PID集线器的应用场合合

plc应用场合
查看: 477|
摘要: 如今,PLC不仅用于开关量控制,还用于模拟量及数字量的控制,可采集与存储数据,还可对控制系统进行监控;还可联网、通讯,实现大范围、跨地域的控制与管理。PLC已日益成为工业控制装置家族中一个重要的角色。
&&& 最初,主要用于开关量的逻辑控制。随着PLC技术的进步,它的应用领域不断扩大。如今,PLC不仅用于开关量控制,还用于模拟量及数字量的控制,可采集与存储数据,还可对控制系统进行监控;还可联网、通讯,实现大范围、跨地域的控制与管理。PLC已日益成为工业控制装置家族中一个重要的角色。&&& 1、用于开关量控制&&& PLC控制开关量的能力是很强的。所控制的入出点数,少的十几点、几十点,多的可到几百、几千,甚至几万点。由于它能联网,点数几乎不受限制,不管多少点都能控制。&&& 所控制的逻辑问题可以是多种多样的:组合的、时序的;即时的、延时的;不需计数的,需要计数的;固定顺序的,随机工作的;等等,都可进行。&&& PLC的硬件结构是可变的,软件程序是可编的,用于控制时,非常灵活。必要时,可编写多套,或多组程序,依需要调用。它很适应于工业现场多工况、多状态变换的需要。&&& 用PLC进行开关量控制实例是很多的,冶金、机械、轻工、化工、纺织等等,几乎所有工业行业都需要用到它。目前,PLC首用的目标,也是别的控制器无法与其比拟的,就是它能方便并可靠地用于开关量的控制。&&& 2、用于模拟量控制&&& 模拟量,如电流、电压、温度、压力等等,它的大小是连续变化的。工业生产,特别是连续型生产过程,常要对这些物理量进行控制。&&& 作为一种工业控制装置,PLC若不能对这些量进行控制,那是一大不足。为此,各PLC厂家都在这方面进行大量的开发。目前,不仅大型、中型机可以进行模拟量控制,就是小型机,也能进行这样的控制。&&& PLC进行模拟量控制,要配置有模拟量与数字量相互转换的A/D、D/A单元。它也是I/O单元,不过是特殊的I/O单元。&&& A/D单元是把外电路的模拟量,转换成数字量,然后送入PLC。D/A单元,是把PLC的数字量转换成模拟量,再送给外电路。&&& 作为一种特殊的I/O单元,它仍具有I/O电路抗干扰、内外电路隔离,与输入输出(或内部继电器,它也是PLC工作内存的一个区。可读写)交换信息等等特点。&&& 这里的A/D中的A,多为电流,或电压,也有为温度。D/A中的A,多为电压,或电流。电压、电流变化范围多为0~5V,0~10V,4~20mA。有的还可处理正负值的。&&& 这里的D,小型机多为8位二进制数,中、大型多为12位二进制数。&&& A/D、D/A有单路,也有多路。多路占的输入输出继电器多。&&& 有了A/D、D/A单元,余下的处理都是数字量,这对有信息处理能力的PLC并不难。中、大型PLC处理能力更强,不仅可进行数字的加、减、乘、除,还可开方,插值,还可进行浮点运算。有的还有PID指令,可对偏差制量进行比例、微分、积分运算,进而产生相应的输出。计算机能算的它几乎都能算。&&& 这样,用PLC实现模拟量控制是完全可能的。控制的单位值可小到212分之一的测量程值,多数也是足够的。&&& PLC进行模拟量控制,还有A/D、D/A组合在一起的单元,并可用PID或模糊控制算法实现控制,可得到很高的控制质量。&&& 用PLC进行模拟量控制的好处是,在进行模拟量控制的同时,开关量也可控制。这个优点是别的控制器所不具备的,或控制的实现不如PLC方便。&&& 当然,若纯为模拟量的系统,用PLC可能在性能价格比上不如用调节器。这也是应当看到的。&&& 3、用于运动控制&&& 实际的物理量,除了开关量、模拟量,还有运动控制。如机床部件的位移,常以数字量表示。&&& 运动控制,有效的办法是NC,即数字控制技术。这是50年代诞生于美国的基于计算机的控制技术。当今已很普及,并也很完善。目前,先进国家的金属切削机床,数控化的比率已超过40%~80%,有的甚至更高。&&& PLC也是基于计算机的技术,并日益完善。故它也完全可以用于数字量控制。&&& PLC可接收计数脉冲,频率可高达几k到几十k赫兹。可用多种方式接收这脉冲,还可多路接收。有的PLC还有脉冲输出功能,脉冲频率也可达几十k。有了这两种功能,加上PLC有数据处理及运算能力,若再配备相应的(如旋转编码器)或脉冲伺服装置(如环形分配器、功放、),则完全可以依NC的原理实现种种控制。&&& 高、中档的PLC,还开发有NC单元,或运动单元,可实现点位控制。运动单元还可实现曲线插补,可控制曲线运动。所以,若PLC配置了这种单元,则完全可以用NC的办法,进行数字量的控制。&&& 新开发的运动单元,甚至还发行了NC技术的编程语言,为更好地用PLC进行数字控制提供了方便。&&& 4、用于数据采集&&& 随着PLC技术的发展,其数据存储区越来越大。如德维森公司的PLC,其数据存储区(DM区)可达到9999个字。这样庞大的数据存储区,可以存储大量数据。&&& 数据采集可以用计数器,累计记录采集到的脉冲数,并定时地转存到DM区中去。&&& 数据采集也可用A/D单元,当模拟量转换成数字量后,再定时地转存到DM区中去。&&& PLC还可配置上小型打印机,定期把DM区的数据打出来。&&& PLC也可与计算机通讯,由计算机把DM区的数据读出,并由计算机再对这些数据作处理。这时,PLC即成为计算机的数据终端。&&& 用户曾使用PLC,用以实时记录用户用电情况,以实现不同用电时间、不同计价的收费办法,鼓励用户在用电低谷时多用电,达到合理用电与节约用电的目的。&&& 5、用于信号监控&&& PLC自检信号很多,内部器件也很多,多数使用者未充分发挥其作用。&&& 其实,完全可利用它进行PLC自身工作的监控,或对控制对象进行监控。&&& 这里介绍一种用PLC定时器作看门狗,对控制对象工作情况进行监控的思路。&&& 如用PLC控制某运动部件动作,看施加控制后动作进行了没有,可用看门狗办法实现监控。(/版权所有)具体作法是在施加控制的同时,令看门狗定时器计时。如在规定的时间内动作完成,即定时器未超过警戒值的情况下,已收到动作完成信号,则说明控制对象工作正常,无需报警。&&& 若超时,说明不正常,可作相应处理。&&& 如果控制对象的各重要控制环节,都用这样一些看门狗“看”着,那系统的工作将了如指掌,出现了问题,卡在什么环节上也很好查找。&&& 还有其它一些监控工作可做。对一个复杂的控制系统,特别是自动控制系统,监控以至进一步能自诊断是非常必要的。它可减少系统的故障,出了故障也好查找,可提高累计平均无故障运行时间,降低故障修复时间,提高系统的可靠性。&&& 6、用于联网、通讯&&& PLC联网、通讯能力很强,不断有新的联网的结构推出。&&& PLC可与个人计算机相连接进行通讯,可用计算机参与编程及对PLC进行控制的管理,使PLC用起来更方便。&&& 为了充分发挥计算机的作用,可实行一台与管理多台PLC,多的可达32台。也可一台PLC与两台或更多的计算机通讯,交换信息,以实现多地对PLC控制系统的监控。&&& PLC与PLC也可通讯。可一对一PLC通讯。可几个PLC通讯。可多到几十、几百。&&& PLC与智能仪表、智能执行装置(如),也可联网通讯,交换数据,相互操作。&&& 可联接成远程控制系统,系统范围面可大到10公里或更大。&&& 可组成局部网,不仅PLC,而且高档计算机、各种智能装置也都可进网。可用总线网,也可用环形网。网还可套网。网与网还可桥接。联网可把成千上万的PLC、计算机、智能装置组织在一个网中。&&& 网间的结点可直接或间接地通讯、交换信息。&&& 联网、通讯,正适应了当今计算机集成制造系统(CIMS)及智能化工厂发展的需要。它可使工业控制从点(Point)、到线((Line)再到面(Aero),使设备级的控制、生产线的控制、工厂管理层的控制连成一个整体,进而可创造更高的效益。这个无限美好的前景,已越来越清楚地展现在我们这一代人的面前。&&& 以上几点应用是着重从质上讲的。从量上讲,PLC有大、有小。所以,它的控制范围也可大、可小。小的只控制一个设备,甚至一个部件,一个站点;大的可控制多台设备,一条生产线,以至于整个工厂。可以说,工业控制的大小场合,都离不开PLC。&&& 一般讲,工业生产过程可分为两种类型;连续型生产过程(如化学工业)及非连续型,即离散型生产过程(如业)。前者生产对象是连续的,分不出件的;后者为离散的,一件件的。由于PLC有上述几个方面的应用,而且,控制的规模又可大、可小,所以,这两种类型的生产过程都有其用武之地。&&& 事实上,PLC已广泛应用于工业生产的各个领域。从行业看,冶金、机械、化工、轻工、食品、建材等等,几乎没有不用到它的。不仅工业生产用它,一些非工业过程,如楼宇自动化、控制也用到它。农业的大棚环境参数调控,水利灌溉也用到它。&&& PLC能有上述几个范围广泛的应用,是PLC自身特点决定的,也是PLC技术不断完善的结果。
上一篇:下一篇:
Powered by &
这里是—这里可以学习 —这里是。
栏目导航:经典PID控制及应用体会总结
PID控制原理
PID是一种线性控制器,它根据给定值rin(t)与实际输出值yout(t)构成控制方案:
重点关注相关算法是如何对偏差进行处理的:
PID控制器各校正环节的作用如下:
比例环节: 成比例地反映控制系统的偏差信号e(t),偏差一旦产生,控制器立即产生控制作用,以减小偏差。
积分环节:主要用于消除静差,提高系统的无差度。积分作用的强弱取决于积分时间常数T,T越大,积分作用越弱,反之则越强。
微分环节:反映偏差信号的变化趋势,并能在偏差信号变得太大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减少调节时间。
PID控制算法分类
位置式PID控制算法
原理及公式化描述
按模拟PID控制算法,以一系列的采样时刻点kT代表连续时间t,以矩形法数值积分近似代替积分,以一阶后向差分近似代替微分,即:
可得离散表达式:
式中,ki=kp/Ti,kd=kp×TD, T为采样周期,K为采样序号,k=1, 2, ……, e (k-1)和e (k)分别为第(k-1)和第k时刻所得的偏差信号。
位置式PID控制系统
本方法可实现D/A及A/D的功能,符合数字实时控制的真实情况,计算机及DSP的实时PID控制都属于这种情况。
增量式PID控制算法
当执行机构需要的是控制量的增量(例如驱动步进电机)时,应采用增量式PID控制。根据递推原理可得:
增量式PID的算法:
积分分离PID控制算法
在普通PID控制中,引入积分环节的目的主要是为了消除静差,提高控制精度。但在过程的启动、结束或大幅度增减设定时,短时间内系统输出有很大的偏差,会造成PID运算的积分积累,致使控制量超过执行机构可能允许的最大动作范围对应的极限控制量,引起系统较大的振荡,这在生产中是绝对不允许的。
积分分离控制基本思路是,当被控量与设定值偏差较大时,取消积分作用,以免由于积分作用使系统稳定性降低,超调量增大;当被控量接近给定量时,引入积分控制,以便消除静差,提高控制精度
具体实现的步骤是:
1、根据实际情况,人为设定阈值ε>0;
2、当∣e (k)∣>ε时,采用PD控制,可避免产生过大的超调,又使系统有较快的响应;
3、当∣e (k)∣≤ε时,采用PID控制,以保证系统的控制精度。
体现的思想就是分段控制
积分分离控制算法可表示为:
式中,T为采样时间,β项为积分项的开关系数
其算法流程:
抗积分饱和PID控制算法
积分饱和现象
所谓积分饱和现象是指若系统存在一个方向的偏差,PID控制器的输出由于积分作用的不断累加而加大,从而导致u(k)达到极限位置。此后若控制器输出继续增大,u(k)也不会再增大,即系统输出超出正常运行范围而进入了饱和区。一旦出现反向偏差,u(k)逐渐从饱和区退出。
 进入饱和区愈深则退饱和时间愈长。此段时间内,系统就像失去控制。这种现象称为积分饱和现象或积分失控现象。
执行机构饱和特性:
抗积分饱和算法
  在计算u(k)时,首先判断上一时刻的控制量u(k-1)是否己超出限制范围。若超出,则只累加负偏差;若未超出,则按普通PID算法进行调节。
这种算法可以避免控制量长时间停留在饱和区。
梯形积分PID控制算法
在PID控制律中积分项的作用是消除余差,为了减小余差,应提高积分项的运算精度,为此,可将矩形积分改为梯形积分。
梯形积分的计算公式为:
变速积分PID控制算法
变速积分的基本思想是,设法改变积分项的累加速度,使其与偏差大小相对应:偏差越大,积分越慢;反之则越快,有利于提高系统品质。
设置系数f(e(k)),它是e(k)的函数。当∣e(k)∣增大时,f减小,反之增大。变速积分的PID积分项表达式为:
系数f与偏差当前值∣e(k)∣的关系可以是线性的或是非线性的,例如,可设为:
变速积分PID算法为:
这种算法对A、B两参数的要求不精确,参数整定较容易
不完全微分PID控制算法
在PID控制中,微分信号的引入可改善系统的动态特性,但也易引进高频干扰,在误差扰动突变时尤其显出微分项的不足。若在控制算法中加入低通滤波器,则可使系统性能得到改善
不完全微分PID的结构如下图。左图将低通滤波器直接加在微分环节上,右图是将低通滤波器加在整个PID控制器之后
不完全微分算法:
Ts为采样时间,Ti和Td为积分时间常数和微分时间常数,Tf为滤波器系数。
微分先行PID控制算法
微分先行PID控制的特点是只对输出量yout(k)进行微分,而对给定值rin(k)不进行微分。这样,在改变给定值时,输出不会改变,而被控量的变化通常是比较缓和的。这种输出量先行微分控制适用于给定值rin(k)频繁升降的场合,可以避免给定值升降时引起系统振荡,从而明显地改善了系统的动态特性。
结构图如下:
带死区的PID控制算法
在计算机控制系统中,某些系统为了避免控制作用过于频繁,消除由于频繁动作所引起的振荡,可采用带死区的PID控制算法,控制算式为:
式中,e(k)为位置跟踪偏差,e0是一个可调参数,其具体数值可根据实际控制对象由实验确定。若e0值太小,会使控制动作过于频繁,达不到稳定被控对象的目的;若e0太大,则系统将产生较大的滞后。
控制算法流程:
具体接触到实际中的应用有过两次的体会:
一是利用数字PID控制算法调节直流电机的速度,方案是采用光电开关来获得电机的转动产生的脉冲信号,单片机(MSP430G2553)通过测量脉冲信号的频率来计算电机的转速(具体测量频率的算法是采用直接测量法,定时1s测量脉冲有多少个,本身的测量误差可以有0.5转加减),测量的转速同给定的转速进行比较产生误差信号,来产生控制信号,控制信号是通过PWM调整占空比也就是调整输出模拟电压来控制的(相当于1位的DA,如果用10位的DA来进行模拟调整呢?效果会不会好很多?),这个实验控制能力有一定的范围,只能在30转/秒和150转/秒之间进行控制,当给定值(程序中给定的速度)高于150时,实际速度只能保持在150转,这也就是此系统的最大控制能力,当给定值低于30转时,直流电机转轴实际是不转动的,但由于误差值过大,转速会迅速变高,然后又会停止转动,就这样循环往复,不能达到控制效果。
根据实测,转速稳态精度在正负3转以内,控制时间为4到5秒。实验只进行到这种程度,思考和分析也只停留在这种深度。
二是利用数字PID控制算法调节直流减速电机的位置,方案是采用与电机同轴转动的精密电位器来测量电机转动的位置和角度,通过测量得到的角度和位置与给定的位置进行比较产生误差信号,然后位置误差信号通过一定关系(此关系纯属根据想象和实验现象来拟定和改善的)转换成PWM信号,作为控制信号的PWM信号是先产生对直流减速电机的模拟电压U,U来控制直流减速电机的力矩(不太清楚),力矩产生加速度,加速度产生速度,速度改变位置,输出量是位置信号,所以之间应该对直流减速电机进行系统建模分析,仿真出直流减速电机的近似系统传递函数,然后根据此函数便可以对PID的参数进行整定了。
两次体会都不是特别清楚PID参数是如何整定的,没有特别清晰的理论指导和实验步骤,对结果的整理和分析也不够及时,导致实验深度和程度都不能达到理想效果。
以后的学习要保持咬定青山不放松的劲头,不把一件事情弄透彻绝不放手!PID控制的学习可以继续进行,看看如何通过仿真来更加深入的理解其过程。
实际上以上内容是日星期二那天我总结的技术报告,现在整理成博客,以供大家参考。
本文已收录于以下专栏:
相关文章推荐
最近捣鼓ROS的时候,发现github上有人用python实现了PID,虽然可能执行效率不高,但是用python写工具的时候还是很方便的。从github上把代码搬下来,简单分析一下
Kp: 比例系数 ----- 比例带P:输入偏差信号变化的相对值与输出信号变化的相对值之比的百分数表示  (比例系数的倒数)
T:采样时间
Ti: 积分时间
Td: 微分时间
温度T: P=20~...
程序员升职加薪指南!还缺一个“证”!
CSDN出品策划程序员9月规划,专为码农的升职加薪保驾护航,程序员的捷径,你get到了吗?听说阅读了这篇文章的人,都已实现了小梦想~快来揭秘!
很多同学都不清楚PID是个什么东西,因为很多不是自动化的学生。他们开口就要资料,要程序。这是明显的学习方法不对,起码,首先,你要理解PID是个什么东西。本文以通俗的理解,以小车纵向控制举例说明PID的...
PID控制算法转自:/forum.php?mod=viewthread&tid=469253本文以通俗的理解,以小车纵向控制举例说明PID的一些理解。
PID控制算法的C语言实现一 PID算法原理
   最近两天在考虑一般控制算法的C语言实现问题,发现网络上尚没有一套完整的比较体系的讲解。于是总结了几天,整理一套思路分享给大家。
   在工业应用中P...
先发几个测试图,目前可以实现几类PID控制算法的模拟、参数整定和数据记录,并结合office自动完成数据的整理和分析。
随后的版本将结合下位机进行联调,实现控制的可视化。
软件需要NET3.0支持...
AQ的PID相关资料,我添加了些《机械控制工程基础》中的内容。
PID包括比例P,积分I,微分D控制器。
使用PID控制器,你需要以下6个基本元素:
Error(偏差):你的期望值...
如何通俗地解释 PID 参数整定?(/question//answer/)
作者:忘川孤帆
链接:https://ww...
P 代表比例,I 代表积分,D 代表微分
举个形象的例子,一列即将到站的火车在快要到达站点的时候会切断输出动力,让其凭借惯性滑行到月台位置。假如设置火车以 100km/h 的速度在站前 1km 的地...
以下内容是我在网上搜集后,找了三篇总结的比较好的博客,其中有以公式理论讲解的、伪算法实现与直流无刷电机原理(PID)。
PID控制算法  (公式理论讲解)
...
您举报文章:
举报原因:
原文地址:
原因补充:
(最多只允许输入30个字)PID控制器比例、积分、微分控制规律优缺点及适用场合
PID控制器综合了比例、积分和微分控制规律,自动控制网小编在本文总结了各种控制规律的特点及使用场合,供大家比较使用。
PID控制器综合了比例、积分和微分控制规律,网小编在本文总结了各种控制规律的特点及使用场合,供大家比较使用。 本文来自
比例控制的输出信号与输入偏差成比例关系。偏差一旦产生,控制器立即产生控制作用以减小偏差,是最基本的控制规律。当仅有比例控制时系统输出存在稳态误差。
对于一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个系统是有差系统。为了消除稳态误差,必须引入积分控制规律。积分作用是对偏差进行积分,随着时间的增加,积分输出会增大,使稳态误差进一步减小,直到偏差为零,才不再继续增加。因此,采用积分控制规律的主要目的就是使系统无稳态误差,提高系统的准确度。积分作用的强弱取决于积分时间常数TI,TI越大,积分作用越弱,反之则越强。
由于积分引入了相位滞后,使系统稳定性变差。因此,积分控制一般不单独使用,通常结合比例控制构成比例积分(PI)控制器。
在微分控制中,控制器的输出与输入偏差信号的微分(即偏差的变化率)成正比关系。可减小超调量,并能在偏差信号的值变得太大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减少调节时间。
微分控制反映偏差的变化率,只有当偏差随时间变化时,微分控制才会对系统起作用,而对无变化或缓慢变化的对象不起作用。因此微分控制在任何情况下不能单独与被控制对象串联使用。 本文来自
需要说明的是,对于一台实际的PID控制器,如果把微分时间TD调到零,就成为一台比例积分控制器;如果报积分时间TI放大到最大,就成了一台比例微分控制器;如果把微分时间调到零,同时把积分时间放到最大,就成了一台纯比例控制器。
由于PID控制规律综合了比例、积分、微分三种控制规律的优点,具有较好的控制性能,因而应用范围更广。PID控制器可以调整的参数是KP、TI、TD。适当选取这三个参数的数值,可以获得较好的控制质量,实际应用过程中很多工程技术人员对PID参数整定不是很数量,这是应选择自整定功能强和控制算法先进的人工智能调节器,方便获得最佳的PID参数。在选择PID控制规律时,应根据被控对象的动态、静态特性以及实际控制要求和控制品质来选择。&
相关内容:
1.开环控制系统 指系统的输出端与输入端不存在反馈回路,输出量对系统的控制作用不发...扫二维码下载作业帮
2亿+学生的选择
下载作业帮安装包
扫二维码下载作业帮
2亿+学生的选择
在什么场合下选用比例(P)、比例积分(PI)、比例积分微分(PID)调节规律?
小超制作135
扫二维码下载作业帮
2亿+学生的选择
比例调节规律适用于负荷变化较小,纯滞后不太大而工艺要求不高又允许有余差的调节系统.比例积分调节规律适用于对象调节通道时间常数较小、系统负荷变化较大(需要消除干扰引起的余差)、纯滞后不大(时间常数不是太大)而被调参数不允许与给定值有偏差的调节系统.比例积分微分调节规律适用于容量滞后较大,纯滞后不太大,不允许有余差的对象.
其他类似问题
扫描下载二维码

我要回帖

更多关于 交换机的应用场合 的文章

 

随机推荐