什么是纳米材料?简述纳米材料的特殊性质性及其特殊效应

纳米材料的四大效应及其实际意思是什么啊?_百度知道
纳米材料的四大效应及其实际意思是什么啊?
表面效应:当颗粒的直径减小到纳米尺度范围时,随着粒径减小,比表面积和表面原子数迅速增加。量子尺寸效应:当金属或半导体从三维减小至零维时,载流子在各个方向上均受限,随着粒子尺寸下降到接近或小于某一值(激子玻尔半径)时,费米能级附近的电子能级由准连续能级变为分立能级的现象称为量子尺寸效应。金属或半导体纳米微粒的电子态由体相材料的连续能带过渡到分立结构的能级,表现在光学吸收谱上从没有结构的宽吸收过渡到具有结构的特征吸收。量子尺寸效应带来的能级改变、能隙变宽,使微粒的发射能量增加,光学吸收向短波长方向移动(蓝移),直观上表现为样品颜色的变化,如CdS微粒由黄色逐渐变为浅黄色,金的微粒失去金属光泽而变为黑色等。同时,纳米微粒也由于能级改变而产生大的光学三阶非线性响应,还原及氧化能力增强,从而具有更优异的光电催化活性[5,6]。
小尺寸效应[7]:当物质的体积减小时,将会出现两种情形:一种是物质本身的性质不发生变化,而只有那些与体积密切相关的性质发生变化,如半导体电子自由程变小,磁体的磁区变小等;另一种是物质本身的性质也发生了变化,当纳米材料的尺寸与传导电子的德布罗意波长相当或更小时,周期性的边界条件将被破坏,材料的磁性、内压、光吸收、热阻、化学活性、催化活性及熔点等与普通晶粒相比都有很大的变化,这就是纳米材料的体积效应,亦即小尺寸效应。这种特异效应为纳米材料的应用开拓了广阔的新领域,例如,随着纳米材料粒径的变小,其熔点不断降低,烧结温度也显著下降,从而为粉末冶金工业提供了新工艺;利用等离子共振频移随晶粒尺寸变化的性质,可通过改变晶粒尺寸来控制吸收边的位移,从而制造出具有一定频宽的微波吸收纳米材料。宏观量子隧道效应:微观粒子具有贯穿势垒的能力称为隧道效应。近年来,人们发现一些宏观量,例如:微粒的磁化强度、量子相干器件中的磁通量以及电荷等也具有隧道效应,它们可以穿越宏观系统中的势垒并产生变化,称为宏观量子隧道效应[8].利用这个概念可以定性解释超细镍粉在低温下继续保持超顺磁性。Awachalsom等人采用扫描隧道显微镜技术控制磁性粒子的沉淀,并研究低温条件下微粒磁化率对频率的依赖性,证实了低温下确实存在磁的宏观量子隧道效应[9]宏观量子隧道效应的研究对基础研究和实际应用都有重要的意义。它限定了磁带、磁盘进行信息存储的时间极限。宏观量子隧道效应与量子尺寸效应,是未来微电子器件的基础,或者说确立了现有微电子器件进一步微型化的极限。
库仑堵塞与量子隧穿[10,11] :当体系的尺度进入到纳米级(一般金属粒子为几个纳米,半导体粒子为几十纳米),体系是电荷“量子化”的,即充电和放电过程是不连续的,充入一个电子所需的能量Ec为e2/2C,e为一个电子的电荷,C为小体系的电容,体系越小,C越小,能量Ec越大。我们把这个能量称为库仑堵塞能。换句话说,库仑堵塞能是前一个电子对后一个电子的库仑排斥能,这就导致了对一个小体系的充放电过程,电子不能集体传输,而是一个一个单电子的传输。通常把小体系中这种单电子输运行为称为库仑堵塞效应。如果两个量子点通过一个“结”连接起来,一个量子点上的单个电子穿过能垒到另一个量子点上的行为称作量子隧穿。利用库仑堵塞和量子隧穿效应可以设计下一代的纳米结构器件,如单电子晶体管和量子开关等。以上几种效应都是纳米微粒和纳米固体的基本特性,它使纳米微粒和纳米固体呈现出许多奇特的物理和化学性质[2,12] ,出现一些不同于其它大块材料的反常现象。这使纳米材料具有了传统材料所没有的优异性能和巨大的应用前景,成为材料科学中的一大亮点。
介电限域效应:当纳米微粒分散在异质介质中,将导致体系介电增强,从而引起微粒的介电性质与光学特性发生变化,这就是介电限域效应。一般情况下,纳米材料被分散在一种介电常数较低的基质当中,当介质的介电常数比纳米微粒小的多时,介电限域效应将起很重要的作用,它将使电子、空穴库仑作用增大,从而使激子束缚能进一步增大,最终引起吸收光谱和荧光光谱的红移[13]。
纳米材料所具有的上述一些特殊效应,使纳米颗粒和纳米固体呈现许多特异的物理、化学性质,出现一些“反常现象”。例如金属为导体,但纳米金属微粒在低温时由于量子尺寸效应呈现电绝缘性;一般PbTiO3,BaTiO3和SrTiO3等是典型的铁电体,但当其尺寸进入纳米数量级时就会变成顺电体;铁磁性的物质进入纳米级(~5nm),由于由多畴变成单畴,产生极强的顺磁效应;当粒径为十几纳米的氮化硅微粒组成纳米陶瓷时,已不具有典型共价键特征,界面键结构出现部分极化,在交流电下电阻很小;化学惰性的金属铂制成纳米微粒(铂黑)后却成为活性极好的催化剂。众所周知,金属由于光反射呈现各种美丽的特征颜色,而纳米金属颗粒光反射能力显著下降,通常可低于1%,因而呈现黑色,这是由于小尺寸和表面效应使纳米微粒对光的吸收能力增强;颗粒为6nm的纳米Fe晶体的断裂强度比多晶Fe提高12倍;纳米Cu晶体的自扩散是传统晶体的倍,是晶界扩散的103倍;纳米金属Cu的比热是传统Cu的两倍;纳米固体Pd热膨胀提高一倍;纳米Ag晶体作为稀释致冷机的热交换器效率较传统材料有很大提高;纳米磁性金属的磁化率是普通金属的20倍,而饱和磁矩是普通金属的1/2。由于纳米微粒所具有的常规材料所不具备的特性,使得纳米微粒在磁性材料、电子材料、光学材料、高致密度材料的烧结、催化、传感、陶瓷增韧等方面有广阔的应用前景
其他类似问题
为您推荐:
其他1条回答
纳米材料由于其独特的尺寸结构,使得纳米材料有着传统材料不具备的特征。即小尺寸效应、表面与界面效应、量子尺寸效应和宏观量子隧道效应等纳米效应。例如,许多金属纳米粒子在室温下在空气中会被强烈氧化而燃烧是表面效应;2nm的金的熔点是327℃是小尺寸效应;纳米银时绝缘体是量子尺寸效应;铁到纳米级后铁磁性转变为顺磁性或软磁性是宏观量子隧道效应。
您可能关注的推广
纳米材料的相关知识
等待您来回答
下载知道APP
随时随地咨询
出门在外也不愁纳米材料的光学特性_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
评价文档:
纳米材料的光学特性
介​绍​纳​米​材​料​的​特​性
阅读已结束,如果下载本文需要使用
想免费下载本文?
你可能喜欢转载:纳米材料在光电效应上功能卓越&&对于未来科技前沿领域具有广阔的前景
转载:纳米材料在光电效应上功能卓越& 对于未来科技前沿领域具有广阔的前景
&中国科技网: 首页 &&
今日推荐& 发布时间: &
|&&&&&&&&&
单根纳米线聚光强度极高
太阳能转换效率极限或将提高几个百分点
中国科技网 作者: 陈丹&
& 中国科技网讯
据物理学家组织网3月24日报道,一个来自丹麦和瑞士的联合研究团队已经证明,单根纳米线可聚集的太阳光强度能达到普通光照强度的15倍,这一令人惊讶的研究成果在开发以纳米线为基础的新型高效太阳能电池方面潜力巨大,有可能使太阳能转换极限得以提高。相关论文发表在《自然·光子学》杂志上。
纳米线的结构为圆柱状,直径约为人类发丝的万分之一。纳米线具有独特的物理光吸收性能,有预测认为,其在太阳能电池以及未来的量子计算机和其他电子产品的开发方面具有广阔的前景。近年来,丹麦哥本哈根大学尼尔斯·波尔研究所纳米科学中心和瑞士洛桑联邦理工学院的科学家一直在探索如何开发纳米线晶体并改善其质量。
他们的研究发现,纳米线能够将太阳光自然聚集到晶体中一个非常小的区域,聚光能力是普通光照强度的15倍。由于纳米线晶体的直径小于入射太阳光的波长,可以引起纳米线晶体内部以及周围光强的共振。该研究的参与者、刚刚获得尼尔斯·波尔研究所博士学位的彼得·克洛格斯特拉普解释说,通过共振散发出的光子更加集中(太阳能的转换正是在散发光子的过程中实现的),这有助于提高太阳能的转换效率,从而使得基于纳米线的太阳能电池技术得到真正的提升。
典型的太阳能转换效率极限,也就是所谓的肖克利·奎伊瑟效率极限(Shockley-Queisser
Limit),多年来一直是太阳能电池效率的瓶颈,但现在看来,这项新研究很有可能使这一转换效率极限提高几个百分点。
对研究人员而言,能够突破理论极限无疑是令人兴奋的。几个百分点听上去虽然不多,但却会对太阳能电池的发展、基于纳米线的太阳能的利用以及全球的能源开发等产生重大影响。不过,克洛格斯特拉普表示,纳米线构成的太阳能电池投入产业化还需要等几年时间。(陈丹)&
《科技日报》(
二版)(中国科技网)责编:王冠&&&&&&&&
本篇文章来源于 科技网|
原文链接:
========================================
网易首页 & 探索新闻 &
正文&&&&&&
科学家造最薄纳米吸光器 或降低太阳能电池成本
10:19:19 来源: 网易探索 
核心提示:美国科学家制造出了迄今最薄的有效可见光吸光器,这种纳米结构的厚度仅为普通纸的千分之一,最新设备有望降低太阳能电池的成本并提高其光电转化效率。
据物理学家组织网近日报道,美国科学家制造出了迄今最薄的有效可见光吸光器,这种纳米结构的厚度仅为普通纸的千分之一,最新设备有望降低太阳能电池的成本并提高其光电转化效率。研究发表在最新一期的《纳米快报》杂志上。
参与该研究的斯坦福大学化学工程学教授斯泰西·本特说:“太阳能电池越薄,需要的材料越少,成本也就越低。我们目前面临的挑战是,在减少太阳能电池厚度的同时不损失其吸收太阳光并将之转化为清洁能源的能力。最新设备做到了这一点——非常纤薄的一层材料就几乎可将特定波长的入射光全部吸收。”
理想的太阳能电池应该能将可见光光谱上的所有光收纳其中——从波长400纳米的紫色光波到波长700纳米的红色光波以及不可见的红外线和紫外线。在最新研究中,科学家们制造出了一些纤薄的圆片,其上布满了5200亿个约14纳米高、17纳米宽的圆形的金纳米点。
该研究的主要作者、博士后研究员卡尔·赫格和同事使用原子层沉积过程,在圆盘上添加了一层薄膜涂层,利用这一技术,他们能整齐划一地包裹粒子并将薄膜厚度控制到原子级,由此可以仅仅通过改变纳米点周围涂层的厚度来调谐系统,这也是最新研究的一个亮点。
随后,赫格和同事让这些经过调谐的金纳米点吸收波长为600纳米的橘红色光。赫格解释道:“金属粒子有一个共振频率,可对其调谐让其吸收特定波长的光,我们对新系统的光学属性进行了调谐以便让其吸光率达到最大。”
最终得到的结果创造了新纪录。赫格说:“这种有涂层的圆盘对橘红色光的吸收率高达99%;金纳米点本身对光的吸收率也高达93%。每个点的体积约等于1.6纳米厚的一层金的体积,这就使它成为迄今最纤薄的可见光吸收设备,其厚度仅为目前商用薄膜太阳能电池吸光器的千分之一。”
本特补充道,他们的下一个目标是,希望通过实验证明这一技术能用于实际的太阳能电池中,最终目标是使用最少量的材料来吸收最多的太阳光,研发出性能更好的太阳能电池和太阳能燃料设备。
另外,他们也在考虑用其他比金便宜的金属制造纳米点阵列。赫格表示:“选择金是因为其在实验中的化学性能更加稳定。尽管金的成本实际上可以忽略,但银也不失为一个好选择,因为银更便宜,而且光学表现也更好。”(来源:《科技日报》记者
&本文来源:网易探索 责任编辑:NN145
===========================================
人民网&&科技&&
日08:08& 来源:《科技日报》
在铝箔上生长纳米柱可制造太阳能电池&&&&
成本仅为单晶硅太阳能板的1/10
  美国研究人员开发出一种新型太阳能电池技术,这种太阳能电池可通过在铝箔上生长直立的纳米柱来制成,将整个电池封装在透明的胶状聚合物内后就能制作出可弯曲的太阳能电池,成本低于传统的硅太阳能电池。
  领导此项研究的美国加州大学电气工程和计算机科学教授阿里·杰威表示,与传统硅和薄膜电池相比,纳米柱技术可使研究人员使用更为廉价和低质的材料。更重要的是,该技术更适于在薄铝箔上制作出可卷曲的太阳能电池板,从而降低了制造成本。一旦获得成功,其生产成本将可低至单晶硅太阳能板的1/10。
  这种太阳能电池是通过将统一的500纳米高的硫化镉嵌入碲化镉薄膜中制成的,这两种材料均是薄膜太阳能电池中经常使用的半导体。杰威及其同事在《自然·材料》上发表的报告称,此种电池将光能转换为电能的效率可达6%。此前,也有科学家使用了这种立柱设计思想,但其方法较为昂贵,且光电转换效率不到2%。
  在传统太阳能电池中,硅吸收光并产生自由电子,这些电子必须在受困于材料的缺陷或杂质前到达电路。这就要求使用极为纯净、昂贵的晶体硅来制造高效光伏装置。
  纳米柱就承担了硅的职责,纳米柱周围的材料吸收光并产生电子,纳米柱将其运送到电路。这种设计以两种方式来提高效率:紧密封装的纳米柱捕捉柱间的光,帮助周围的材料吸收更多的光;电子以非常短的距离穿越纳米柱,因此没有太多的机会受困于材料的缺陷。这意味着可以使用低质量的廉价材料。
  有科学家使用不同的纳米结构来制作这种太阳能电池。比如,哈佛大学化学教授查尔斯·里波尔研发了一种包含硅芯和同心硅层各异的纳米线;加州大学伯克利分校的杨培东则开发出了带有氧化锌纳米线的染料敏化太阳能电池。这些纳米线太阳能电池的光电转换效率已达到了4%。
  杰威及其同事制作的纳米柱电池首次使用经氧化处理的铝箔,创建出呈周期性分布的200纳米宽小孔,这些小孔作为硫化镉晶体直立生长的模板。然后,对碲化镉和顶端电极饰以铜和金的薄膜。它们通过一块玻璃板和电池相连,或是将其顶端投入聚合物溶液使其弯曲。
  乔治亚理工学院的材料学和工程学教授王中林评价说,将纳米材料工程设计与制造柔性可弯曲高效太阳能电池的各种软基板技术集成在一起,这是一个令人兴奋的进展。美国国家可再生能源实验室负责太阳能电池研究的物理化学家阿瑟·诺兹克则表示,这种电池要与由硅、碲化镉和其他材料制成的柔性薄膜太阳能电池进行竞争,其卖点可能不在于其柔性,而是成本优势。
  目前,研究人员正在探索使用可提高转换效率的材料。例如,顶端的铜—金层现在仅有50%的透明度,如果可让所有的光都透过,其效率就可增加一倍。因此,研究人员正计划使用像氧化铟这样的透明导电材料。另外,利用其他半导体材料作为纳米柱及其周围材料也在研究人员的考虑之中,这样的制作工艺能适于更广范围的半导体材料,其他材料组合亦可能会提高效率,更重要的一点则是可以避免镉的毒性问题。(冯卫东)(责任编辑:朱叶(实习))
=======================================
&华夏军事网首页&&&&&
法国科学家研制出高导电性纳米塑料&& 日期:
作者:admin 来源: 中国财富网  法国科学家研制出高导电性纳米塑料像塑料一样柔韧像铜线一样导电
  新华社斯特拉斯堡4月24日电(记者刘绍平)法国研究人员日前报告说,他们研制出了一种高导电性的塑料纳米纤维,可以应用于电子工业领域,帮助实现电子组件微型化。来自法国国家科研中心和斯特拉斯堡大学的研究人员在新一期英国《自然-科学》杂志网络版上介绍说,这种塑料纤维实际上综合了目前常见的两种导电材料——金属和塑性有机聚合物的优点。它成本低,易处理,像塑料一样轻且柔韧,而导电性能又类似金属,可媲美铜线。
  法国国家科研中心已为此项科研成果注册了专利。研究人员认为,21世纪电子工业面临的一大挑战就是如何将组件微缩至纳米尺度。这种导电性能极佳的塑料纳米纤维将有助于解决这个问题。他们表示,下一步会尝试把这种塑料纳米纤维应用于电子设备的生产中,如制造可弯曲的显示屏或太阳能电池等。
==========================================
人民网-科技-产业&&
日05:42& 来源:《科技日报》
焊接纳米线可以只用一束光
  本报讯  (记者
刘霞)据美国每日科学网站2月7日(北京时间)报道,美国科学家设计出一种新的纳米线焊接技术,可使用表面等离子体光子学,用一束简单的光将纳米线焊接在一起。发表于刚刚出版的《自然·材料学》杂志上的最新研究有望促成新式电子设备和太阳能设备的出现。目前,有些纳米学家正专注于制造由金属纳米线组成的导电网格,这样的网格具有卓越的输电性能、成本低廉且非常容易处理,可广泛应用于下一代触摸屏、视频显示器、发光二极管及薄膜太阳能电池等领域。
  然而,在制造这样的网格的处理过程中,必须对精巧的网格施加热或压力,才能将形成网格的呈十字形摆放的纳米线熔接在一起,而这又会破坏网格。
  最新纳米线焊接技术解决了上述问题。新技术的核心是表面等离子体光子学的物理属性——光以波的形式流过金属的表面并和金属相互作用。表面等离子体光子学使基于表面等离子体激元的元件和回路具有纳米尺度,从而可实现光子与电子元器件在纳米尺度上完美联姻。科学家们用电子显微镜分别对光照在纳米线上之前和之后进行拍摄,图片对比发现,光照前,单个纳米线一层层叠放在一起;光照后,在顶部的纳米线就像天线一般,引导光的等离子体激元波进入底部的电线中并制造出热将纳米线焊接在一起。
  该研究的作者之一、斯坦福大学材料科学和工程学院的表面等离子体光子学专家马克·布荣格萨姆表示:“当两条纳米线呈十字铺在一起时,在纳米线相遇的地方,光会产生等离子体激元波,制造出一个热点。然而,只有当纳米线相互接触时才会存在热点,当纳米线熔接在一起后,热点就消失了。焊接阻止了热点本身,整个系统因此保持完整,没有被破坏。”该研究的另一作者、该大学材料工程师迈克尔·麦吉尔补充道,“在此过程中,电线其他部分以及同样重要的基础材料都不会受到影响。这种精确加热大大增加了我们对纳米材料进行焊接的控制力、速度和能效。”科学家们表示,新方法除了能让他们制造出更坚硬、性能更优异的纳米线网格之外,也有望让他们制造出附着在柔性或透明塑料和聚合物上的网状电极,这有可能让能产生太阳能的廉价窗户涂层出现。 
(责任编辑:杨铁虎)
==================================
人民网&&科技& 日09:04&
来源:《科技日报》&
美研制出超材料纳米镜头
超高分辨率成像成为可能&&&
  美国研究人员开发出一种新型纳米镜头,其打破了衍射极限,从而获得了现有技术尚无法达到的所谓超高分辨率成像。该纳米镜头是由超材料纳米线阵列制成的。此项研究成果发表在最近出版的《应用物理快报》上。传统镜头利用普通光波来构建物体的影像,摒弃了包含在“易逝”光波中的物体的精细、微小的细节。因此,像显微镜之类的传统光学系统无法对非常小的、纳米尺寸的物体进行精确成像。
  利用不同的方法,美国东北大学电子材料研究所所长斯瑞尼瓦斯·斯瑞达教授领导的研究团队在对纳米线进行组织和包装后设计出了一个新型的镜头。通过对数百万条直径仅为20纳米的纳米线进行精确的调整和布置,研究人员成功控制了光线通过镜头的方式。由于该镜头可以同时利用普通光波和“易逝”光波来构建图像,因此其可描绘出纳米尺寸物体的高分辨率清晰图像。
  研究人员表示,这是到目前为止所能实现的最好的超级镜头,是高解析光学成像领域取得的重大进展。该技术可用以提高生物医学成像和光刻技术的能力。目前,研究人员已掌握了量产此种超材料纳米镜头的能力。(冯卫东)
(责任编辑:王太拓(实习))& &
===============================================&&
人民网&&科技&&&&
日08:55& 来源:《科技日报》
世界最小纳米激光器在美问世 可将速度提高千倍
  研究人员最近展示了一种有史以来最小的激光器,其包含一个直径仅为44纳米的纳米粒子。该器件因能产生一种称为表面等离子的辐射而被命名为“spaser”。这项新技术可允许光子局限在非常小的空间内,一些物理学家据此认为,就像晶体管之于现今的电子产品,spaser也许将成为未来光学计算机的基础。
  美国诺福克大学材料研究中心物理学教授米哈伊尔·诺基诺夫表示,现今最好的消费电子产品可在大约10吉赫兹的速度上运行,但未来的光学器件的运行速度可达到几百太赫兹范围。一般来说,光学器件难以实现小型化,是因为光子无法限定在比其一半波长更小的区域内。但以表面等离子形式与光作用的器件就能将光限定在非常紧密的位点上。
  诺基诺夫说,目前科学家们正在基于等离子的新一代纳米电子设备的理论研究上努力探索。与以前的其他等离子器件不同的是,spaser能有效地产生和放大这些光波。诺基诺夫及同事在近期的《自然》杂志上发表了此项研究成果。
  spaser包含一个直径仅为44纳米的单纳米粒子,激光器的其他不同部分的功能则与常规激光器无异。在普通激光器中,光子通过可放大光线的增益介质在两个镜面间反弹。而spaser中的光则围绕一个等离子形式的纳米粒子核中的金球表面进行反弹。
  此中的挑战是确保这种能量不会快速从金属表面消散。诺基诺夫及其团队通过在金球上喷涂嵌有染料的硅层来实现这一要求。硅层可作为增益媒介。来自spaser的光可作为等离子体保持在限定区域,亦可作为可见光范围的光子离开粒子表面。像一个激光器一样,spaser必须“泵”入必要的能量,研究人员利用光脉冲轰击粒子来达到这个目的。
  常规激光器的大小取决于其使用的光波长,反射面间的距离不能小于光波长的一半,在可见光范围大约为200纳米。spaser则是利用等离子体解决了此局限。诺基诺夫说,spaser也许将能做到一个纳米大小,但任何小于这一尺寸的纳米粒子,其功能就会丧失。
  美国乔治亚州大学物理学教授马克·斯托克曼称,和目前最快的晶体管相比,spaser虽具有同等的纳米尺度,但其速度要快上1000倍,这为制造速度超快的放大器、逻辑元件和微处理器提供了可能。
  诺基诺夫则表示,spaser不仅能在光子计算机领域找到用武之地,也能在现今使用常规激光器的领域得到应用。更为现实的应用领域就是磁性数据存储业。现今用于硬盘的磁性数据存储介质已达到其物理极限,扩展其存储能力的方法之一就是在其记录过程中用非常小的光点对介质进行加热,而这必须使用纳米激光器才能做到(冯卫东)(责任编辑:朱叶(实习))
=================================================
人民网&&科技&&
日08:49& 来源:《科学时报》
高性能光操作系统问世 架起纳米光学与力学的桥梁
  在业界享有盛名、年发行量达600万份以上的光电杂志Photonics
Spectra和美国光学协会(SPIE)的新闻部,日前以专文专栏的方式对中国复旦大学表面物理实验室和美国杜克大学光学研究中心联合进行的一项重点研究成果进行了详细报道。这项受中国国家自然科学基金和美国国家科学基金资助的项目历时三年,是国际上首次在理论模拟的基础上,研究出的一种新型可行的光驱动纳米器械和光力纳米操作平台,它在系统的稳定性和可控性方面有着其他系统无可替代的优势。他们设计了这样一种新光源,它结合集成光子器件,可以像纳米机器一样操纵、挑选和选择复杂介质纳米粒子。
  多年以来,科学家一直在试图利用恒星发出的微弱的光来驱动纳米机器,以达到最终给未来的星际旅行提供必要的能量的目的,并提出过很多方案,但是此前缺乏一种高度局域化的光源使得操纵半导体器件有更高的精度和准度,并且能够满足操作中的各种不同的外界条件。
  据报道,完成这项工作的是美国杜克大学博士生简宇川、哈尔滨工业大学深圳研究生院副教授肖君军和复旦大学物理系教授黄吉平,他们设计出了世界上第一台强大的运行在纳米量级的高性能光操作系统。在这个新设备里,强大的近场光强由被半导体光子晶体板所限制住的纳米微腔产生。这种强烈的局域化力场力量被证明可以用来操作、挑选和选择其附近的复杂介质纳米棒。
  今天的光学镊子利用传统激光束本身的高梯度性质来捕获细胞。但是操作纳米级的物体要求更强的囚禁光强,这常常超出了正常的衍射极限。黄吉平及其合作者转向光子晶体结构,并构造了纳米腔。作为理想的下一代近场光学镊子,它的体积小巧而且制造工艺成熟。
  文章的第一作者简宇川在美国杜克大学接受的采访中提到,这种设备可以很容易地操作细小的纳米结构,可以用来作为生物传感器以及细胞、DNA的提取,并且可以用在分子筛上面。他同时介绍说,实验将一只半导体介质的纳米棒放在高品质因子的光子晶体空腔上。在空腔附近,光偶极子的力场与纳米介质发生交互作用。同时,纳米介质会在光子晶体空腔中产生微小扰动,从而联合影响该系统的行为和稳定。施加在纳米棒上的光学力是否将其推或拉至平衡位置,归功于不断演变的吸引或者排斥的相互作用。
  简宇川强调说,这种光学动力和光源是通过腔中的自发辐射激光产生的,因此输出和输入均可灵活地进行调节,并且它可以在当前先进的纳米技术条件下比较容易地制备出来。光源的调节性来源于晶体腔中的自发辐射。与传统的光学镊子不同,这种类型的近场光学捕获效应工作于通常的衍射极限以下。它具有强烈的电磁场控制的优势,从而可以构建非常小的激光器。在目前半导体制造工艺下,这是在共振腔中获得超高品质因子的最好方法。
  肖君军多年从事纳米光学研究,并与海内外多个实验室建立了广泛的联系。肖君军告诉记者,此项工作的具体目的,是要阐明一种全光耦合系统的运作机制,它的威力主要体现在可以用来实现集成光学机械系统。他同时说明,该设备可以应用在目前的半导体纳米器件制造工艺上面。在此计算和实验的基础上,新的器件可以扩大人们在迅速发展的纳米光学机械系统领域的认识。器件产生的光力的变化和极性的改变在光阱和光操纵两个方面都很有意义,同时有助于系统的控制和局域的能量传递。它提供了一个建设全光可调的表面平台,对于生物传感与细胞、DNA提取,分子筛选和样品预富集等方面将有着特殊的用处。
  在计算中,几位科学家使用了大型有限差分时域的模拟手段。他们通过几何场和纹理图像技术来可视化地表达和解释三维空间下的能量流动和能量耦合效应。这种技术可以非常有效地帮助人们直观地理解器件的工作机制。而在以往光子器件的研究中,这种方法还很少被应用过。在此基础上,许多精细微妙的物理机械机制和系统的奇异行为可以令人信服地被表现出来。比如科学家们发现,这种系统是一个聪明的自适应光学器械,它对于几何结构的敏感光学响应展示了这种新的空腔结构如何在一个复杂的纳米电机系统中去适应环境。
  科学家们认为,这也是在国际上首次提出了利用显著局域化的纳米空腔结构作为一般光源来综合集成光机械系统。其展示出来的丰富动力学机制使其可以实现近场的光学镊子。光子晶体板构筑的空腔结构提供了一种非常易于集成化的、在纳米尺度容易实现的光学镊子模式,它在半导体设计和制造上拥有大量的优势。因此它将有希望作为下一代近场光学镊子的候选方案。
  复旦大学和杜克大学的研究专家们认识到,目前仍有许多具体工作要做,主要目的是弥合在目前的基础研究和未来的工业应用之间的差距。“下一步计划是考察一系列光子晶体材料阵列,看是否可以用于并行和大规模的纳米器械操纵。”同时研究和学习如何操控各种不同的纳米材料,通过增加稳逝场强度的方法来提高能量耦合效率,使其在未来的纳米马达上能达到更高的能量品质。(黄辛)
(责任编辑:王太拓(实习))
============================================
人民网&&科技&&&&
日09:04& 来源:《科技日报》
美研制出超材料纳米镜头 超高分辨率成像成为可能&&
  美国研究人员开发出一种新型纳米镜头,其打破了衍射极限,从而获得了现有技术尚无法达到的所谓超高分辨率成像。该纳米镜头是由超材料纳米线阵列制成的。此项研究成果发表在最近出版的《应用物理快报》上。
  传统镜头利用普通光波来构建物体的影像,摒弃了包含在“易逝”光波中的物体的精细、微小的细节。因此,像显微镜之类的传统光学系统无法对非常小的、纳米尺寸的物体进行精确成像。
  利用不同的方法,美国东北大学电子材料研究所所长斯瑞尼瓦斯·斯瑞达教授领导的研究团队在对纳米线进行组织和包装后设计出了一个新型的镜头。通过对数百万条直径仅为20纳米的纳米线进行精确的调整和布置,研究人员成功控制了光线通过镜头的方式。由于该镜头可以同时利用普通光波和“易逝”光波来构建图像,因此其可描绘出纳米尺寸物体的高分辨率清晰图像。
  研究人员表示,这是到目前为止所能实现的最好的超级镜头,是高解析光学成像领域取得的重大进展。该技术可用以提高生物医学成像和光刻技术的能力。目前,研究人员已掌握了量产此种超材料纳米镜头的能力。(冯卫东)
(责任编辑:王太拓(实习))&&
============================================
人民网&&科技&&
日08:16& 来源:《科技日报》
中科大发现新电光现象 纳米光电集成出现新思路
  记者近日从中国科学技术大学获悉,该校合肥微尺度物质科学国家实验室单分子物理化学研究团队的科研人员最近发现,当无线电通信天线尖端尺寸减少到纳米量级,并非常接近另一金属表面而形成一个纳米腔室时,就可以利用局域等离激元共振模式的调控来对腔内荧光体的发光特性进行有效控制,并在光频区实现新奇的电光效应:电致热荧光、上转换发光和“彩色”频谱调控。这一研究成果发表在近期出版的国际权威杂志《自然—光子学》上。
  等离激元是一种准粒子,起源于金属中自由电子在均匀的正离子背景作用下电荷密度的集体振荡。当这种电荷密度振荡被限制在金属与介电材料(如空气)的界面时,便会形成沿表面进行传播的电磁模——表面等离激元。据介绍,等离激元光子学是纳米光子学的重要组成部分,在生物传感、显微成像、光源制作、纳米光电集成等技术中应用前景广阔。
  在科技部重大科学研究计划、国家自然科学基金、中科院知识创新工程项目的资助下,中国科大董振超、侯建国等科研人员,通过成功研制融合扫描隧道显微技术(STM)和光学检测技术于一体的联用系统设备,对纳米光子学的这一崭新课题进行了探索。他们利用STM金属探针与衬底之间的纳米腔室作为荧光发射的共振腔(相当于一种纳米天线结构),并巧妙通过纳腔等离激元共振模式的频谱调控,来实现分子发光频率与强度的有效控制。这些发现及其隐含的物理机制,揭示了局域的纳腔等离激元场可以作为一种近场相干光源,在光电耦合与转化过程中起着至关重要的调控与放大作用,为纳米光电集成提供了新的知识和思路。(吴长锋)
(责任编辑:王太拓(实习)) &
==========================================
人民网&&科技& 日08:25&
来源:《科技日报》
澳大利亚研制纳米电子束曝光系统
  据澳大利亚莫纳什大学网站报道,澳大利亚研究人员正在研制世界最强大的纳米设备之一——电子束曝光系统(EBL)。该系统可标记纳米级的物体,还可在比人发直径小1万倍的粒子上进行书写或者蚀刻。
  电子束曝光技术可直接刻画精细的图案,是实验室制作微小纳米电子元件的最佳选择。这款耗资数百万美元的曝光系统将在澳大利亚亮相,并有能力以很高的速度和定位精度制出超高分辨率的纳米图形。该系统将被放置在即将完工的墨尔本纳米制造中心(MCN)内,并将于明年3月正式揭幕。
  MCN的临时负责人阿彼得·凯恩博士表示,该设备将帮助科学家和工程师发展下一代微技术,在面积小于10纳米的物体表面上实现文字和符号的书写和蚀刻。此外,这种强大的技术正越来越多地应用于钞票诈骗防伪、微流体设备制造和X射线光学元件的研制中,还可以支持澳大利亚同步加速器的工作。凯恩说:“这对澳大利亚科学家研制最新的纳米仪器十分重要,其具有无限的潜力,目前已被用于油漆、汽车和门窗的净化处理,甚至对泳衣也能进行改进。而MCN与澳大利亚同步加速器相邻,也能吸引更多的国际研究团队的目光。”
  MCN的目标是成为澳大利亚开放的、多范围的、多学科的微纳米制造中心。该中心将支持环境传感器、医疗诊断设备、微型纳米制动器的研制,以及新型能源和生物等领域的研究和模型绘制。除电子束曝光系统外,MCN中还包含了高分辨率双束型聚焦离子束显微镜、光学和纳米压印光刻仪、深反应离子蚀刻仪和共聚焦显微镜等众多设备。凯恩认为:能够介入这种技术使我们的科学家十分兴奋,它可以确保我们在未来十年内在工程技术前沿领域的众多方面保持领先地位,也将成为科学家在纳米范围内取得更大成就的重要基点。(张巍巍)
(责任编辑:陈丹(实习))
================================================
人民网&&科技& 日08:36&
来源:《科技日报》
融合生物机制的纳米电子装置问世&&&
可大幅提升未来计算机效率 推动神经修复技术发展
  物理学家组织网8月10日报道称,美国劳伦斯·利弗莫尔国家实验室的研究人员设计出一种多功能混合平台,利用脂类膜纳米线成功制造出生物纳米电子原型装置。这种融入了生物成分的电路不仅能够提升生物感测和诊断工具的性能,推动神经修复技术的发展,甚至可以大幅提高未来计算机的效率。该研究成果发表在8月10日《美国国家科学院院刊》网络版上。
  现代通讯设备依赖电场和电流来进行信息传递,而生物系统则复杂得多。它们通过膜受体、各种生物渠道和生物泵来控制信号转导,即使是最强大的计算机也无法与之匹敌。例如,将声波转换成神经脉冲是一个非常复杂的过程,但人耳却可以轻而易举地做到这点。为此,科学家们一直试图将微电子与生物系统进行有效地整合,但总是达不到无缝连接的水平。现今更小的、如同生物分子大小的纳米材料的出现,使这种无缝整合成为了可能。
  为了创建生物纳米电子平台,美国劳伦斯·利弗莫尔国家实验室的研究人员将目标转向了生物细胞中无处不在的脂类膜。这种薄膜会形成一个稳定的、可自愈的屏障,对于离子和小分子来说,这个屏障几乎是坚不可摧的。脂类膜还能容纳多种蛋白质,使其在细胞中发挥识别、运输和信号转导功能。研究人员用连续的脂类双层膜包裹纳米线,在纳米线外层形成保护屏障,进而达到脂类膜与硅纳米线晶体管有效结合的效果。这种有“防护罩”的纳米线结构使得膜孔成为离子到达纳米线的唯一路径,而膜孔会随着纳米装置栅极电压的改变而自动地打开和关闭。利用这种纳米装置,研究人员可监控特定信息的传送,也可以用来控制膜蛋白。
  该项目首席科学家、利弗莫尔国家实验室的亚历山大·诺伊指出,有了复杂生物成分的协助,电子电路会变得更加高效。该项目的另一位研究人员胡里奥·马丁内兹则指出,关于脂类膜在纳米电子设备中的应用研究还处于起步阶段,尚有许多工作要做。(刘海英)
(责任编辑:朱叶(实习))
=======================================&
&人民网&&科技&
日15:18&&&
来源:科技日报&
&黑纳米粒子可为光催化制氢反应提速
据物理学家组织网近日报道,美国科学家研发出一种原子尺度的“混乱工程”技术,可以将光催化反应中低效的“白色”二氧化钛纳米粒子变成高效的“黑色”纳米粒子。科学家们表示,最新技术有望成为氢清洁能源技术的关键。
加州大学伯克利分校以及伯克利劳伦斯国家实验室环境能源技术中心的科学家塞缪尔·毛领导的研究团队研发出的这项技术,通过工程方法,将“混乱工程”引入了半导体二氧化钛纳米晶体的结构中,使白色的晶体变为黑色,新晶体不仅能吸收红外线还可以吸收可见光和紫外线。塞缪尔·毛在美国化学会于新奥尔良举办的年度大会上指出:“我们已经证明,黑色的二氧化钛纳米粒子能通过太阳光驱动的光催化反应产生氢气,而且,效率创下了新高。”
塞缪尔·毛解释道:“在实验中,我们让白色的二氧化钛纳米粒子承受高压的氢气,打乱了二氧化钛纳米粒子的结构,合成出的黑色二氧化钛纳米粒子成为一种耐用且高效的光催化剂,而且也拥有了全新的潜能。”
氢气可广泛应用于清洁电池或燃料中,并不会加速全球变暖,但是,使用氢气面临的最大挑战是:如何高效且低成本地大规模制造出氢气。尽管氢气是宇宙中储量最丰富的元素,但纯氢在地球上少之又少,因为氢会同任何其他类型的原子结合。用太阳光将水分子分解成氢气和氧气是理想的制造纯氢的方式,但这一过程需要一种高效且不被水腐蚀的光催化剂,二氧化钛能对抗水的腐蚀,但无法吸收紫外线,紫外线占据了太阳光10%的能量。
塞缪尔·毛的最新研究改变了这种现状,最新技术不仅为制氢过程提供了一种极富前景的新的光催化剂,而且也消解了一些根深蒂固的科学观念。塞缪尔·毛说:“我们的测试表明,一种好的半导体光催化剂不必是瑕疵最小且能态仅仅在导带之下的单晶体。”
另外,伯克利实验室先进光源中心进行的特性研究测量结果表明,在100个小时的太阳光驱动制氢过程中,有40毫克氢气源于光催化反应,仅仅0.05毫克氢被黑色的二氧化钛吸收。(刘霞)
(责编:袁博(实习 )、马丽)
=========================================
&新华新闻& 新华科技 &
英国科学家开发出制造纳米多孔材料新方法&&&&&
来源: 科技日报&
  据美国物理学家组织网11月28日(北京时间)报道,最近,英国剑桥大学科学家开发出一种名为“集合渗透震动”(collective
shock,COS)的新方法来制造多孔纳米材料,可大大提高制造效率,在水资源过滤、发光设备制造和化学传感器等方面具有广阔应用前景。新研究发表在《自然·材料学》上。
  人们以前认为,要制造多孔材料必须有主辅成分,辅料成分既要和主料成分相连,还要与外界相通,这样才能便于清除,辅料成分除去后,就在主材料上留下小孔。而在新方法中,辅料成分完全被包入主料中形成阵列,利用辅料的渗透力和结构形成纳米孔,更加高效灵活。
  论文领导作者、剑桥大学卡文迪许实验室的埃森·西瓦尼亚说:“这种方法就像化学课上把盐水气球放在淡水浴中,演示怎样能把盐从气球中取出。盐无法离开气球,但水会不断进入,不断冲淡气球中的盐度。更多水进入后,气球会涨起甚至爆裂,盐就被完全释放出来。”
  “在我们的实验中基本也是如此。辅料被陷落在主材料的成分中,产生了一系列微小爆裂,由此和外界连通而释放出被包在其中的辅料成分,给主材料打开许多小孔。”
西瓦尼亚说,这种独特的工艺也可用来开发过滤器,能清除水中极微小的染料颗粒。目前,这是一种有效的过滤系统,可帮助贫困国家获得淡水,还可以用于过滤地下水,清除工业废水中的重金属。随着进一步开发,它还能成为一种低技术含量低耗能的海水淡化路线。
  研究人员还和光子与光电学专家合作,用新工艺制作的材料做成电极模板,用在发光设备中。由于材料微孔具有独特的堆积式阵列,提供了一种高效多光子层,能吸收微量的化学物质而改变颜色,可用在传感器或光学组件中。西瓦尼亚还指出,目前他们还在进一步开发该技术在多方面的应用,如太阳能电池、超级电容电极、燃料电池等。(记者常丽君)
( 编辑:刘阳 刘芳宇 )
===========================================
国科社区-国家科技成果网 - 谢定章(国科)
英国科学家研发可安全储氢超细纤维
英国科学家近日研发出了一种廉价而实用的新储氢方法,有望使氢气在很多应用领域代替汽油,也加快了氢动力汽车面世的步伐。
  英国科学与技术设施理事会(STFC)卢瑟福·阿普尔顿实验室、英国牛津大学的科学家真乐普·库班、内尔·斯基普以及英国伦敦大学学院的阿瑟·洛弗尔研发出了一种新的纳米结构技术&&共电子纺丝(co-electrospinning)技术,并使用该技术制造出了纤薄柔顺的超细纤维,这种纤维的直径仅为头发丝的1/30。科学家使用这些中空的超细纤维来封装富含氢气的化学物质,在这种方式下,氢气能在比以前低的温度下以更快的速率释放出来。这种封装方法使得含氢化学物质远离了氧气和水,可延长其寿命,确保人们能在空气中安全地处理这些含氢化学物质。(中国纺织报)
===========================================
人民网&&科技&&&&&&
美科学家研制最黑材料可吸收99%光线(图)&& 晨风
北京时间11月14日消息,近期,美国宇航局的工程师们成功研制出一种特种材料,它能实现对紫外,可见光,红外线以及远红外波段光线超过99%的吸收率。这项技术的出现有望开启太空探索的新疆界。
  美国宇航局戈达德空间飞行中心的一个工程师小组在近日举行的SPIE光学与光子学会议上做了相关报告。这是该行业内最大的跨学科技术会议。据开发这一技术的10人戈达德工程师小组负责人约翰·哈戈皮恩(John?Hagopian)表示,他们随后还对这种新型材料的吸收性能进行了额外的验证性测试,以检验其有效性。
  他说:“反射测试显示我们开发的材料已经成功地将材料的吸收性能提升了50倍以上。之前也有团队研制出吸收性能接近完美的材料,但是他们的材料只在较窄的波段,如紫外和可见光波段有效,而我们的材料则实现了从紫外一直到远红外的全波段吸收,这是前所未有的。”  &
这种材料本质上就是多层的纳米碳管涂层,这是一种中空的纯碳元素构成的管状体,厚度要比人的头发丝直径小1万倍。它们垂直附着于不同的基底材料表面,就像地毯上的毛。工程师小组已经测试过将这些材料附着于硅,氮化硅,钛和不锈钢的表面,这些都是在太空工程中常用的材料。为了让纳米碳管得以顺利附着,戈达德飞行中心的工程师斯蒂芬妮·盖提(Stephanie?Getty)在这些测试材料的表面涂上一层铁催化剂涂层。随后她将材料加热至750摄氏度,同时将其暴露于含碳物料气体环境中。
  测试显示这种材料在诸多太空领域都有着很好的应用,尤其是当科学任务上需要进行多波段观测时便更加显示其重要性。其中一项重要应用就是杂散光抑制。附着在材料表面的纳米碳管可以收集并阻滞背景光线,从而阻止其从表面反射出去,进而对科学家们需要观测的目标光线之间发生干扰。正是由于仅有极少部分的光线能够反射出去,因此在人的肉眼,甚至灵敏的仪器看来,这种材料都是黑色的。
  尤其是,小组发现这种材料在紫外和可见光波段的光线吸收率高达99.5%,而在波长稍长的波段以及远红外波段的吸收率也达到了98%。哈戈皮恩说:“我们的这种材料相比其他材料的优势在于其吸收率要比后者高出10~100倍,具体的性能取决于波段的不同。” 
 戈达德工程师玛努尔·奎加达(Manuel?Quijada)也是论文的合著者之一,他说:“我们对于这样的结果有一点吃惊。我们知道它能吸收光线,但是我们没有料到它的吸收性能会这么好。” 
 一旦这种材料投入使用,它将极大地提升探测器和设备的性能。比如说,这项技术将让科学家们得以探测到宇宙中极其遥远,其光线甚至已经微弱到在可见光波段无法察觉的天体的信号,或者对处于高对比环境下的天体,如围绕其它恒星运行的暗弱行星进行观察。而研究地球大气和海洋的科学家们也将从中受益。对地观测设备接收到的光信号中有90%来自大气散射反射产生的“杂光”,从而掩盖了他们想要观测的地面反光信号。
  在目前的条件下,工程师们会使用涂黑漆,或者借助其它辅助设备来帮助减少杂光干扰。然而黑漆仅能吸收大约99%的入射光,而纳米碳管涂层产生的多层反射则能让材料的总体性能更加优越,甚至能将杂光减少100倍以上。
  还有一点很重要的,正如戈达德工程师艾德·沃莱克(Ed?Wollack)指出的那样,就是黑色涂漆在超低温下将不再是黑色。它们会显示出一种闪闪发光的银色调。沃莱克负责对这种材料的超低温性能进行测试,目的是检验其是否适合用在超高灵敏度的远红外探测设备上,这种设备工作于超低温环境下,用于接收从极遥远宇宙深处发出的微弱的远红外信号。如果这些设备不够“冷却”,设备和望远镜本身的热量产生的红外辐射将干扰和削弱设备的灵敏度。
  戈达德工程师吉姆·塔特尔(Jim?Tuttle)说,黑色材料在飞船设备方面还有一项重要的应用,尤其是对于红外探测设备而言更是这样。材料越“黑”,它便能辐射出去更多的热量。换句话说,超黑色材料,如纳米碳管涂层可以被用于需要去除设备温度的环境下,它能帮助将热量散发进入外太空。这将帮助确保设备的冷却,从而保证对暗弱深空天体信号的敏锐捕捉。
  为了防止黑色涂漆在较长波段上出现吸收性能不理想的情况,工程师们会使用环氧树脂配合导电金属材料,以此制作一种黑色镀膜。这种材料尽管效果尚可,却会增加航天器的重量,这让技术人员们很困扰。而一旦有了这种新的纳米碳管涂层材料,它密度更小,但是性能优越,没有任何添加剂,可以高效吸收各波段光线并进行有效散热。沃莱克说:“这将是一种非常有前景的材料。它非常有效,重量很轻,并且呈现极度黑色。长远来看,它比黑色涂漆的性能要更好。”(晨风)  来源:新浪科技
(责任编辑:王泓漓)
==========================================
人民网&&科技&&&&&
来源:《科学时报》&
我国纳米生物技术获重要进展 研究成果国际领先
  三大重点项目共发表论文200多篇,获发明专利20余项
  日前,“十一五”国家“863”计划“纳米医药制剂、纳米生物材料、纳米生物器件”三大重点项目116个课题实施年度报告大会在长沙举行。记者从会上获悉,2005年至2009年国家“十一五”计划期间,正在实施的上述三大重点项目116个课题中,目前已有1/3的课题取得重要成果,在国内外发表有价值的科研论文200余篇,已出版《纳米生物技术学》等专著9本,出版纳米科学期刊1本,已获发明专利20余项,举办纳米生物技术培训班16次,培养了硕士、博士研究生200多名。我国在纳米生物技术研究方面已处于国际先进水平,部分研究成果达到国际领先水平。据介绍,纳米生物技术是一项涵盖生物学、化学和物理学的综合性跨领域技术,是现代生物工程的重要组成部分,是近年发展起来的一门年轻的、多学科交叉的前沿技术,已形成一个前沿交叉的新兴学科。近10年来,我国已初步形成了以医学、理学、工学多学科专家为核心的纳米生物学科团队。
  2005年由中南大学牵头,103个单位的19名院士、239名医理工学科教授联合建议,设立“纳米医药制剂、纳米生物材料、纳米生物器件”三大重点项目。科技部多次组织研讨会,写成了关于建议纳米生物技术与材料作为“十一五”国家“863”计划重点项目的可行性论证报告,并组织多层面专家对可行性论证报告进行多次评审,编写了关于建议设立纳米生物技术与材料重点专项的可行性建议书。此建议书历经2年20多次论证会后获得通过,被列为“十一五”国家“863”计划纳米生物技术与材料重点项目,分为“纳米医药制剂、纳米生物材料、纳米生物器件”三个项目同时实施。日,该项目在北京获得通过。
  本次大会报告了在纳米药物研究中,载药纳米脂质体的生物效应研究、载药纳米药物的制备取得的阶段性成果。目前,部分纳米药物制剂已申报国家食品药品监督管理局的批文。纳米生物材料研究方面,纳米粒子用作药物载体材料主要有金属纳米颗粒、无机非金属纳米颗粒、生物可降解性高分子纳米颗粒和生物活性纳米颗粒。以生物可降解性高分子纳米粒子为例,目前我国在该领域的研究也有所突破。用于临床早期癌症诊断的纳米器件,前期的工作展示了其灵敏度和准确性优于现有的诊断试剂盒,填补了空白。
  中国医药生物技术协会副会长、卫生部纳米生物技术重点实验室主任、国家“863”计划专家委员会纳米专项主题管理专家张阳德教授说,卫生部纳米生物技术重点实验室在中国较早开展了纳米生物技术的理论和应用研究,在各学科专家的支持合作下,已取得了可喜的成绩。
  这次大会讨论了纳米生物技术实验方法、产品质量标准建立、共享配置等问题。闻立时、姚开泰、何继善、周宏灏、江雷、陈志南等院士,以及来自全国高等院校、科研机构的专家学者共260余人参加了大会。
(责任编辑:王太拓(实习))
=================================================
人民网&&科技&&&&
日08:18& 来源:《科技日报》
纳米医学应用研究遭遇新挑战&&&&
纳米粒子蛋白层可被人体组织蛋白酶L降解
  纳米技术在医学领域的应用是近年来的研究热点,尤其是将纳米粒子作为一种药物传递工具备受关注。但英国科学家的最新研究显示,仿生纳米粒子在进入人体细胞后,其表层附着的蛋白层会被组织蛋白酶L降解。相关研究成果发表在9月22日《ACS纳米》期刊上。
  利用纳米粒子将治疗用蛋白分子递送到细胞内,是纳米技术在医药领域中很有前途的应用之一。纳米粒子往往会覆盖一层分子表层,通常是蛋白质,以决定纳米粒子进入细胞后的作用。而英国利物浦大学的研究人员经研究确认,在很多细胞中,纳米粒子都会进入核内体,而核内体的组织蛋白酶L会降解纳米粒子外裹的至关重要的蛋白层。
  该论文的作者之一,利物浦大学的维奥莱那·赛尔博士表示,利用纳米粒子作为药物传递工具是很有前途的应用,但要使这样的生物疗法奏效,粒子外层蛋白就要保持高度完整,但组织蛋白酶L的降解作用将会致使药效减弱。
  这一发现无疑对现行的纳米技术医学应用研究提出了新的挑战,意味着未来任何细胞内纳米元件的设计都要考虑到组织蛋白酶L的降解作用,在设计时要么使其能绕过核内体,要么使其具有抑制该种蛋白酶的成分。该研究项目的首席研究员,利物浦大学的拉斐尔·利维博士表示,他们现在可以快速、大量地测量纳米粒子的位置和状态,这有助于目标的实现。
  对此一发现,资助该项研究的英国生物技术和生物科学研究委员会的首席执行官道格拉斯·凯尔教授评论说:“纳米技术是一种十分吸引人的技术,有可能会推动各种技术的发展,其在生物学领域中的一些应用已表明了很好的发展前景,例如利用纳米技术引导治疗蛋白和DNA到特定位置以治疗肿瘤。而诸如利物浦大学进行的基础研究,有助于推动纳米医学不断向前,以确保它对人类健康真正有益,确保这一学科有一个真正美好的未来。”(刘海英)(责任编辑:陈丹(实习))
以上网友发言只代表其个人观点,不代表新浪网的观点或立场。

我要回帖

更多关于 纳米材料的特殊性质 的文章

 

随机推荐