学家在二硼化镁材料中发现39 K的超导电性,这种超导材料中有多种类电子都参与了超导电子配对,又被叫做多带超导体。二硼化镁是目前为止发现的临界温度最高的常规超导体,距离40 K的上限仅一步之遥,但无论怎么掺杂或者加压都不能脱离40 K这个极限。
室温超导停滞在164 K这个世界纪录上,再也难以往上挪动半步。人们试图在液氮温区大规模推广高温超导强电应用技术时,发现它实际上“中看不中用”。本质为陶瓷材料的铜氧化物在力学性能上显得脆弱不堪、缺乏柔韧性和延展性,在物理上其临界电流密度太小,容易在承载大电流时失去超导电性而迅速发热。科学家们经过20余年的工艺努力,铜氧化物超导线圈虽然已开始步入市场,但绝大部分超导强电应用还停留在常规金属合金超导体上。不过铜基超导的弱电应用同样发展迅速,利用其制备成的超导量子干涉仪是目前世界上最灵敏的磁探测技术,而用铜氧化物超导薄膜制备的超导微波器件正在走向商业化和市场化,未来世界还可能出现以超导比特为单元的量子计算机——一种基于量子力学原理的高速计算机。由于铜基超导体在非常规超导体中最为特殊,因此也具有非常重要的基础研究价值,高温超导电性的微观机理,成为凝聚态物理学皇冠上的明珠之一。挑战远远比想象中的困难,人们发现高温超导体里很多新奇物理现象可能超出了现有物理学理论体系所能理解的范畴,其中最为麻烦的就是,这类材料中电子之间存在很强的相互关联效应,成为强关联体系。经过近30年的奋斗,人们对铜基超导体取得共识的研究结论寥寥无几,更多的是充满争议和困惑。理论上来指导寻找更高临界温度超导体,近乎痴人说梦,而实验物理学家只能凭经验和感觉来大海捞针。[1]
日-5日,活跃在超导研究最前沿的一群中国科学家齐聚在中国科学院物理研究所,这里正在召开“高温超导机制研究态势评估研讨会”,探讨迷惘的高温超导研究未来之路,试图甄别铜基高温超导研究的突破点。此时,同一栋楼里的超导实验室和极端条件实验室里已悄然走在了超导研究变革的前沿。日,日本西野秀雄研究小组报道了在氟掺杂的镧-铁-砷-氧体系中存在26 K的超导电性。中国科学家在得知消息的第一时间里合成了该类材料并开展了物性研究,其中中科院物理所和中国科大的研究人员采用稀土替代方法获得了一系列高质量的样品,惊喜地发现其临界温度突破了40 K,优化合成方式之后可以获得55 K的高临界温度。新一代高温超导家族——铁基高温超导体就此诞生,这一次从新超导体发现到临界温度突破麦克米兰极限仅仅用了不到三个月的时间,新的超导记录几乎以天为单位在不断更新。在随后几年里,新的铁砷化物和铁硒化物等铁基超导体系不断被发现,典型母体如镧-铁-砷-氧、钡-铁-砷、锂-铁-砷、铁-硒等,这些材料几乎在所有的原子位置都可以进行不同的掺杂而获得超导电性。铁基超导家族成员数目粗略估计有3000多种(许多还尚待发现),可谓是目前发现的最庞大超导家族。铁基高温超导体的发现无疑为当时几近低迷的高温超导研究注入了一股前所未有的“强心剂”,已逾百年的超导研究从此焕发了新一轮的青春活力。[1]
作为继铜基超导体之后的第二大高温超导家族,铁基超导体具有更加丰富的物理性质和更有潜力的应用价值。它和铜基超导体存在“形似而神不似”关系,晶体结构、磁性结构和电子态相图均非常类似;但是它从电子结构角度又属于类似二硼化镁那样的多带超导体;其母体更具有金属性,和具有绝缘性的铜氧化物母体截然不同(铜氧化物仅在掺杂后才出现金属性);最新研究结果已经确认电子配对概念仍然适用,在配对媒介上可能和铜基超导体类似,但配对方式上却更接近于传统金属超导体;总体来说,铁基超导体更像是介于铜基超导体和传统金属超导体之间的一个桥梁。通过多年来在铜基超导研究中的经验和技术积累,铁基超导研究的进度已经大大加速,新世纪以来的研究成果几乎可以和铜基超导近30年以来的研究成果相匹敌,在某些方面甚至超越了之前高温超导研究的认识。有了这道桥梁,高温超导研究之路已经不再像是空中楼阁,而是“有径可循”了,高温超导的微观机理的神秘面纱正在缓缓揭开。在应用方面,铁基超导体由于其金属性,更加容易被加工成线材和带材,而其可承载的上临界磁场/临界电流和铜基超导体相当,甚至有可能更优越。当然,制备铁基超导材料大部分情况下需要砷化物和碱金属或碱土金属,具有较强的毒性同时又对空气异常敏感,这对材料制备工艺和使用安全方面提出了更高的要求。在超导的弱电应用方面,铁基超导还处在刚刚起步阶段,相对已经趋于成熟的铜基超导弱电应用还有很大差距。从材料角度来说,铁基超导体更具有灵活多变性,这让高温超导的研究空间大大得到了拓展,许多实验现象也可以在不同体系进行比照研究,从而得出更加普适的结论。如前所述,几乎在铁基母体材料任何一个原子位置进行不同价位甚至同价位的元素掺杂都可以实现超导电性,不同体系材料超导电性随着外界压力演变也有所不同。更有趣的是,日本科学家还发现用各种酒泡过的母体材料也可以超导,真是“醉翁之意不在酒,在乎超导之间也”!铁基超导体的发现极大地鼓舞了超导材料探索者的信心,正如发现二硼化镁的日本科学家豪言:“我相信世界上所有材料都有可能成为超导体,只要引入足够多载流子或足够强的压力或足够低的温度等外界条件,就有希望实现超导!”[1]
在含铁的化合物中寻找到高温超导电性本身就是一件突破常规的事情,因为通常认为铁离子带有磁性,铁基超导体发现时间及其超导临界温度会极大地破坏超导。出乎意料的是,铁砷化物母体中掺杂磁性离子如钴和镍反而会诱发超导电性,铁基超导的发现证明磁性和超导其实完全可以“和平共处”,新超导体的发现往往就在打破常规之处。新超导体的发现需要机遇、运气和长期经验积累,日本的西野秀雄原先并不是研究超导的,他的研究组一直致力于寻找透明导电氧化物材料,并于2006年意外发现镧-铁-磷-氧材料中存在3 K左右的超导电性,之后意识到镧-铁-砷-氧化合物中同样可能存在超导电性,通过掺杂氟,他们才获得了26 K的新超导体。新材料探索过程很难存在百分百的原始创新,实际上,早在1990年,镧-铁-磷-氧材料就已经被德国科学家发现,而在1995年类似的铁磷化物、钴磷化物和钌磷化物等也被相同研究组所报道,到了2000年,具有同样晶体结构的稀土-铁砷化物也被成功制备,只是遗憾的是,他们没有进一步用氟替代掺杂,与新超导体的发现只能擦肩而过,而西野秀雄等人准确地把握住了这个机会。类似地,中国科学家利用稀土替代效应而成功突破麦克米兰极限,正是得益于于常年研究超导的敏锐洞察力,又有多年来实验设备和人才方面的储备,才能在第一时间把握重要机遇。[1]物理学家麦克米兰根据传统理论计算推断,超导体的转变温度不能超过40K,约零下233摄氏度。40K以上铁基高温超导体的发现及若干基本物理性质研究的科学意义在于,首次突破麦克米兰极限温度,确定铁基超导体为新一类高温超导体;合成系列铁基高温超导体并确认为第二个高温超导家族,创造并保持55K铁基超导体临界温度的最高纪录。[1]中国如洪流般不断涌现的研究结果标志着在凝聚态物理领域,中国已经成为一个强国。——美国《科学》杂志[3]
铁基超导在2008年被多家媒体评为世界十大科学进展之一,中国铁基超导研究团队获得了2009年度“求是杰出科学成就集体奖”和2013年度国家自然科学一等奖。可以说,铁基超导的研究加速了高温超导机理的解决进程,使得人们完全有理由相信在不久的将来,室温超导可以被实现并被广泛应用。
——美国《科学》杂志[3]
新手上路我有疑问投诉建议参考资料 查看超导材料 _百度百科
特色百科用户权威合作手机百科
收藏 查看&超导材料
超导材料,是指具有在一定的低温条件下呈现出等于零以及排斥磁力线的性质的材料。现已发现有28种元素和几千种合金和化合物可以成为。外文名superconducting material特&&&&性处于超导态时电阻为零特性1抗磁性特性2同位素效应
超导材料处于时电阻为零,能够无地传输。如果用在超导环中引发感生,这一电流可以毫不衰减地维持下去。这种“持续电流”已多次在实验中观察到。
超导材料处于超导态时,只要外加磁场不超过一定值,线不能透入,超导材料内的磁场恒为零。
外磁场为零时超导材料由正常态转变为超导态(或相反)的温度,以Tc表示。Tc值因材料不同而异。已测得超导材料的最低Tc是钨,为0.012K。到1987年,临界温度最高值已提高到100K左右。
使超导材料的超导态破坏而转变到正常态所需的,以Hc表示。Hc与温度T 的关系为Hc=H0[1-(T/Tc)2],式中H0为0K时的临界磁场。
临界电流和临界电流密度
超导体的Tc与其同位素质量M有关。M越大,Tc越低,这称为同位素效应。例如,为199.55的汞同位素,它的Tc是4.18开,而原子量为203.4的汞同位素,Tc为4.146开。
通过超导材料的电流达到一定数值时也会使超导态破坏而转变为正常态,以Ic表示。Ic一般随温度和外磁场的增加而减少。单位截面积所承载的Ic称为临界电流密度,以Jc表示。
超导材料的这些参量限定了应用材料的条件,因而寻找高参量的新型超导材料成了人们研究的重要课题。以Tc为例,从1911年荷兰H.开默林-昂内斯发现(Hg,Tc=4.2K)起,直到1986年以前,人们发现的最高的 Tc才达到23.2K(Nb3Ge,1973)。1986年瑞士物理学家K.A.米勒和物理学家J.G.贝德茨发现了的超导电性,从而将Tc提高到35K。之后仅一年,新材料的Tc已提高到100K左右。这种突破为超导材料的应用开辟了广阔的前景,米勒和贝德诺尔茨也因此荣获1987年金。在常压下有28种元素具超导电性,其中铌(Nb)的Tc最高,为9.26K。电工中实际应用的主要是铌和铅(Pb,Tc=7.201K),已用于制造超导交流电力电缆、高Q值腔等。②超导元素加入某些其他元素作合金成分,超导材料性质研究 可以使超导材料的全部性能提高。如最先应用的(Nb-75Zr),其Tc为10.8K,Hc为8.7特。继后发展了,虽然Tc稍低了些,但Hc高得多,在给定承载更大电流。其性能是Nb-33Ti,Tc=9.3K,Hc=11.0特;Nb-60Ti,Tc=9.3K,Hc=12特(4.2K)。,性能进一步提高,Nb-60Ti-4Ta的性能是,Tc=9.9K,Hc=12.4特(4.2K);Nb-70Ti-5Ta的性能是,Tc=9.8K,Hc=12.8特。超导元素与其他元素化合常有很好的超导性能。如已大量使用的Nb3Sn,其Tc=18.1K,Hc=24.5特。其他重要的超导化合物还有V3Ga,Tc=16.8K,Hc=24特;Nb3Al,Tc=18.8K,Hc=30特。
例如:超导陶瓷
20世纪80年代初,米勒和贝德诺尔茨开始注意到某些氧化物陶瓷材料可能有超导电性,他们的小组对一些材料进行了试验,于1986年在镧-钡-铜-氧化物中发现了Tc=35K的超导电性。1987年,中国、美国、日本等国科学家在钡-钇-铜氧化物中发现Tc处于温区有超导电性,使超导陶瓷成为极有发展前景的超导材料。1.非常规超导体磁通动力学和超导机理
主要研究混合态区域的磁通线运动的机理,不可逆线性质、起因及其与磁场和温度的关系,临界电流密度与磁场和温度的依赖关系及。超导机理研究侧重于研究正常态在强磁场下的磁阻、、涨落效应、面的性质以及T&Tc时用强磁场破坏超导达到正常态时的输运性质等。对有望表现出高温超导电性的体系象有机超导体等以及在强电方面具有广阔应用前景的低温超导体等,也将开展其在强磁场下的性质研究。
2.强磁场下的低维凝聚态特性研究
低维性使得低维体系表现出三维体系所没有的特性。低维不稳定性导致了多种有序相。强磁场是揭示低维凝聚态特性的有效手段。主要研究内容包括:有机铁磁性的结构和来源可用作超导材料的金属在周期表上的分布;有机(包括)超导体的机理和磁性;强磁场下中非线性元激发的特异属性;低维的相变和磁相互作用;有机导体在磁场中的输运和载流子特性;磁场中的和费米面特征等。
3.强磁场下的半导体材料的光、电等特性
强磁场技术对科学的发展愈益变得重要,因为在各种物理因素中,外磁场是唯一在保持不变的情况下改变空间对称性的物理因素,因而在半导体能带结构研究以及元激发及其互作用研究中,磁场有着特别重要的作用。通过对强磁场下的光、电等特性开展实验研究,可进一步理解和把握半导体的、等,从而为制造具有各种功能的半导体器件并发展高科技作基础性探索。
4.强磁场下极微细尺度中的物理问题
极微细尺度体系中出现许多常规材料不具备的新现象和奇异特性,这与这类材料的微结构特别是电子结构密切相关。强磁场为研究极微细尺度体系的电子态和输运特性提供强有力的手段,不但能进一步揭示这类材料在常规条件下难以出现的奇异现象,而且为在更深层次下认识其物理特性提供丰富的科学信息。主要研究强磁场下极微细尺度金属、半导体等的电子输运、电子局域和关联特性;、量子限域效应、和表面、界面效应;以及极微细尺度氧化物、碳化物和氮化物的光学特性及能隙等。
5.强磁场化学
强磁场对和核自旋的作用,可导致相应的松弛,造成新键生成的有利条件,诱发一般条件下无法实现的变化,获得原来无法制备的新材料和新化合物。强磁场化学是应用基础性很强的新领域,有一系列理论课题和广泛应用前景。。八十年代的一个上的重要进展是和分数量子霍耳效应的发现。这是在强磁场下研究二维电子气的输运现象时发现的(获85年)。量子霍尔效应和的发现激起物理学家探索其起源的热情,并在建立电阻的基准,精确测定e,h和(=e2/h(0c等应用方面,已显示巨大意义。高温超导电性机理的最终揭示在很大程度上也将依赖于人们在强磁场下对高温超导体性能的探索。
熟悉物理学史的人都清楚,由物理学演化为学,其重要标志就在于其研究对象的日益扩大,从周期结构延伸到非周期结构,从三维拓宽到低维和,乃至分数维体系。这些新对象展示了大量新的特性和,物理机理与传统的也大不相同。这些新对象的产生以及对新效应、新现象的解释使得得以不断的丰富和发展。在此过程中,极端条件一直起着至关重要的作用,因为极端条件往往使得某些因素突出出来而同时抑制其它因素,从而使原本很复杂的过程变得较为简单,有利于直接了解物理本质。
超导材料相对于其它极端条件,强磁场有其自身的特色。强磁场的作用是改变一个的物理状态,即改变()和带电粒子的轨道运动,因此,也就改变了的状态。正是在这点上,强磁场不同于物理学的其他一些比较昂贵的手段,如和,它们没有改变所研究系统的物理状态。磁场可以产生新的,并导致新的特性,而这种新的物理环境和新的物理特性在没有磁场时是不存在的。低温也能导致新的物理状态,如超导电性和相变,但强磁场极不同于低温,它比低温更有效,这是因为磁场使带电的和粒子的远动和,并破坏时间反演对称性,使它们具有更独特的性质。
强磁场可以在保持晶体结构不变的情况下改变动量空间的对称性,这对固体的能带结构以及元激发及其互作用等研究是非常重要的。固体复杂的结构正是利用强磁场使得电子和在特定方向上的自由运动从而导致和磁阻的振荡这一原理而得以证实的。固体中的结构及特征研究一直是领域中的前沿课题。当今凝聚态物理基础研究的许多重大热点都离不开强磁场这一极端条件,甚至很多是以强磁场下的研究作为基础。如波色凝聚只发生在动量空间,要在实空间中观察到此现象必需在非均匀的强磁场中才得以可能。又如高温超导的机理问题、量子霍尔效应研究、和介观物体中的物理问题、的物理起因、有机铁的结构和来源、有机(包括富勒烯〕超导体的机理和磁性、低维磁性材料的相变和磁相互作用、固体中的能带结构和特征以及元激发及其互作用研究等等,强磁场下的研究工作将有助于对这些问题的正确认识和揭示,从而促进的进一步发展和完善。
带电粒子象电子、等以及某些极性分子的运动在磁场特别是在强磁场中会产生根本性变化。因此,研究强磁场对化学反应过程、表面过程、材料特别是磁性材料的生成过程、生物效应以及的生成过程等的影响,有可能取得新的发现,产生交叉的新课题。强磁场应用于为新的功能材料的开发另辟新径,这方面的工作在国外备受重视,在国内也开始有所要求。高温超导体也正是因为在的强电领域中蕴藏着不可估量的应用前景才引起科技界乃至各国政府的高度重视。因此,强磁场下的物理、化学等研究,无论是从基础研究的角度还是从应用角度考虑都具有非常重要的科学和技术上的意义,通过这一研究,不仅有助于将当代的基础性研究向更深层次开拓,而且还会对国民经济的发展起着重要的推动作用。1911年,家()发现,的并不像预料的那样随降低逐渐减小,而是当温度降到4.15K附近时,水银的电阻突然降到零。某些、和,在温度降到附近某一特定温度时,它们的电阻率突然减小到无法测量的现象叫做,能够发生超导现象的物质叫做超导体。超导体由正常态转变为超导态的温度称为这种物质的(或临界温度)TC。现已发现大多数金属以及数以千计的合金、化合物都在不同条件下显示出超导性。如的转变温度为0.012K,为0.75K,为1.196K,为7.193K。
超导体得天独厚的特性,使它可能在各种领域得到广泛的应用。但由于早期的超导体存在于极低温度条件下,极大地限制了超导材料的应用。人们一直在探索,从1911年到1986年,75年间从水银的4.2K提高到的23.22K,才提高了19K。
1986年,体的研究取得了重大的突破。掀起了以研究金属氧化物陶瓷材料为对象,以寻找高临界温度为目标的“超导热”。全世界有260多个实验小组参加了这场竞赛。
1986年1月,美国国际商用机器公司设在实验室科学家柏诺兹和首先发现钡镧铜氧化物是高温超导体,将超导温度提高到30K;紧接着,工学部又将超导温度提高超导材料应用到37K;宣布,美籍华裔科学家又将超导温度提高到40.2K。
1987年1月初,川崎国立分子研究所将超导温度提高到43K;不久日本综合电子研究所又将超导温度提高到46K和53K。由、领导的研究组,获得了48.6K的锶镧铜氧系超导体,并看到这类物质有在70K发生转变的迹象。2月15日美国报道朱经武、获得了98K超导体。2月20日,也宣布发现100K以上超导体。3月3日,日本宣布发现123K超导体。3月12日中国成功地用进行超导实验。3月27日美国华裔科学家又发现在氧化物超导材料中有转变温度为240K的超导迹象。很快工学部发现由、、、组成的材料在14℃温度下存在超导迹象。高温超导体的巨大突破,以液态氮代替液态氦作超导获得超导体,使走向大规模开发应用。是的主要成分,液氮制冷机的比液氦至少高10倍,所以的价格实际仅相当于液氦的1/100。液氮制冷设备简单,因此,现有的高温超导体虽然还必须用液氮冷却,但却被认为是20世纪科学上最伟大的发现之一。超导材料具有的优异特性使它从被发现之日起,就向人类展示了诱人的应用前景。但要实际应用超导材料又受到一系列因素的制约,这首先是它的临界参量,其次还有材料制作的工艺等问题(例如脆性的超导陶瓷如何制成柔细的线材就有一系列工艺问题)。到80年代,超导材料的应用主要有:①利用材料的超导电性可制作磁体,应用于电机、高能、磁悬浮运输、受控热核反应、储能等;可制作电力电缆,用于大容量输电(可达10000MVA);可制作通信电缆和天线,其性能优于常规材料。②利用材料的完全抗磁性可制作无和轴承。③利用可制作一系列精密仪表以及辐射探测器、微波发生器、逻辑元件等。利用约瑟夫森结作的逻辑和存储元件,其运算速度比高性能的快10~20倍,只有四分之一。日,日本物质材料研究机构研究小组研究、合成了含有金和硅元素的新型超导化合物。[1]
研究小组在1500度、6万个大气压的高温高压条件下,使金和硅以及二硅化锶等发生化学反应,生成了被称为“SrAuSi3”的新型超导体,在1.6K绝对温度下达到超导状态。经理论计算分析,该新型超导体电子结构与原子序号较大的金元素相比,电子数有增加、电子磁性和自旋轨道耦合均较强,属于BaNiSn3构造的化合物。该研究成果已在美国化学学会主编的《材料化学》上发表。[1]
新手上路我有疑问投诉建议参考资料 查看

我要回帖

更多关于 超导体的原理 的文章

 

随机推荐