已知cd垂直ab于点da(2,-3,1),b(1,-2,3),求与a,b都垂直,且c.d=10,d=(2,1,-7)

已知a=-3 1/2,b=+2.5,c=+3,d=-1 1/3 ,求(a+b)十(c+d)_百度知道
已知a=-3 1/2,b=+2.5,c=+3,d=-1 1/3 ,求(a+b)十(c+d)
b=+2已知a=-3
1&#47.5,d=-1
1&#47,c=+3;2;3
提问者采纳
题目没看懂
里面有带分数
哦(⊙o⊙)哦
提问者评价
你的回答完美的解决了我的问题,谢谢!
回忆若染尘宇
来自:作业帮
其他类似问题
为您推荐:
其他2条回答
3(负的三分之四)所以(a+b)+(c+d)=(3.5)+(3-4/3)=6+5&#47.5d=﹣1又三分之一 =-4&#47a=3又二分之一=3;3=23&#47.5+2
等待您来回答
下载知道APP
随时随地咨询
出门在外也不愁当前位置:
>>>已知向量a=(1,2),b=(2,-2),(1)设c=4a+b,求(boc)a.(2)若a+λb..
已知向量a=(1,2),b=(2,-2),(1)设c=4a+b,求(boc)a.(2)若a+λb与a垂直,求λ的值.(3)求向量a在b方向上的投影.
题型:解答题难度:中档来源:不详
(1)∵a=(1,2),b=(2,-2),∴c=4a+b=(4,8)+(2,-2)=(6,6).∴boc=2×6-2×6=0,∴(boc)a=0a=0.(2)a+λb=(1,2)+λ(2,-2)=(2λ+1,2-2λ),由于a+λb与a垂直,∴2λ+1+2(2-2λ)=0,∴λ=52.(3)设向量a与b的夹角为θ,向量a在b方向上的投影为|a|cosθ.∴|a|cosθ=aob|b|=1×2+2×(-2)22+(-2)2=-222=-22.
马上分享给同学
据魔方格专家权威分析,试题“已知向量a=(1,2),b=(2,-2),(1)设c=4a+b,求(boc)a.(2)若a+λb..”主要考查你对&&平面向量基本定理及坐标表示,向量数量积的含义及几何意义,用数量积判断两个向量的垂直关系&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
平面向量基本定理及坐标表示向量数量积的含义及几何意义用数量积判断两个向量的垂直关系
&平面向量的基本定理:
如果是同一平面内的两个不共线的向量,那么对这一平面内的任一向量存在唯一的一对有序实数使成立,不共线向量表示这一平面内所有向量的一组基底。
平面向量的坐标运算:
在平面内建立直角坐标系,以与x轴、y轴方向相同的两个单位向量为基底,则平面内的任一向量可表示为,称(x,y)为向量的坐标,=(x,y)叫做向量的坐标表示。基底在向量中的应用:
(l)用基底表示出相关向量来解决向量问题是常用的方法之一.(2)在平面中选择基底主要有以下几个特点:①不共线;②有公共起点;③其长度及两两夹角已知.(3)用基底表示向量,就是利用向量的加法和减法对有关向量进行分解。
用已知向量表示未知向量:
用已知向量表示未知向量,一定要结合图像,可从以下角度如手:(1)要用基向量意识,把有关向量尽量统一到基向量上来;(2)把要表示的向量标在封闭的图形中,表示为其它向量的和或差的形式,进而寻找这些向量与基向量的关系;(3)用基向量表示一个向量时,如果此向量的起点是从基底的公共点出发的,一般考虑用加法,否则用减法,如果此向量与一个易求向量共线,可用数乘。
&两个向量的夹角的定义:
对于非零向量,,作称为向量,的夹角,当=0时,,同向,当=π时,,反向,当时,垂直。
两个向量数量积的含义:
如果两个非零向量,,它们的夹角为,我们把数量叫做与的数量积(或内积或点积),记作:,即。叫在上的投影。规定:零向量与任一向量的数量积是0,注意数量积是一个实数,不再是一个向量。
两个向量数量积的几何意义:
数量积等于的模与在上的投影的乘积。向量数量积的性质:
设两个非零向量(1);(2);(3);(4);(5)当,同向时,;当与反向时,;当为锐角时,为正且,不同向,;当为钝角时,为负且,不反向,。 两向量垂直的充要条件:
非零向量,那么,所以可以根据此公式判断两个向量是否垂直。向量数量积的性质:
设两个非零向量(1);(2);(3);(4);(5)当,同向时,;当与反向时,;当为锐角时,为正且,不同向,;当为钝角时,为负且,不反向,。
发现相似题
与“已知向量a=(1,2),b=(2,-2),(1)设c=4a+b,求(boc)a.(2)若a+λb..”考查相似的试题有:
494468801814399662492619499109572792当前位置:
>>>如图,已知抛物线经过A(-2,0),B(-3,3)及原点O,顶点为C。(1)求..
如图,已知抛物线经过A(-2,0),B(-3,3)及原点O,顶点为C。(1)求抛物线的解析式;(2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标;(3)P是抛物线上的第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由。
题型:解答题难度:偏难来源:山东省中考真题
解:(1)设抛物线的解析式为, ∵抛物线过A(-2,0),B(-3,3),O(0,0)可得,解得,∴抛物线的解析式为;
(2)①当AE为边时,∵A、O、D、E为顶点的四边形是平行四边形,∴DE=AO=2,则D在x轴下方不可能,∴D在轴上方且DE=2,则D1(1,3),D2(﹣3,3), ②当AO为对角线时,则DE与AO互相平分, ∵点E在对称轴上,且线段AO的中点横坐标为-1,由对称性知,符合条件的点D只有一个,与点C重合,即C(-1,-1),故符合条件的点D有三个,分别是D1(1,3),D2(-3,3),C(-1,-1)。
(3)存在,如图:∵B(-3,3),C(-1,-1),根据勾股定理得: BO2=18,CO2=2,BC2=20,∴BO2+CO2=BC2,∴△BOC是直角三角形,假设存在点P,使以P,M,A为顶点的 三角形与△BOC相似,设P(x,y),由题意知x>0,y>0,且, ①若△AMP∽△BOC,则,即x+2=3(x2+2x)得:,x2=-2(舍去),当时,,即P(); ②若△PMA∽△BOC,则,即:x2+2x=3(x+2)得:x1=3,x2=-2(舍去)当x=3时,y=15,即P(3,15),故符合条件的点P有两个,分别是P()或(3,15)。
马上分享给同学
据魔方格专家权威分析,试题“如图,已知抛物线经过A(-2,0),B(-3,3)及原点O,顶点为C。(1)求..”主要考查你对&&求二次函数的解析式及二次函数的应用,平行四边形的性质,相似三角形的判定&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
求二次函数的解析式及二次函数的应用平行四边形的性质相似三角形的判定
求二次函数的解析式:最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况: (1)已知抛物线上三点的坐标,一般选用一般式; (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式; (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式; (4)已知抛物线上纵坐标相同的两点,常选用顶点式。 二次函数的应用:(1)应用二次函数才解决实际问题的一般思路: 理解题意;建立数学模型;解决题目提出的问题。 (2)应用二次函数求实际问题中的最值: 即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。求最值时,要注意求得答案要符合实际问题。 二次函数的三种表达形式:①一般式:y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。
②顶点式:y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。有时题目会指出让你用配方法把一般式化成顶点式。例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h&0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。具体可分为下面几种情况:当h&0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;当h&0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;当h&0,k&0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。
③交点式:y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] .已知抛物线与x轴即y=0有交点A(x1,0)和 B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。由一般式变为交点式的步骤:二次函数∵x1+x2=-b/a, x1?x2=c/a(由韦达定理得),∴y=ax2+bx+c=a(x2+b/ax+c/a)=a[x2-(x1+x2)x+x1?x2]=a(x-x1)(x-x2).重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向。a&0时,开口方向向上;a&0时,开口方向向下。a的绝对值可以决定开口大小。a的绝对值越大开口就越小,a的绝对值越小开口就越大。能灵活运用这三种方式求二次函数的解析式;能熟练地运用二次函数在几何领域中的应用;能熟练地运用二次函数解决实际问题。二次函数的其他表达形式:①牛顿插值公式:f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0)...(x-xn-1)+Rn(x)由此可引导出交点式的系数a=y/(x·x)(y为截距) 二次函数表达式的右边通常为二次三项式。双根式y=a(x-x1)*(x-x2)若ax2+bx+c=0有两个实根x1,x2,则y=a(x-x1)(x-x2)此抛物线的对称轴为直线x=(x1+x2)/2。③三点式已知二次函数上三个点,(x1,f(x1))(x2,f(x2))(x3,f(x3))则f(x)=f(x3)(x-x1)(x-x2)/(x3-x1)(x3-x2)+f(x2)(x-x1)*(x-x3)/(x2-x1)(x2-x3)+f(x1)(x-x2)(x-x3)/(x1-x2)(x1-x3)与X轴交点的情况当△=b2-4ac&0时,函数图像与x轴有两个交点。(x1,0), (x2,0);当△=b2-4ac=0时,函数图像与x轴只有一个交点。(-b/2a,0)。Δ=b2-4ac&0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b2-4ac的值的相反数,乘上虚数i,整个式子除以2a)二次函数解释式的求法:就一般式y=ax2+bx+c(其中a,b,c为常数,且a≠0)而言,其中含有三个待定的系数a ,b ,c.求二次函数的一般式时,必须要有三个独立的定量条件,来建立关于a ,b ,c 的方程,联立求解,再把求出的a ,b ,c 的值反代回原函数解析式,即可得到所求的二次函数解析式。
1.巧取交点式法:知识归纳:二次函数交点式:y=a(x-x1)(x-x2) (a≠0)x1,x2分别是抛物线与x轴两个交点的横坐标。已知抛物线与x轴两个交点的横坐标求二次函数解析式时,用交点式比较简便。①典型例题一:告诉抛物线与x轴的两个交点的横坐标,和第三个点,可求出函数的交点式。例:已知抛物线与x轴交点的横坐标为-2和1 ,且通过点(2,8),求二次函数的解析式。点拨:解设函数的解析式为y=a(x+2)(x-1),∵过点(2,8),∴8=a(2+2)(2-1)。解得a=2,∴抛物线的解析式为:y=2(x+2)(x-1),即y=2x2+2x-4。②典型例题二:告诉抛物线与x轴的两个交点之间的距离和对称轴,可利用抛物线的对称性求解。例:已知二次函数的顶点坐标为(3,-2),并且图象与x轴两交点间的距离为4,求二次函数的解析式。点拨:在已知抛物线与x轴两交点的距离和顶点坐标的情况下,问题比较容易解决.由顶点坐标为(3,-2)的条件,易知其对称轴为x=3,再利用抛物线的对称性,可知图象与x轴两交点的坐标分别为(1,0)和(5,0)。此时,可使用二次函数的交点式,得出函数解析式。
2.巧用顶点式:顶点式y=a(x-h)2+k(a≠0),其中(h,k)是抛物线的顶点。当已知抛物线顶点坐标或对称轴,或能够先求出抛物线顶点时,设顶点式解题十分简洁,因为其中只有一个未知数a。在此类问题中,常和对称轴,最大值或最小值结合起来命题。在应用题中,涉及到桥拱、隧道、弹道曲线、投篮等问题时,一般用顶点式方便.①典型例题一:告诉顶点坐标和另一个点的坐标,直接可以解出函数顶点式。例:已知抛物线的顶点坐标为(-1,-2),且通过点(1,10),求此二次函数的解析式。点拨:解∵顶点坐标为(-1,-2),故设二次函数解析式为y=a(x+1)2-2 (a≠0)。把点(1,10)代入上式,得10=a·(1+1)2-2。∴a=3。∴二次函数的解析式为y=3(x+1)2-2,即y=3x2+6x+1。②典型例题二:如果a&0,那么当 时,y有最小值且y最小=;如果a&0,那么,当时,y有最大值,且y最大=。告诉最大值或最小值,实际上也是告诉了顶点坐标,同样也可以求出顶点式。例:已知二次函数当x=4时有最小值-3,且它的图象与x轴两交点间的距离为6,求这个二次函数的解析式。点拨:析解∵二次函数当x=4时有最小值-3,∴顶点坐标为(4,-3),对称轴为直线x=4,抛物线开口向上。由于图象与x轴两交点间的距离为6,根据图象的对称性就可以得到图象与x轴两交点的坐标是(1,0)和(7,0)。∴抛物线的顶点为(4,-3)且过点(1,0)。故可设函数解析式为y=a(x-4)2-3。将(1,0)代入得0=a(1-4)2-3, 解得a=13.∴y=13(x-4)2-3,即y=13x2-83x+73。③典型例题三:告诉对称轴,相当于告诉了顶点的横坐标,综合其他条件,也可解出。例如:(1)已知二次函数的图象经过点A(3,-2)和B(1,0),且对称轴是直线x=3.求这个二次函数的解析式. (2)已知关于x的二次函数图象的对称轴是直线x=1,图象交y轴于点(0,2),且过点(-1,0),求这个二次函数的解析式. (3)已知抛物线的对称轴为直线x=2,且通过点(1,4)和点(5,0),求此抛物线的解析式. (4)二次函数的图象的对称轴x=-4,且过原点,它的顶点到x轴的距离为4,求此函数的解析式.④典型例题四:利用函数的顶点式,解图像的平移等问题非常方便。例:把抛物线y=ax2+bx+c的图像向右平移3 个单位, 再向下平移2 个单位, 所得图像的解析式是y=x2-3x+5, 则函数的解析式为_______。点拨:解先将y=x2-3x+5化为y=(x-32)2+5-94, 即y=(x-32)2+114。∵它是由抛物线的图像向右平移3 个单位, 再向下平移2 个单位得到的,∴原抛物线的解析式是y=(x-32+3)2+114+2=(x+32)2+194=x2+3x+7。平行四边形的概念:两组对边分别平行的四边形叫做平行四边形。平行四边形用符号“□ABCD,如平行四边形ABCD记作“□ABCD”,读作ABCD”。①平行四边形属于平面图形。②平行四边形属于四边形。③平行四边形中还包括特殊的平行四边形:矩形,正方形和菱形等。④平行四边形属于中心对称图形。平行四边形的性质:主要性质(矩形、菱形、正方形都是特殊的平行四边形。)(1)如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。(简述为“平行四边形的两组对边分别相等”)(2)如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。(简述为“平行四边形的两组对角分别相等”)(3)如果一个四边形是平行四边形,那么这个四边形的邻角互补(简述为“平行四边形的邻角互补”)(4)夹在两条平行线间的平行线段相等。(5)如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。(简述为“平行四边形的对角线互相平分”)(6)连接任意四边形各边的中点所得图形是平行四边形。(推论)(7)平行四边形的面积等于底和高的积。(可视为矩形)(8)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。(9)平行四边形是中心对称图形,对称中心是两对角线的交点.(10)平行四边形不是轴对称图形,矩形和菱形是轴对称图形。注:正方形,矩形以及菱形也是一种特殊的平行四边形,三者具有平行四边形的性质。(11)平行四边形ABCD中(如图)E为AB的中点,则AC和DE互相三等分,一般地,若E为AB上靠近A的n等分点,则AC和DE互相(n+1)等分。(12)平行四边形ABCD中,AC、BD是平行四边形ABCD的对角线,则各四边的平方和等于对角线的平方和。(13)平行四边形对角线把平行四边形面积分成四等分。(14)平行四边形中,两条在不同对边上的高所组成的夹角,较小的角等于平行四边形中较小的角,较大的角等于平行四边形中较大的角。(15)平行四边形中,一个角的顶点向他对角的两边所做的高,与这个角的两边组成的夹角相等。相似三角形:对应角相等,对应边成比例的两个三角形叫做相似三角形。互为相似形的三角形叫做相似三角形。例如图中,若B'C'//BC,那么角B=角B',角BAC=角B'A'C',是对顶角,那么我们就说△ABC∽△AB'C'相似三角形的判定:1.基本判定定理(1)平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。(简叙为:两边对应成比例且夹角相等,两个三角形相似。)(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。(简叙为:三边对应成比例,两个三角形相似。)(4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),那么这两个三角形相似。2.直角三角形判定定理(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。3.一定相似:(1).两个全等的三角形(全等三角形是特殊的相似三角形,相似比为1:1)(2).两个等腰三角形(两个等腰三角形,如果其中的任意一个顶角或底角相等,那么这两个等腰三角形相似。) (3).两个等边三角形(两个等边三角形,三个内角都是60度,且边边相等,所以相似) (4).直角三角形中由斜边的高形成的三个三角形。相似三角形判定方法:证两个相似三角形应该把表示对应顶点的字母写在对应的位置上。如果是文字语言的“△ABC与△DEF相似”,那么就说明这两个三角形的对应顶点可能没有写在对应的位置上,而如果是符号语言的“△ABC∽△DEF”,那么就说明这两个三角形的对应顶点写在了对应的位置上。一、(预备定理)平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似。(这是相似三角形判定的定理,是以下判定方法证明的基础。这个引理的证明方法需要平行线与线段成比例的证明)二、如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。三、如果两个三角形的两组对应边成比例,并且相应的夹角相等,那么这两个三角形相似。& 四、如果两个三角形的三组对应边成比例,那么这两个三角形相似五(定义)对应角相等,对应边成比例的两个三角形叫做相似三角形六、两三角形三边对应垂直,则两三角形相似。七、两个直角三角形中,斜边与直角边对应成比例,那么两三角形相似。八、由角度比转化为线段比:h1/h2=Sabc易失误比值是一个具体的数字如:AB/EF=2而比不是一个具体的数字如:AB/EF=2:1
发现相似题
与“如图,已知抛物线经过A(-2,0),B(-3,3)及原点O,顶点为C。(1)求..”考查相似的试题有:
148161131313915691416530137925122551如图①,在平面直角坐标系中,AB、CD都垂直于x轴,垂足为B、D,且AD与BC相交于E点.已知:A(-2,-6),C(1,-3)(1)求证:E点在y轴上;(2)如果A_答案网
您好,欢迎来到答案网! 请&&&|&&&&
&&&|&&&&|&&&&|&&&&|&&&&|&&&&|&&&&|&&&&|&&&&|&&&&|&&&&|&&&&|&&
&如图①,在平面直角坐标系中,AB、CD都垂直于x轴,垂足为B、D,且AD与BC相交于E点.已知:A(-2,-6),C(1,-3)(1)求证:E点在y轴上;(2)如果A分类:&&&【来自ip:&16.139.184.230&的&热心网友&咨询】
&问题补充:
如图①,在平面直角坐标系中,AB、CD都垂直于x轴,垂足为B、D,且AD与BC相交于E点.已知:A(-2,-6),C(1,-3)(1)求证:E点在y轴上;(2)如果AB的位置不变,而DC水平向右移动K(K>0)个单位,此时AD与BC相交于E′点,如图②,求△AE′C的面积S关于K的函数解析式;(3)过A、E、E′三点的抛物线中,是否存在一条抛物线,它的顶点在x轴上?若存在,请求出k的值;若不存在,说明理由.
&(此问题共53人浏览过)我要回答:
&&热门焦点:&1.&&&&2.&&&&3.&
&网友答案:
(1)证明:根据题意得:B(-2,0),点D(1,0),设直线AD的解析式为:y=kx+b,∴,解得:,∴直线AD的解析式为:y=2x-2,同理可得:直线BC的解析式为:y=-x-2,∵2x-2=-x-2,解得:x=0,y=-2,∴AD与BC的交点E的坐标为(0,-2);∴E点在y轴上;(2)解:由(1)当DC水平向右平移k后,过AD与BC的交点E′作E′F⊥x轴垂足为F.同(1)可得:=1,得:E′F=2,∵BA∥DC,∴S△BCA=S△BDA,∴S△AE′C=S△BDE′=BD?E′F=(3+k)×2=3+k,∴S=3+k为所求函数解析式.(3)解:存在.设抛物线的方程y=ax2+bx+c(a≠0)过A(-2,-6),C(1,-3),E(0,-2)三点,得方程组,解得a=-1,b=0,c=-2,∴抛物线方程y=-x2-2(注:题目未告之E(0,-2)是抛物线的顶点)解析分析:(1)由题意可求得B(-2,0),点D(1,0),然后利用待定系数法求得直线AD与BC的解析式,求其交点,即可证得E点在y轴上;(2)由(1)当DC水平向右平移k后,过AD与BC的交点E′作E′F⊥x轴垂足为F.同(1)可得:=1,得:E′F=2,又由BA∥DC,可得S△BCA=S△BDA,即可求得△AE′C的面积S关于K的函数解析式;(3)存在.设抛物线的方程y=ax2+bx+c(a≠0)过A(-2,-6),C(1,-3),E(0,-2)三点,利用待定系数法即可求得此二次函数的解析式,注意:题目未告之E(0,-2)是抛物线的顶点.点评:此题考查了待定系数法求函数的解析式,函数的交点问题,以及三角形面积问题等知识.此题综合性很强,难度较大,解题的关键是方程思想与数形结合思想的应用.
&&相关问题列表
&&[前一个问题]&&&
&&[后一个问题]&&&
&&您可能感兴趣的话题
&1、&2、&3、&4、&5、&6、&7、&8、&9、&10、
&1、&2、&3、&4、&5、&6、&7、&8、&9、&10、
&1、&2、&3、&4、&5、&6、&7、&8、&9、&10、当前位置:
>>>已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5).(Ⅰ)求以AB、..
已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5).(Ⅰ)求以AB、AC为边的平行四边形的面积;(Ⅱ)若向量a分别与AB、AC垂直,且|a|=3,求a的坐标.
题型:解答题难度:中档来源:不详
(Ⅰ)AB=(-2,-1,3),AC=(1,-3,2),|AB|=14,|AC|=14cos∠BAC=ABoAC|AB|o|AC|=12,∴∠BAC=60°…(4分)∴S=2×12×14×14sin60°=73…(6分)(Ⅱ)设a=(x,y,z),∵a⊥AB,a⊥AC,且|a|=3…(8分)∴-2x-y+3z=0x-3y+2z=0x2+y2+z2=3,解得x=1y=1z=1或x=-1y=-1z=-1…(11分)∴a=(1,1,1)或a=(-1,-1,-1)…(12分)
马上分享给同学
据魔方格专家权威分析,试题“已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5).(Ⅰ)求以AB、..”主要考查你对&&空间向量的夹角及其表示&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
空间向量的夹角及其表示
两个非零向量夹角的概念:
已知两个非零向量与,在空间中任取一点O,作,则∠AOB叫做向量与的夹角,记作。
空间向量夹角的坐标表示:
。空间向量夹角的理解:
(1)规定:,当=0时,与同向;当时,与反向;当时,与垂直,记。(2)两个向量的夹角唯一确定且。(3)对于一些特殊的几何体或平面图形中有关空间角的问题,可以通过建立空间直角坐标系将其转化为空间向量的夹角的问题,简化计算。值得注意的是空间直角坐标系的建立要合理、适当。
发现相似题
与“已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5).(Ⅰ)求以AB、..”考查相似的试题有:
482779453557623870624460559305557230

我要回帖

更多关于 已知ad垂直bc于d 的文章

 

随机推荐