spalling和delamination 翻译的区别

TribologyInternational73(7
ContentslistsavailableatScienceDirect
TribologyInternational
journalhomepage:/locate/triboint
Competingfailuremechanismandlifepredictionofplasmasprayedcompositeceramiccoatinginrolling–slidingcontactcondition
Jia-jieKanga,Bin-shiXub,Hai-douWanga,b,n,Cheng-biaoWanga
SchoolofEngineeringandTechnology,ChinaUniversityofGeosciences,Beijing100083,China
NationalKeyLabforRemanufacturing,AcademyofArmoredForcesEngineering,Beijing100072,China
articleinfo
Articlehistory:
Received11November2013Receivedinrevisedform11January2014
Accepted17January2014
Availableonline28January2014Keywords:
PlasmaspraycoatingsRolling–sliding
Competingfailuremechanism
ThecompetingfailuremechanismandlifepredictionofplasmasprayedAl2O3-40wt%.TiO2compositeceramiccoatingsunderrolling-slidingcontactconditionswereinvestigatedonadouble-rolltestmachine.Themaximumshearstressdistributioninthecoatingswasanalyzedbythefiniteelementmethod.Weibullfunctionwasusedtocharacterizethelifedistributionofthecoatingsunderdifferentrolling–slidingcontactconditions.Thefailuremodesweremainlysurfaceabrasionandadhesivedelaminationduringthisinvestigation.Themechanismofthecompetingbetweensurfaceabrasionandadhesivedelaminationwasdiscussedindetail.
&2014ElsevierLtd.Allrightsreserved.
1.Introduction
ThermalsprayedAl2O3-40wt%.TiO2compositeceramiccoat-ings(AT40coatings)havewidelybeenusedtoimprovethesurfacepropertiesofmechanicalcomponentsfortheirexcellenthigh-temperatureresistance,corrosionresistanceandwearresistance[1,2].Supersonicplasmasprayingisasuitablemethodforprepar-ingAT40compositeceramiccoatingsduetothehighflametemperatureandfastparticlevelocity[3–6].
Wearandrollingcontactfatigue(RCF)arethemostcommonfailuremodesofAT40coatingsunderrolling–slidingcontactcondition[7,8].Wearfailurewhichisintheformofsurfacematerialremovaloftenoccursunderslidingcontactcondition.RCFfailureisapersistentdamageprocesswhichinvolvescrackingorpitting/delaminationlimitedtothesubsurfaceofmaterialsunderrollingcontactcondition.Therefore,itcanbeconsideredthatwearandRCFsimultaneouslyoccurandinfluenceeachotherunderrolling-slidingcontactcondition.TheRCFbehaviorsofthermalsprayedcoatingshavewidelybeeninvestigated[9,10].Theinfluenceofmainparameters(i.e.contactstress,surfaceroughness,coatingthickness,bondingstrength,rollingvelocity,andcoatinghardness,etc.)ontheRCFfailuremechanismandRCFliveswerediscussed[11–14].However,mechanicalcomponentsarenotusuallyunderpurerollingcontactbutrolling–sliding
contact[15,16].Onlyafewresearchesonthethermalsprayedcoatingsunderrolling–slidingcontactconditionweredonetoanalyzetheRCFfailureprocess[17],buttheslipratiosinthoseresearcheswerelimitedtonolargerthan50%.Therefore,themechanismofcompetingbetweenwearandRCFofthermalsprayedcoatingsunderrolling-slidingcontactconditionswithlargerange(0$75%)shouldbeinvestigatedindetail.
Inthepresentresearch,thecompetingfailuremechanismandlifeevolutionlawofplasmasprayedAT40compositeceramiccoatingsunderrolling–slidingcontactconditionswiththeslipratiosofR1 1/4 0%,R2 1/4 25%,R3 1/4 50%,andR4 1/4 75%wereindetailstudiedonadouble-rolltestmachine.2.Experimentaltestprocedure2.1.Coatingdeposition
TheAT40coatingsandNi/AlbondingcoatingsweredepositedonthetemperedAISI1045steelrollersusingsupersonicplasmaspraytechnology.TheplasmasprayparametersarelistedinTable1.Thesubstratesurfacewassandblastedandthenpreheatedtoabout2001Cbeforespraying.
Thecoatingqualityisgreatlyaffectedbytemperatureandvelocityofmeltedparticles,whichweremonitoredbySprayWatch-2imonitor.ThetemperatureofmeltedparticleswasashighasaboutC.Duetothemechanicalcompres-sioneffectofthenozzle,thevelocityofparticlesatthedistanceof100mmfromthenozzlewasabout460$500m/s[9],whichismuchhigherthanthatusingairplasmaspraytechnology(about
Correspondingauthorat:SchoolofEngineeringandTechnology,ChinaUniversityofGeosciences,Beijing100083,China.Tel.:?;fax:?.
E-mailaddress:(H.-d.Wang).X/$-seefrontmatter&2014ElsevierLtd.Allrightsreserved.
http://dx.doi.org/10.1016/j.triboint.
J.-j.Kangetal./TribologyInternational73(7129
Plasmasprayparameters.
Al2O3-40wt%TiO2compositeceramiccoatingArgongasflow(m3/h)2.8Hydrogengasflow(m3/h)0.4Nitrogengasflow(m3/h)0.6Sprayingcurrent(A)440Sprayingvoltage(V)110Sprayingdistance(mm)100Powderfeedrate(g/min)30
Ni/AlbondingcoatingArgongasflow(m3/h)3.4Hydrogengasflow(m3/h)0.3Nitrogengasflow(m3/h)0.6Sprayingcurrent(A)320Sprayingvoltage(V)140Sprayingdistance(mm)150Powderfeedrate(g/min)
200$300m/s).Highvelocityofthemeltedparticlescanincreasetheimpactenergyoftheparticlesandimprovethebondingstrengthbetweenthecoatingandsubstrate.ItisgenerallyacceptedthatthequalityofAT40compositeceramiccoatingbenefitsfromthehightemperatureandvelocityofthemeltedparticles.
ThesurfaceandcrosssectionmorphologiesofplasmasprayedAT40coatingareshowninFig.1.Thecoatingsurfacewasrelativelysmooth,andalmostnounmeltedparticleormicrocrackwasobserved,asshowninFig.1(a).Fig.1(b)showsthedensemicro-structureofthecrosssectionofAT40coating.Onlyafewmicro-poresexistedinthecoating.TheNi/Albondingcoatingwithathicknessof80μmcanreducetheelasticmismatchbetweenthesubstrateandcompositeceramiccoatingtoimprovethebondingstrengthsignificantly.ThethicknessofAT40coatingwasabout400μm.Thebondingstrengthmeasuredbythedualtensiletestmethodwasashighas35MPa.Theporositymeasuredbytheimageanalysismethod(IAM)[18]wasabout1.12%.2.2.Experimentalconditionsandprocedures
AnovelRCF/wearmultifunctionaltestmachinewasusedtoinvestigatetheRCF/wearcompetingfailuremechanismofplasmasprayedAT40coatingunderdifferentrolling–slidingcontactcon-ditions.ThetestmachinewasindetaildescribedinRef.[19].Theprominentcharacteristicofthetestmachineisthattheslipratiobetweentherollersisabletochangefrom0%to100%,sincetherollerswereindividuallydrivenbyamotor.Thetestswereperformedunderfourdifferentslipratiosof0%,25%,50%,and75%.ThevelocitiesofthetestrollersandstandardrollersareshowninTable2.
Fig.2showstheschematicofthetestrollerandstandardroller.Theloadwasappliedtothetestroller.ThefailureprocessoftheAT40coatingsprayedonthetestrollerwasmonitoredbyanacousticemission(AE)probeforitssensitivitytoplasticdeforma-tionandbrittlefractureofmaterials.ThethresholdvalueofAEsignalswassetas60dB,andthefailurepointwasdefinedwhentheAEcountwashigherthan350.Oncethefailurepointwasjudged,thetestmachinewouldstopautomaticallyandthefailuremorphologieswereimmediatelysavedforanalyzing.
ThematerialofstandardrollerwastemperedAISI52100steel.ThesurfaceroughnessvaluesforthetestrollerandstandardrollermeasuredbyusingOlympusOLS4000laser3Dmicroscopewere0.6270.01μmand0.3670.01μm,respectively.Themicro-hardnessvaluesofthetestrollerandstandardrollermeasuredbyaVickers-hardnesstesterwiththeloadof100gwere910HV0.1and770HV0.1,respectively.
Fig.1.SurfaceandcrosssectionmorphologiesoftheAT40coating.(a)Surfacemorphology(b)Crosssectionmorphology.
Thevelocitiesofthetestrollersandstandardrollers.Slipratio
R1 1/4 0%R2 1/4 25%R3 1/4 50%R4 1/4 75%Standardroller(m/s)0.80.628Testroller(m/s)
ThecompetinglifetestsforAT40coatingswereperformedunderafixedcontactstressof0.75GPa.ThecorrespondingloadwascalculatedbytheHertzequation(Eq.(1)).sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffis 1/4 F?∑ρ?
wheresmaxisthemaximumcontactstress,andthevalueis0.75GPa;FListhelengthofthecontactline,and
130J.-j.Kangetal./TribologyInternational73(7
Fig.2.Schematicofthetestrollerandstandardroller.
thevalueis5υ1andυ2arePoissonsratiosofthetestroller(AT40coating)andstandardroller(AISI52100steel),respectively,andbothofthevaluesare0.3;E1andE2aretheelasticmodulusofthetestrollerandstandardroller,respectively,andthevaluesofE1andE2are173GPaand219GPa,Σρisthesumofprincipalcurvaturesofthetestrollerandstandardroller,andthevalueis1/15mm?1.
3.Resultsanddiscussion
3.1.Failuremodesandcompetinglives
ThefailuremodesandcompetinglivesofAT40coatingunderdifferentslipratiosareshowninTable3.Thefailuremodesunderthepurerollingcontactcondition(slipratioR1 1/4 0%)weremainlydelamination,spalling,andsurfaceabrasion.However,spallingfailurehardlyoccurredunderrolling–slidingcontactcondition(slipratioR2 1/4 25%,R3 1/4 50%,andR4 1/4 75%).Inaddition,theprob-abilityofdelaminationfailureincreasedwiththeslipratioincreasing.
3.2.Lifepredictionplots
WeibullfunctionproposedbyW.Weibull[20]haswidelybeenusedtocharacterizetheprobabilitydistribution.ManyresearchesindicatethatWeibullfunctioncanwellcharacterizetheRCFlifeofmechanicalparts[21].
Two-parameterWeibullfunction(Eq.(2))wasusedtoanalyzethecompetinglifedataofAT40coatings.P?N? 1/4 1?e??N=Na?
whereP(N)istNNathecharacteristiclifeunderthefailureprobabilityof63.2%;βtheslopeofWeibullcurve.βdefinedastheshapeparameterofWeibullfunctioncanreflectthedispersionofthefunction.Thehighertheβ,thesmallerthedispersionofthefunction.
Thetwoparameters(Naandβ)ofWeibullfunctionwereevaluatedusingthemaximumlikelihoodestimation(MLE)method[22],asshowninEqs.(3)and(4).∑ni 1/4 1Niβ
∑ni 1/4 1N?
i 1/4 1?3 !1=β
?4ThevaluesofNaandβcalculatedbyEqs.(2)and(3)areshowninTable4.
ThevaluesshowninTable4weresubstitutedforNaandβinEq.(2)toobtaintheWeibullcurvesofcompetinglivesofAT40coatingspecimens,asshowninFig.3.Thehorizontalcoordinateandlongitudinalcoordinateofthecurvesarenumberofcyclesandpredictedfailureprobability,respectively.Therefore,theWeibullcurvescanbeusedasP–NcurvestocharacterizetheevolutionlawofcompetinglivesofAT40coatingunderdifferentslipratios.ItcanbeseenfromFig.3thatthebiggertheslipratio,theshorterthelife.Inaddition,thevalueofβincreaseswiththeslipratio.Itcanbeconcludedthatthebiggertheslipratio,thelargerthedispersionofthecompetinglives.
petingfailuremechanismunderrolling-slidingcontact3.3.1.Subsurfaceshearstresses
Itiswidelyacceptedthatthedelaminationfailureofcoatingscausedbysubsurfacecrackingisrelatedtomaximumshearstress(MSS)[9,10].Therefore,therelationbetweenshearstressesandcompetingfailureshouldbeindetaildiscussedbasedontheresultsobtainedbythefiniteelementmethod(FEM).IntheFEMmodel,thethicknessofAT40coatingandthecontactstressweredefinedas400μmand0.75GPa,respectively.Theelasticmodulusofthetestrollerandstandardrollerare173GPaand219GPa,respectively.Poissonsratiosareboth0.3.Thecharacteristicpara-metertodistinguishthecontactconditionswasfrictioncoefficient.Whentheslipratiowas0%,thetestwasunderpurerollingcontactconditionwithoillubricant.Therefore,thefrictioncoefficientundertheslipratioof0%wasdefinedaszero(f1 1/4 0).However,whentheslipratiosaremuchlargerthan0%,thecorrespondingfrictioncoefficientswouldhigherthan0forthefrictioneffectbetweentherollersunderrolling-slidingcontactcondition.Thefrictioncoefficientsweremonitoredbythemeasurementandcontrolsystemofthetestmachine.Theaveragefrictioncoeffi-cientsduringthestablestageunderdifferentslipratios(favg0.082,favgavg
2 1/4 3 1/4 0.097,andf4 1/4 0.118)werechosenasthecharacteristicparametersoftheFEMmodel.
ThedistributionofMSSwithintheAT40coatingunderdiffer-entslipratiosareshowninFig.4.ThepeakvaluesofMSSunderdifferentcontactconditionsalllocatedinsidethecoating.Bothofthepeakvalueandthedistanceofthepeakvaluepositionfromcoating/substrateinterfaceslightlyincreasedwiththeslipratiosincreasing.However,thevaluesofMSSonthecoatingsurfaceunderdifferentslipratiosexhibitedsignificantdifference,asshowninFig.5.ThevaluesofMSSundertheslipratiosofR1 1/4 0%,R2 1/4 25%,R3 1/4 50%,andR4 1/4 75%were0MPa,46
猜你喜欢的内容。。。
…… competing failure mechanism and life prediction of plasma sprayed composite ceramic coating in_自然科学_专业资料。competing failure mechanism and life ......
看过本文章的还看过。。。
您可能感兴趣。。。
最新浏览记录君,已阅读到文档的结尾了呢~~
Bioinertness and fracture toughness evaluation of the monoclinic zirconia surface film of Oxinium femoral head by Raman and cathodoluminescence spectroscopy
扫扫二维码,随身浏览文档
手机或平板扫扫即可继续访问
Bioinertness and fracture toughness evaluation of the monoclinic zirconia surface film of Oxinium femoral head by Raman and cathodoluminescence spectroscopy
举报该文档为侵权文档。
举报该文档含有违规或不良信息。
反馈该文档无法正常浏览。
举报该文档为重复文档。
推荐理由:
将文档分享至:
分享完整地址
文档地址:
粘贴到BBS或博客
flash地址:
支持嵌入FLASH地址的网站使用
html代码:
&embed src='/DocinViewer--144.swf' width='100%' height='600' type=application/x-shockwave-flash ALLOWFULLSCREEN='true' ALLOWSCRIPTACCESS='always'&&/embed&
450px*300px480px*400px650px*490px
支持嵌入HTML代码的网站使用
您的内容已经提交成功
您所提交的内容需要审核后才能发布,请您等待!
3秒自动关闭窗口欢迎光临倘文库,如需获取更多资料请使用搜索功能。
【图文】Finite element analysis of cracking and delamination of concrete beam due to steel corrosion
Finiteelementanalysisofcrackinganddelaminationofconcretebeamduetosteel
Y.G.Dua,?,A.H.C.Chanb,1,L.A.Clarkb,X.T.Wangc,F.Gurkaloa,S.Bartosd
DepartmentofEngineeringandBuiltEnvironment,AngliaRuskinUniversity,ChelmsfordCM11SQ,UnitedKingdomSchoolofCivilEngineering,TheUniversityofBirmingham,BirminghamB152TT,UnitedKingdomc
DepartmentofCivilEngineering,NingboUniversity,Ningbo,Chinad
FacultyofCivilEngineering,UniversityofZagreb,Zagreb,FranjeHermana16E,Croatia
articleinfoabstract
Thispaperpresentstheanalyticalresultstoinvestigatecrackinganddelaminationofconcretebeamduetosteelcorrosion.Aseriesofconcretebeamswereidealisedastwodimensionalmodelsviatheircrosssectionandanalysedusingthefiniteelementsoftware–LUSAS.Thecorrosionofsteelbarswassimulatedusingaradialexpansion.TheFEresultsshowthatcrackingofbeamsectionduetosteelcorrosioncanbeclarifiedintofourtypes,i.e.,InternalCracking,InternalPenetration,ExternalCracking(HS)andExternalCracking(VB).TheamountofcorrosionintermofradialexpansionrequiredtocausesInternalCracking,InternalPenetration,ExternalCracking(HS)andExternalCracking(VB)variesalmostlinearlywithbardiameterd,barcleardistancesandconcretecoverc,respectively.Iftheratios/cwaslessthanthecriticalvalueofabout2.2,thedelaminationofconcretecovercouldoccurbeforethecrackscanbevisualisedontheconcretesurface,whichdoesconcernengineers.
CrownCopyright?2013PublishedbyElsevierLtd.Allrightsreserved.
Articlehistory:
Received9September2012Revised25February2013Accepted8April2013
Keywords:CorrosionSteelbarCracking
ConcretecoverBarcleardistanceBardiameterBeam
FiniteelementDeteriorationPenetration
1.Introduction
Steelcorrosionisoneofthemostdominantcausesforthepre-maturedegradationofreinforcedconcretestructures.Ithasbeenatopicofwidespreadinteresttothoseconcernedwiththeserviceperformanceandresiduallifeofexistingconcretestructures.Althoughthecollapseofreinforcedconcretestructuresdirectlyasaresultofsteelcorrosionhasrarelybeenreported,maintenanceofthesedeterioratedstructureshasbeenaheavyburdenonown-ersandusersofsuchstructures.
Oneoftheprincipaleffectsofsteelcorrosiononstructuresisthecrackingofconcrete,whichiscausedbythevolumetricexpan-sionofcorrodedsteelbars.Asanelectrochemicalprocessinitiatedbyconcretecarbonationand/orchlorideintrusion,corrosionofasteelbarinconcreteinvolvesbothdissolutionofironionsfrombarsurfaceandtransformationofthedissolvedmetalintocorro-?Correspondingauthor.Tel.:+5.
E-mailaddresses:yingang.du@anglia.ac.uk(Y.G.Du),a.h.chan@bham.ac.uk(A.H.C.Chan),l.a.clark@bham.ac.uk(L.A.Clark),(X.T.Wang),filip.gurkalo@anglia.ac.uk(F.Gurkalo),(S.Bartos).1
sionproducts,i.e.,rusts.Someoftheserustsmaypossiblymigrateintoanyvoidsinsidetheconcrete,andevenpermeatetheconcretecoverandremainontheconcretesurfaceasstains,whichdonotdamagetheintegrityoftheconcrete.However,otherrustsmightaccumulatebetweenthecorrodingbaranditssurroundingcon-crete.Sincetherustsoccupyalargervolumethantheirparentme-tal,aradialexpansionofacorrodingbarwouldtakeplacearounditscircumference,whichcausesahooptensionandradialcom-pressionstrainswithinthesurroundingconcrete.Ascorrosionofasteelbarcontinuesbothhooptensionandradialcompressionstrainsofconcreteincrease.Oncethemaximumtensilestrainoftheconcreteduetoitshoopandradialstrainsexceedsitsdeforma-tioncapacity,cracking,spallingandevendelamination,ofconcretecovercanoccur.
Crackingofconcreteduetosteelcorrosionhassubstantialinflu-encesonperformanceandsafetyofaconcretestructure.Itnotonlyaffectsstructuralaestheticsandserviceability,butalsoacceleratesthecorrosionprocessofsteelbarsbyprovidingampleoxygenandwaterthroughthedevelopedcracks[1],whichinturnpromotesthefurtherdevelopmentofcracksintheconcrete.Inaddition,thecrackingand,inparticular,thedelaminationofconcretecover
/$-seefrontmatterCrownCopyright?2013PublishedbyElsevierLtd.Allrightsreserved.http://dx.doi.org/10.1016/j.engstruct.
第1 / 14页
PPT制作技巧相关硕士文献推荐
频道总排行
频道本月排行

我要回帖

更多关于 delamination 的文章

 

随机推荐