anode gas diffusion layer是layer什么意思思

加载中,请稍候...
&&&&&&&&&&&&Proton Exchange Membrane Fuel Cells Modeling
Proton Exchange Membrane Fuel Cells Modeling
京&东&价:
作  者:
丛 书 名:ISTE
出 版 社:
出版时间:
所属分类:
ISBN:4
字  数:66473
正文语种:英文
版  次:1
文件大小:4.49M
支持载体:
1E4DBCA33DEA8DF9CEC20E5
本内容由版权提供,版权所有,侵权必究!
&&  This book describes the tech*logies, operations, and modeling process to build fuel cell systems.
  Proton Exchange Membrane Fuel Cells Modeling is an accessible book that covers the basic science background andtech*logy behind fuel cell systems. It emphasizes the physical principles, from electrical, thermal and fluidic sciencesthat govern the fuel cell operations. This fundamentals elementary bricks will give the foundation to the reader to buildstraightforward several fuel cell models, depending on the needs, that can be run in simulation or in real time forhardware-in-the-loop simulations.
  F. Gao, B. Blunier, and A. Miraoui are with the Department of Electrical Engineering, Transport and SystemsLaboratory (SeT), Universit?de Tech*logie de Belfort-Montbiard (UTBM), Belfort Cedex 90010, France
Title?Page
Introduction
Nomenclature
PART 1: State of the Art: Of Fuel Cells Modeling
Chapter 1: General Introduction
1.1. What is a fuel cell?
1.2. Types of fuel cells
1.2.1. Proton exchange membrane fuel cell (PEMFC, PEFC)
1.2.2. Alkaline fuel cells (AFC)
1.2.3. Phosphoric acid fuel cells (PAFC)
1.2.4. Molten carbonate fuel cells (MCFC)
1.2.5. Solid oxide fuel cells (SOFC)
1.2.6. Direct methanol fuel cells (DMFC)
Chapter 2: PEMFC Structure
2.1. Bipolar plates
2.2. Membrane electrode assembly
2.2.1. Electrodes
2.2.2. Membrane
Chapter 3: Why Model a Fuel Cell?
3.1. Advantages of modeling and simulation
3.2. Complex system modeling methods
3.2.1. Behavior description
3.2.2. Behavior explanation
3.3. Modeling goals
3.3.1. Scientific understanding
3.3.2. Technological development
3.3.3. System control
Chapter 4: How Can a Fuel Cell be Modeled?
4.1. Space dimension: 0D, 1D, 2D, 3D
4.2. Temporal behavior: static or dynamic
4.3. Type: analytical, semi-empirical, empirical
4.4. Modeled areas: stack, single cell, individual layer
4.5. Modeled phenomena
4.5.1. Domains: electrical (electrochemical), fluidic, thermal
4.5.2. Individual layer phenomena
Chapter 5: Literature Models Synthesis
5.1. 50 models published in the literature
5.2. Model classification
PART 2: Modeling of the Proton Exchange Membrane Fuel Cell
Chapter 6: Model Structural and Functional Approaches
Chapter 7: Stack-Level Modeling
7.1. Electrical domain
7.1.1. Cell voltage multiplication
7.1.2. Individual cell voltage sum
7.2. Fluidic domain
7.2.1. Static equilibrium of the stack’s fluid flows
7.2.2. Dynamic equilibrium of the stack’s fluid flow
7.2.3. Expressions for gas flow rates at the channel inlets and outlets
7.2.3.1. Nozzle flow model
7.2.3.2. Linear model
7.3. Thermal domain
7.3.1. Dynamic energy balance
7.3.1.1. Model without water phase change
7.3.1.2. Model including water phase change
7.3.1.3. Polynomial function between Tstack and istack
Chapter 8: Cell-Level Modeling (Membrane-Electrode Assembly, MEA)
8.1. Electrical domain
8.1.1. Thermodynamic voltage of a cell [BLU 07]
8.1.1.1. Effects of temperature and pressure on ΔG
8.1.1.2. Nernst equation
8.1.1.3. Thermodynamic voltage correction
8.1.2. Voltage drop due to activation loss
8.1.2.1. Activation loss models (cathode and anode)
8.1.2.2. Activation loss model: Tafel equation
8.1.2.3. Simplified activation loss model
8.1.2.4. Empirical model of activation loss
8.1.3. Voltage drop due to internal ohmic loss (membrane + plate)
8.1.3.1. Linear model of ohmic loss
8.1.3.2. Ohmic loss lookup table
8.1.3.3. Equivalent ohmic losses model
8.1.4. Voltage drop due to concentration losses (mass transport limitation)
8.1.4.1. Theoretical model of concentration loss
8.1.4.2. Empirical model of concentration loss no. 1
8.1.4.3. Empirical model of concentration loss no. 2
8.1.4.4. Empirical model of concentration loss no. 3
8.1.4.5. Empirical model of concentration loss no. 4
8.1.4.6. Empirical model of concentration loss no. 5
8.1.4.7. Empirical model of concentration loss no. 6
8.1.5. Dynamic effect of double layer capacity
8.1.5.1. First-order dynamic model
8.2. Fluidic domain
8.2.1. Static or dynamic mass balance
8.2.2. Pressure loss in the global feeding channels (manifolds)
8.3. Thermal domain
8.3.1. Dynamic energy summary
Chapter 9: Individual Layer Level Modeling
9.1. Electrical domain
9.1.1. Gas channels
9.1.1.1. Bipolar plate resistance
9.1.2. Gas diffusion layer (GDL)
9.1.2.1. Gas diffusion layer resistance
9.1.3. Catalyst layer
9.1.3.1. Activation loss
9.1.3.1.1. Tafel equation
9.1.3.1.2. The Butler-Volmer equation
9.1.3.2. Spatial distribution of current and voltage along the diffusion direction
9.1.3.3. Exchange current
9.1.3.3.1. Simplified theoretical model
9.1.3.3.2. Reference exchange current density as a function of temperature
9.1.3.3.3. Empirical model
9.1.3.4. Double layer capacity
9.1.3.4.1. Theoretical model
9.1.3.4.2. Constant value (for information only)
9.1.4. Membrane
9.1.4.1. Local resistivity approach
9.1.4.1.1. Springer empirical model
9.1.4.1.2. Simplified model, linear approach
9.1.4.1.3. Mann empirical model
9.1.4.1.4. Neubrand polynomial model
9.1.4.1.5. Total membrane resistance
9.1.4.2. Global resistance approach
9.1.4.2.1. Marr model
9.1.4.2.2. Ceraolo empirical model
9.1.4.3. NernstCPlanck and Schl?gl equations
9.2. Fluidic domain
9.2.1. Gas channels
9.2.1.1. Mass balance
9.2.1.1.1. Static mass balance
9.2.1.1.2. Dynamic mass balance at a constant temperature
9.2.1.2. Condensation/evaporation of liquid water in the channels
9.2.1.2.1. “Infinite-rate” phase change
9.2.1.2.2. “Finite-rate” phase change
9.2.1.3. Liquid water at channel outlets
9.2.1.3.1. Model with common phase velocities
9.2.1.3.2. Model with channel geometry and properties (not detailed)
9.2.1.4. Mechanical (pressure) loss in the channels
9.2.1.4.1. General case: Darcy’s law
9.2.1.4.2. Laminar flow in square channels
9.2.1.5. Gas composition variation in the channels
9.2.1.5.1. Flow rate variation
9.2.1.5.2. Mean effective gas pressure
9.2.1.5.3. Concentration gradient of channel species toward the diffusion layer surface
9.2.2. Gas diffusion layer (GDL)
9.2.2.1. Species diffusion in the gas diffusion layer
9.2.2.1.1. StefanCMaxwell diffusion
9.2.2.1.2. Fick diffusion
9.2.2.1.3. Knusden diffusion
9.2.2.2. Dynamic effect of gas pressure
9.2.2.3. Cathode flooding problem
9.2.2.3.1. Gas diffusion through a liquid water layer
9.2.2.3.2. Gas concentration at the water-electrode interface
9.2.2.4. Liquid water diffusion in the gas diffusion layer
9.2.2.4.1. Diffusion by hydraulic pressure gradient
9.2.2.4.2. Diffusion by capillary force
9.2.2.5. Water condensation and evaporation
9.2.2.5.1. Vapor flow rate per unit volume
9.2.2.6. Species diffusion coefficients
9.2.2.6.1. Slattery-Bird formula
9.2.2.6.2. Cussler’s formula
9.2.2.6.3.“Equivalent”" coefficient of mixed diffusion for more than two gases
9.2.2.7. Porous environment: effective diffusion coefficient
9.2.2.7.1. Brüggerman correction
9.2.2.7.2. Mezedur correction
9.2.2.7.3. Tomadakis correction
9.2.2.7.4. Correction in the presence of liquid water
9.2.3. Catalyst sites
9.2.3.1. Problems with electrode phase flooding at the cathode
9.2.3.2. Species diffusion in the electrode phase
9.2.3.3. Catalyst layer porosity
9.2.3.4. Reactant consumption and water production
9.2.3.5. Gas diffusion in the electrolyte phase
9.2.3.5.1. NernstCPlanck equation
9.2.3.6. Gas diffusion coefficients in the electrolyte phase
9.2.3.6.1. Empirical interpolation formula
9.2.3.6.2. Ogumi formula
9.2.3.6.3. Yeo formula
9.2.3.6.4. Gas concentration at the gas-membrane phase interface
9.2.3.7. Water diffusion in the electrolyte phase
9.2.4. Membrane
9.2.4.1. Water content in the membrane
9.2.4.1.1. Springer formula
9.2.4.1.2. Siegel formula
9.2.4.2. Electro-osmotic water flow
9.2.4.3. Electro-osmotic coefficient
9.2.4.3.1. Springer formula
9.2.4.3.2. Pukrushpan formula
9.2.4.3.3. Bao formula
9.2.4.4. Back-diffusion water flow
9.2.4.5. Back-diffusion coefficient
9.2.4.5.1. Springer formula
9.2.4.5.2. Nguyen formula
9.2.4.5.3. Pukrushpan formula
9.2.4.5.4. Neubrand formula
9.2.4.6. Water flow due to pressure gradient
9.2.4.7. Water diffusion in the membrane
9.2.4.7.1. Springer formula: differential form
9.2.4.7.2. Nguyen equation: linear form
9.2.4.7.3. Schl?gl formula
9.2.4.7.4. StefanCMaxwell formula
9.2.4.7.5. Water dynamics in the membrane
9.2.4.8. Proton diffusion in the membrane
9.2.4.8.1. Proton flow
9.2.4.8.2. NernstCPlanck formula
9.2.4.8.3. StefanCMaxwell formula
9.2.5. General vapor saturation pressure formula
9.2.5.1. Polynomial form
9.2.5.2. Exponential form
9.3. Thermal domain
9.3.1. Gas channels
9.3.1.1. Energy balance in the gas channels
9.3.1.1.1. Steady-state: phase change and temperature variation along the channels
9.3.1.1.2. Transient state: thermal control volume method
9.3.1.1.3. Gas in the channels
9.3.1.1.4. Channel solid support
9.3.2. Gas diffusion layer (GDL)
9.3.2.1. Energy balance in the diffusion layers
9.3.2.1.1. Steady-state: non-uniform temperature distribution
9.3.2.1.2. Transient state: thermal control volume method
9.3.3. Catalyst sites
9.3.3.1. Energy balance in the catalyst sites
9.3.3.1.1. Steady-state: non-uniform temperature distribution
9.3.3.1.2. Transient state: thermal control volume method
9.3.4. Membrane
9.3.4.1. Energy conservation in the membrane
9.3.4.1.1. Steady-state: non-uniform temperature distribution
9.3.4.1.2. Transient state: thermal control volume method
Chapter 10: Finite Element and Finite Volume Approach
10.1. Conservation of mass
10.2. Conservation of momentum
10.3. Conservation of matter
10.4. Conservation of charge
10.5. Conservation of energy
PART 3: 1D Dynamic Model of a Nexa Fuel Cell Stack
Chapter 11: Detailed Nexa Proton Exchange Membrane Fuel Cell Stack Modeling
11.1. Modeling hypotheses
11.2. Modeling in the electrical domain
11.2.1. Cooling channels (Figure 11.1)
11.2.2. Solid support and cathode gas channels (Figure 11.2)
11.2.3. Cathode diffusion layer (Figure 11.3)
11.2.4. Cathode catalytic layer (Figure 11.4)
11.2.5. Membrane (Figure 11.5)
11.2.5.1. i ≠ 0 case
11.2.5.2. i = 0 case
11.2.6. Anode catalytic layer (Figure 11.6)
11.2.7. Anode diffusion layer (Figure 11.7)
11.2.8. Solid support and anode gas channels (Figure 11.8)
11.3. Modeling in the fluidic domain
11.3.1. Cooling channels (Figure 11.9)
11.3.2. Cathode gas channels (Figure 11.10)
11.3.3. Cathode diffusion layer (Figure 11.11)
11.3.4. Cathode catalytic layer (Figure 11.12)
11.3.5. Membrane (Figure 11.13)
11.3.6. Anode catalytic layer (Figure 11.14)
11.3.7. Anode diffusion layer (Figure 11.15)
11.3.8. Anode gas channels (Figure 11.16)
11.4. Thermal domain modeling
11.4.1. Cooling channels (Figure 11.17)
11.4.1.1. Cooling fluid channels part (1st control volume)
11.4.1.2. Solid part of the channels layer (2nd control volume)
11.4.2. Solid support of the cathode channels (Figure 11.18)
11.4.3. Cathode gas channels (Figure 11.19)
11.4.3.1. Cathode gas channels part (1st control volume)
11.4.3.2. Solid part of the channels (2nd control volume)
11.4.4. Cathode diffusion layer (Figure 11.20)
11.4.5. Cathode catalyst layer (Figure 11.21)
11.4.6. Membrane (Figure 11.22)
11.4.7. Anode catalyst layer (Figure 11.23)
11.4.8. Anode diffusion layer (Figure 11.24)
11.4.9. Anode gas channels (Figure 11.25)
11.4.9.1. Anode gas channels part (1st control volume)
11.4.9.2. Solid part of the channels (2nd control volume)
11.4.10. Solid support of the anode channels (Figure 11.26)
11.5. Set of adjustable parameters
Chapter 12: Model Experimental Validation
12.1. Multiphysical model validation with a 1.2 kW fuel cell stack
12.1.1. Measuring equipment
12.1.2. Experimental validations
12.1.2.1. Long-duration current step change
12.1.2.2. Dynamic current profile
12.1.2.3. Very dynamic current profile
Bibliography
纠错信息:如果您发现商品信息不准确,欢迎。
网友讨论圈
正在加载中,请稍候...
正在加载中,请稍候...
正在加载中,请稍候...
正在加载中,请稍候...的海词问答和网友补充:
相关词典网站:

我要回帖

更多关于 anode是什么意思 的文章

 

随机推荐