谁有mathematica 9 注册机?能打开附件notebook吗

(************** Content-type: application/mathematica **************
CreatedBy='Mathematica 5.0'
Mathematica-Compatible Notebook
This notebook can be used with any Mathematica-compatible
application, such as Mathematica, MathReader or Publicon. The data
for the notebook starts with the line containing stars above.
To get the notebook into a Mathematica-compatible application, do
one of the following:
* Save the data starting with the line of stars above into a file
with a name ending in .nb, then open the file inside the
* Copy the data starting with the line of stars above to the
clipboard, then use the Paste menu command inside the application.
Data for notebooks contains only printable 7-bit ASCII and can be
sent directly in email or through ftp in text mode.
Newlines can be
CR, LF or CRLF (Unix, Macintosh or MS-DOS style).
NOTE: If you modify the data for this notebook not in a Mathematica-
compatible application, you must delete the line below containing
the word CacheID, otherwise Mathematica-compatible applications may
try to use invalid cache data.
For more information on notebooks and Mathematica-compatible
applications, contact Wolfram Research:
phone: +1-217-398-0700 (U.S.)
Notebook reader applications are available free of charge from
Wolfram Research.
*******************************************************************)
(*CacheID: 232*)
(*NotebookFileLineBreakTest
NotebookFileLineBreakTest*)
(*NotebookOptionsPosition[
(*NotebookOutlinePosition[
CellTagsIndexPosition[
(*WindowFrame->Normal*)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[{
\(Clear[k, x, y, Bnd, Cff, Poly, Polys, PrmeCalc,
ConstCalc]\[IndentingNewLine]\[IndentingNewLine] (*\
Bnd : \ Input\ a\ list\ of\ variables\ {\ a_
a_ {k}\ }, \
and\ an\ integer\ tot . \
Gives\ a\ list\ of\ ranges\ for\ summing\ the\ variables\ in\ the\
\ list\ subject\ to\ each\ variable\ being\
\[GreaterEqual]
1\ and\ the\ sum\ of\ the\ variables\ being\
tot\ *) \ \), "\[IndentingNewLine]",
\(\(Bnd[lst_, tot_] :=
Module[{i1, i2, i3, i4, i5},
Table[{lst[\([i1]\)], 1,
Sum[lst[\([i2]\)], {i2, 1, i1 - 1}] - \((Length[lst] -
i1)\)}, {i1, 1, Length[lst]}]\[IndentingNewLine] (*\
Since\ each\ variable\ is\
\[GreaterEqual] 1, \
the\ lower\ bound\ is\ 1. \ If\ we\ alread\ know\ the\ values\ of\
a_ {m - 1}\ then\ since\ sum_ {i = 1}^{k}\ a_i\
\[LessEqual] \
tot - 1\ we\ have\[IndentingNewLine]a_m\
\[LessEqual] \
sum_ {i = 1}^k\ a_i\
- \ sum_ {i = 1}^{m - 1}\ a_i\
sum_ {i = m + 1}^k\ a_i\ \[IndentingNewLine] \[LessEqual] \
- \ sum_ {i = 1}^k\ a_i\
sum_ {i = m + 1}^k\ 1\[IndentingNewLine] \[LessEqual] \
- \ sum_ {i = 1}^ka_i\
- \ \((k - m)\), \
which\ is\ our\ upper\ bound*) \[IndentingNewLine]];\)\
\[IndentingNewLine]\[IndentingNewLine] (*\
Cff : \ Input\ a\ list\ of\ variables\ {\ a_
a_ {k}\ }, \
and\ an\ integer\ tot . \ Gives\ the\ summand\ \(tot!\)\ *\
prod_ {i = 1}^{k + 1}\ \(\((2
a_i)\)!\)/\(a_i!\)\ with\ a_ {k +
sum_ {i = 1}^{k}\ a_i\ *) \), "\[IndentingNewLine]",
\(\(Cff[lst_, tot_] :=
Module[{i1, i2, i3},
Product[Factorial[2*lst[\([i1]\)]]/Factorial[lst[\([i1]\)]], {i1,
1, Length[lst]}]*Factorial[tot]*
Factorial[2*tot - 2*Sum[lst[\([i2]\)], {i2, 1, Length[lst]}]]/
Factorial[
tot - Sum[
lst[\([i3]\)], {i3, 1,
Length[lst]}]]];\)\[IndentingNewLine]\[IndentingNewLine]\
(*\ Poly : \
Input\ an\ integer\ n <
40\ and\ a\ variable\ k . \ Gives\ the\ n^{th}\ polynomial\ G_ {n,
2} \((k)\)\ in\ the\ variable\ k\ *) \), "\[IndentingNewLine]", \
\(\(Poly[n_, k_] :=
Module[{A = {a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13,
a14, a15, a16, a17, a18, a19, a20, a21, a22, a23, a24, a25,
a26, a27, a28, a29, a30, a31, a32, a33, a34, a35, a36, a37,
a38, a39, a40}, X = k*Factorial[2*n], i,
Lst}, \[IndentingNewLine]If[n \[Equal] 0, X = 1,
For[i = 1, i \[LessEqual] n - 1, \(i++\), Lst = Take[A, i];
X = X + Binomial[k, i + 1]*
Apply[Sum,
Join[{Cff[Lst, n]},
Bnd[Lst, n]]];]; \[IndentingNewLine] (*\
Use\ our\ formula\ to\ write\ the\ polynomial\ as\ a\ sum\ of\ \
binomial\ coefficients\ in\ k\ multiplied\ by\ some\ constants, \
which\ we\ calculate\ by\ summing\ Cff\ over\ the\ range\ Bnd\ \
*) \[IndentingNewLine]Expand[
X]]];\)\[IndentingNewLine]\[IndentingNewLine] (*\
It\ is\ convenient\ to\ precompute\ the\ polynomials\ Poly[n,
k]\ we\ will\ use\ to\ speed\ up\ calculation\ *) \), "\
\[IndentingNewLine]",
\(\(Polys[k_] =
Table[Poly[n, k], {n, 0,
11}];\)\[IndentingNewLine]\[IndentingNewLine] (*\
ConstCalc : \ Input\ a\ polynomial\ expression\ Expr\ in\ x\ and\ y, \
and\ an\ integer\ k . \ x\ represents\ 1 -
1 = \(1 - \(\(\\\)\(sum_\)\) {i = 1}^
k\ t_i\ and\ y\ represents\ P_
2 = \(\(\\\)\(sum_\)\) {i = 1}^k\ t_i^2\[IndentingNewLine]
Output\ is\ the\ result\ of\ integrating\ Expr^2\ with\ respect\ to\ \
1\), \(\(\\\)\(dots\)\)\ t_k\ over\ the\ region\ \
\[IndentingNewLine]\\mathcal {R} _k\
= \ \(\(\\\)\({\ \((t_
1, \(\(\\\)\(dots\)\),
t_k)\)\ \\in\ [0,
: \ \(\(\\\)\(sum_\)\) {i = 1}^
< \(\(1\)\(\\\)\)\)} . \
Assumes\)\)\ that\ the\ relevent\ Polynomials\ G_ {c,
2}\ have\ been\ precomputed\ in\ the\ list\ Polys\ *) \), "\
\[IndentingNewLine]",
\(ConstCalc[Expr_, k_] :=
Module[{Sum = 0, IntExpr = Expand[Expr^2], xdeg, ydeg, b, c, tmp,
Coeff}, \[IndentingNewLine] (*we\ are\ integrating\ IntExpr, \
which\ is\ Expr\ squared*) \[IndentingNewLine]xdeg =
Exponent[IntExpr,
x]; \[IndentingNewLine] (*we\ let\ xdeg\ be\ the\ maximum\ degree\
\ of\ IntExpr\ with\ respect\ to\ x*) \[IndentingNewLine] (*we\ now\ split\ \
our\ expression\ IntExpr\ into\ monomial\ terms\ x^b*
y^c*) \[IndentingNewLine]For[b = 0, b \[LessEqual] xdeg, \(b++\),
tmp = Coefficient[IntExpr, x, b]; ydeg = Exponent[tmp, y];
For[c = 0, c \[LessEqual] ydeg, \(c++\),
Coeff = Coefficient[tmp, y,
c]; \[IndentingNewLine] (*Coeff\ is\ the\ coefficient\ of\ x^
b*y^c\ in\ IntExpr*) Sum =
Sum + Coeff*
Factorial[b]/
Factorial[k + b + 2*c]*\(Polys[
k]\)[\([c +
1]\)];];]; \[IndentingNewLine] (*we\ use\ our\ \
formula\ from\ Lemma\ 7.1\ to\ count\ the\ contribution\ from\ this\ term\
*) \[IndentingNewLine]Sum]\[IndentingNewLine]\[IndentingNewLine] (*PrimeCalc \
: \ Input\ a\ polynomial\ expression\ Expr\ in\ x\ and\ y\ and\ an\ integer\ \
k . \ \[IndentingNewLine]x\ represents\ 1 -
1 = \(1 - \(\(\\\)\(sum_\)\) {i = 1}^
k\ t_i\ and\ y\ represents\ P_
2 = \(\(\\\)\(sum_\)\) {i = 1}^k\ t_i^2\ \[IndentingNewLine]
Output\ is\ a\ polynomial\ expression\ which\ is\ the\ result\ of\ \
integrating\ Expr\ with\ resepect\ to\ t1\ between\ 0\ and\ 1 - \
\(\(\\\)\(sum_\)\) {i = 2}^k\ t_i . \
The\ polynomial\ expression\ outputted\ is\ given\ in\ terms\ \
of\ x\ and\ y\), \
where\ x\ represents\ 1 - P_
1'\ and\ y\ represents\ P_
where\ P_j' = \(\(\\\)\(sum_\)\) {i = 2}^\(kt_i^j\) . \
Calls\ constcalc, \
and\ so\ assumes\ the\ relevent\ polynomials\ have\ been\ precomputed\
\[IndentingNewLine]*) \), "\[IndentingNewLine]",
\(\(PrmeCalc[Expr_, k_] :=
Module[{NewExpr = 0, FirstExpr = Expand[Expr], n1, n2, b, c, cp, tmp,
Coeff}, \[IndentingNewLine]n1 =
Exponent[Expr, x]; \[IndentingNewLine] (*\
We\ let\ n1\ be\ the\ maximum\ degree\ of\ the\ polynomial\ with\ \
respect\ to\ x\ *) \[IndentingNewLine] (*\
We\ now\ wish\ to\ split\ our\ polynomial\ into\ terms\ of\ the\ \
form\ x^b\ y^c\ *) \[IndentingNewLine]For[b = 0, b \[LessEqual] n1, \(b++\),
tmp = Coefficient[FirstExpr, x, b]; \[IndentingNewLine] (*\
We\ extract\ the\ part\ of\ the\ polynomial\ which\ has\ degree\
\ exactly\ b\ with\ respect\ to\ x\ *) \[IndentingNewLine]n2 =
Exponent[tmp, y]; \[IndentingNewLine] (*\
We\ let\ n2\ be\ the\ maximum\ degree\ of\ this\ part\ of\ the\ \
polynomial\ with\ respect\ to\ y\ *) \[IndentingNewLine]For[c = 0,
c \[LessEqual] n2, \(c++\), \[IndentingNewLine]Coeff =
Coefficient[tmp, y, c]; \[IndentingNewLine] (*\
Coeff\ is\ the\ coefficient\ of\ x^b\ y^
c\ in\ Expr\ *) \[IndentingNewLine]NewExpr =
Coeff*Sum[
x^\((b + 2
cp + 1)\)*y^\((cp)\)*Binomial[c, cp]*
Factorial[b]*
Factorial[2*c - 2*cp]/
Factorial[b + 2*c - 2*cp + 1], {cp, 0,
c}]; \[IndentingNewLine] (*\
We\ use\ our\ formula\ from\ equation\ 7.8\ to\ produce\ the\ \
polynomial\ which\ we\ get\ after\ integrating\ with\ respect\ to\ t1\ \
*) \[IndentingNewLine] (*\
NewExpr\ is\ the\ sum\ of\ all\ of\ these\ polynomials, \
and\ so\ the\ result\ of\ integrating\ Expr\ with\ respect\ \
to\ t1 . \ Here\ x\ now\ refers\ to\ 1 -
1'\ and\ y\ to\ P_
2'\ *) \[IndentingNewLine]];\[IndentingNewLine]]; \
\[IndentingNewLine]ConstCalc[NewExpr, k - 1]\[IndentingNewLine] (*\
We\ now\ intgrate\ our\ polynomial\ squared\ over\ $\\mathcal {R} \
_ {k - 1} $\ using\ our\ function\ defined\ above\ *) \[IndentingNewLine]];\)\
\[IndentingNewLine]\[IndentingNewLine] (*\ p[n] : \ Input\ an\ integer\ n, \
output\ a\ polynomial\ which\ is\ a\ linear\ combination\ of\ all\ \
monomials\ x^b\ *\ y^c\ with\ b + 2
c \[LessEqual]
n + 1. \ The\ coefficients\ are\ given\ by\ A[\([1]\)],
... \ *) \
\), "\[IndentingNewLine]",
\(\(yExponents[n_] :=
Module[{S = {}, i, tmp},
For[i = 0, i \[LessEqual] n, \(i++\),
tmp = Append[Reverse[Range[i]], 0]; \[IndentingNewLine]S =
Join[S, tmp,
tmp]; ]; \[IndentingNewLine]S];\)\), "\[IndentingNewLine]",
\(\(xExponents[n_] :=
Module[{S = {}, i, tmp},
For[i = 1, i \[LessEqual] n + 1, \(i++\),
tmp = 2*Range[i]; \[IndentingNewLine]S =
Join[S, tmp - 2,
tmp - 1]; ]; \[IndentingNewLine]S];\)\), \
"\[IndentingNewLine]",
\(\(p[n_] :=
Module[{X = xExponents[n], Y = yExponents[n], i},
Sum[A[\([\)\(i\)\(]\)]*x^X[\([\)\(i\)\(]\)]*
y^Y[\([\)\(i\)\(]\)], {i, 1,
Length[X]}]];\)\[IndentingNewLine]\[IndentingNewLine] (*\
We\ now\ perform\ the\ actual\ computation\ for\ k =
105\ to\ calculate\ a\ lower\ bound\ for\ M_ {105}\ *) \), "\
\[IndentingNewLine]",
\(\(k = 105;\)\), "\[IndentingNewLine]",
\(poly = p[5]\), "\[IndentingNewLine]",
\(\(vars =
DeleteCases[DeleteCases[Variables[poly], x],
y];\)\[IndentingNewLine] (*\
take\ our\ polynomial\ to\ be\ all\ monomial\ combination\ \((1 -
1)\)^b\ *\ P_
2^c\ with\ b + 2
c \[LessEqual]
11. \ Let\ vars\ be\ a\ vector\ of\ the\ coefficients\ \((A[\([1]\)]\ \
A[\([42]\)])\)\ in\ some\ order\ *) \), "\[IndentingNewLine]",
\(\(M1 = \(CoefficientArrays[ConstCalc[poly, k], vars,
Symmetric \[Rule] True]\)[\([3]\)];\)\), "\[IndentingNewLine]",
\(\(M2 = \(CoefficientArrays[PrmeCalc[poly, k], vars,
Symmetric \[Rule] True]\)[\([3]\)];\)\[IndentingNewLine] (*\
Calculate\ the\ positive\ definite\ real\ symmetric\ matrices\ M1\ and\ \
M2\ corresponding\ to\ the\ I_k\ and\ J_k\ integrals\ *) \), "\
\[IndentingNewLine]",
\(\(M3 = Inverse[M1] . M2;\)\), "\[IndentingNewLine]",
\(\(RatVec =
Rationalize[\(Eigenvectors[N[M3, 150], 1]\)[\([1]\)],
10^\((\(-40\))\)];\)\[IndentingNewLine] (*\
Using\ inexact\ arithmetic, \
calculate\ the\ eigenvector\ which\ maximizes\ the\ Rayleigh\ quotient \
. \ Then\ let\ RatVec\ be\ a\ close\ rational\ approximation\ to\ this\ *) \
\), "\[IndentingNewLine]",
\(\(Ratio =
k*\((RatVec . M2 . RatVec)\)/\((RatVec . M1 .
RatVec)\);\)\[IndentingNewLine] (*\
Calculate\ the\ value\ of\ the\ ratio\ using\ exact\ arithmetic\ for\ \
this\ choice\ of\ rational\ coefficients\ *) \), "\[IndentingNewLine]",
\(N[Ratio, 20]\)}], "Input"],
Cell[BoxData[
RowBox[{\(Part::"partd"\), \(\(:\)\(\ \)\), "\\\\"RefGuideLinkText\\\", ButtonFrame->None, \
ButtonData:>\\\"General::partd\\\"]\\)\"\>"}]], "Message"],
Cell[BoxData[
RowBox[{\(Part::"partd"\), \(\(:\)\(\ \)\), "\\\\"RefGuideLinkText\\\", ButtonFrame->None, \
ButtonData:>\\\"General::partd\\\"]\\)\"\>"}]], "Message"],
Cell[BoxData[
RowBox[{\(Part::"partd"\), \(\(:\)\(\ \)\), "\\\\"RefGuideLinkText\\\", ButtonFrame->None, \
ButtonData:>\\\"General::partd\\\"]\\)\"\>"}]], "Message"],
Cell[BoxData[
RowBox[{\(General::"stop"\), \(\(:\)\(\ \)\), "\\\\"RefGuideLinkText\
\\\", ButtonFrame->None, ButtonData:>\\\"General::stop\\\"]\\)\"\>"}]], \
"Message"],
Cell[BoxData[
\(A\[LeftDoubleBracket]1\[RightDoubleBracket] +
x\ A\[LeftDoubleBracket]2\[RightDoubleBracket] +
y\ A\[LeftDoubleBracket]3\[RightDoubleBracket] +
x\^2\ A\[LeftDoubleBracket]4\[RightDoubleBracket] +
x\ y\ A\[LeftDoubleBracket]5\[RightDoubleBracket] +
x\^3\ A\[LeftDoubleBracket]6\[RightDoubleBracket] +
y\^2\ A\[LeftDoubleBracket]7\[RightDoubleBracket] +
x\^2\ y\ A\[LeftDoubleBracket]8\[RightDoubleBracket] +
x\^4\ A\[LeftDoubleBracket]9\[RightDoubleBracket] +
x\ y\^2\ A\[LeftDoubleBracket]10\[RightDoubleBracket] +
x\^3\ y\ A\[LeftDoubleBracket]11\[RightDoubleBracket] +
x\^5\ A\[LeftDoubleBracket]12\[RightDoubleBracket] +
y\^3\ A\[LeftDoubleBracket]13\[RightDoubleBracket] +
x\^2\ y\^2\ A\[LeftDoubleBracket]14\[RightDoubleBracket] +
x\^4\ y\ A\[LeftDoubleBracket]15\[RightDoubleBracket] +
x\^6\ A\[LeftDoubleBracket]16\[RightDoubleBracket] +
x\ y\^3\ A\[LeftDoubleBracket]17\[RightDoubleBracket] +
x\^3\ y\^2\ A\[LeftDoubleBracket]18\[RightDoubleBracket] +
x\^5\ y\ A\[LeftDoubleBracket]19\[RightDoubleBracket] +
x\^7\ A\[LeftDoubleBracket]20\[RightDoubleBracket] +
y\^4\ A\[LeftDoubleBracket]21\[RightDoubleBracket] +
x\^2\ y\^3\ A\[LeftDoubleBracket]22\[RightDoubleBracket] +
x\^4\ y\^2\ A\[LeftDoubleBracket]23\[RightDoubleBracket] +
x\^6\ y\ A\[LeftDoubleBracket]24\[RightDoubleBracket] +
x\^8\ A\[LeftDoubleBracket]25\[RightDoubleBracket] +
x\ y\^4\ A\[LeftDoubleBracket]26\[RightDoubleBracket] +
x\^3\ y\^3\ A\[LeftDoubleBracket]27\[RightDoubleBracket] +
x\^5\ y\^2\ A\[LeftDoubleBracket]28\[RightDoubleBracket] +
x\^7\ y\ A\[LeftDoubleBracket]29\[RightDoubleBracket] +
x\^9\ A\[LeftDoubleBracket]30\[RightDoubleBracket] +
y\^5\ A\[LeftDoubleBracket]31\[RightDoubleBracket] +
x\^2\ y\^4\ A\[LeftDoubleBracket]32\[RightDoubleBracket] +
x\^4\ y\^3\ A\[LeftDoubleBracket]33\[RightDoubleBracket] +
x\^6\ y\^2\ A\[LeftDoubleBracket]34\[RightDoubleBracket] +
x\^8\ y\ A\[LeftDoubleBracket]35\[RightDoubleBracket] +
x\^10\ A\[LeftDoubleBracket]36\[RightDoubleBracket] +
x\ y\^5\ A\[LeftDoubleBracket]37\[RightDoubleBracket] +
x\^3\ y\^4\ A\[LeftDoubleBracket]38\[RightDoubleBracket] +
x\^5\ y\^3\ A\[LeftDoubleBracket]39\[RightDoubleBracket] +
x\^7\ y\^2\ A\[LeftDoubleBracket]40\[RightDoubleBracket] +
x\^9\ y\ A\[LeftDoubleBracket]41\[RightDoubleBracket] +
x\^11\ A\[LeftDoubleBracket]42\[RightDoubleBracket]\)], "Output"],
Cell[BoxData[
\(4.52`20. \)], "Output"]
Cell[CellGroupData[{
Cell[BoxData[
\(\[IndentingNewLine]\)], "Input"],
Cell[BoxData[
RowBox[{\(Part::"partd"\), \(\(:\)\(\ \)\), "\\\\"RefGuideLinkText\\\", ButtonFrame->None, \
ButtonData:>\\\"General::partd\\\"]\\)\"\>"}]], "Message"],
Cell[BoxData[
RowBox[{\(Part::"partd"\), \(\(:\)\(\ \)\), "\\\\"RefGuideLinkText\\\", ButtonFrame->None, \
ButtonData:>\\\"General::partd\\\"]\\)\"\>"}]], "Message"],
Cell[BoxData[
RowBox[{\(Part::"partd"\), \(\(:\)\(\ \)\), "\\\\"RefGuideLinkText\\\", ButtonFrame->None, \
ButtonData:>\\\"General::partd\\\"]\\)\"\>"}]], "Message"],
Cell[BoxData[
RowBox[{\(General::"stop"\), \(\(:\)\(\ \)\), "\\\\"RefGuideLinkText\
\\\", ButtonFrame->None, ButtonData:>\\\"General::stop\\\"]\\)\"\>"}]], \
"Message"],
Cell[BoxData[
\(A\[LeftDoubleBracket]1\[RightDoubleBracket] +
x\ A\[LeftDoubleBracket]2\[RightDoubleBracket] +
y\ A\[LeftDoubleBracket]3\[RightDoubleBracket] +
x\^2\ A\[LeftDoubleBracket]4\[RightDoubleBracket] +
x\ y\ A\[LeftDoubleBracket]5\[RightDoubleBracket] +
x\^3\ A\[LeftDoubleBracket]6\[RightDoubleBracket] +
y\^2\ A\[LeftDoubleBracket]7\[RightDoubleBracket] +
x\^2\ y\ A\[LeftDoubleBracket]8\[RightDoubleBracket] +
x\^4\ A\[LeftDoubleBracket]9\[RightDoubleBracket] +
x\ y\^2\ A\[LeftDoubleBracket]10\[RightDoubleBracket] +
x\^3\ y\ A\[LeftDoubleBracket]11\[RightDoubleBracket] +
x\^5\ A\[LeftDoubleBracket]12\[RightDoubleBracket] +
y\^3\ A\[LeftDoubleBracket]13\[RightDoubleBracket] +
x\^2\ y\^2\ A\[LeftDoubleBracket]14\[RightDoubleBracket] +
x\^4\ y\ A\[LeftDoubleBracket]15\[RightDoubleBracket] +
x\^6\ A\[LeftDoubleBracket]16\[RightDoubleBracket] +
x\ y\^3\ A\[LeftDoubleBracket]17\[RightDoubleBracket] +
x\^3\ y\^2\ A\[LeftDoubleBracket]18\[RightDoubleBracket] +
x\^5\ y\ A\[LeftDoubleBracket]19\[RightDoubleBracket] +
x\^7\ A\[LeftDoubleBracket]20\[RightDoubleBracket] +
y\^4\ A\[LeftDoubleBracket]21\[RightDoubleBracket] +
x\^2\ y\^3\ A\[LeftDoubleBracket]22\[RightDoubleBracket] +
x\^4\ y\^2\ A\[LeftDoubleBracket]23\[RightDoubleBracket] +
x\^6\ y\ A\[LeftDoubleBracket]24\[RightDoubleBracket] +
x\^8\ A\[LeftDoubleBracket]25\[RightDoubleBracket] +
x\ y\^4\ A\[LeftDoubleBracket]26\[RightDoubleBracket] +
x\^3\ y\^3\ A\[LeftDoubleBracket]27\[RightDoubleBracket] +
x\^5\ y\^2\ A\[LeftDoubleBracket]28\[RightDoubleBracket] +
x\^7\ y\ A\[LeftDoubleBracket]29\[RightDoubleBracket] +
x\^9\ A\[LeftDoubleBracket]30\[RightDoubleBracket] +
y\^5\ A\[LeftDoubleBracket]31\[RightDoubleBracket] +
x\^2\ y\^4\ A\[LeftDoubleBracket]32\[RightDoubleBracket] +
x\^4\ y\^3\ A\[LeftDoubleBracket]33\[RightDoubleBracket] +
x\^6\ y\^2\ A\[LeftDoubleBracket]34\[RightDoubleBracket] +
x\^8\ y\ A\[LeftDoubleBracket]35\[RightDoubleBracket] +
x\^10\ A\[LeftDoubleBracket]36\[RightDoubleBracket] +
x\ y\^5\ A\[LeftDoubleBracket]37\[RightDoubleBracket] +
x\^3\ y\^4\ A\[LeftDoubleBracket]38\[RightDoubleBracket] +
x\^5\ y\^3\ A\[LeftDoubleBracket]39\[RightDoubleBracket] +
x\^7\ y\^2\ A\[LeftDoubleBracket]40\[RightDoubleBracket] +
x\^9\ y\ A\[LeftDoubleBracket]41\[RightDoubleBracket] +
x\^11\ A\[LeftDoubleBracket]42\[RightDoubleBracket]\)], "Output"],
Cell[BoxData[
\(4..998\)], "Output"]
FrontEndVersion->"5.0 for Microsoft Windows",
ScreenRectangle->{{0, 1024}, {0, 503}},
WindowSize->{},
WindowMargins->{{0, Automatic}, {Automatic, 0}}
(*******************************************************************
Cached data follows.
If you edit this Notebook file directly, not
using Mathematica, you must remove the line containing CacheID at
the top of
The cache data will then be recreated when
you save this file from within Mathematica.
*******************************************************************)
(*CellTagsOutline
CellTagsIndex->{}
(*CellTagsIndex
CellTagsIndex->{}
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[944, 214, 2170, "Input"],
Cell[1, 342, 5, 22, "Message"],
Cell[1, 342, 5, 22, "Message"],
Cell[1, 342, 5, 22, "Message"],
Cell[1, 329, 5, 22, "Message"],
Cell[1, , "Output"],
Cell[1, 79, 1, 29, "Output"]
Cell[CellGroupData[{
Cell[1, 52, 1, 50, "Input"],
Cell[1, 342, 5, 22, "Message"],
Cell[1, 342, 5, 22, "Message"],
Cell[1, 342, 5, 22, "Message"],
Cell[1, 329, 5, 22, "Message"],
Cell[1, , "Output"],
Cell[2, 73, 1, 29, "Output"]
(*******************************************************************
End of Mathematica Notebook file.
*******************************************************************)Mathematica是一个世界知名的主流数学软件。Wolfram公司的调查显示,它的用户主要分布在工程、物理学、数学、计算机科学、医药化学、航空航天等领域.。 许多人都知道,它不仅能做高精度的数值计算,还有独树一帜的符号计算功能(在四大主流数学软件中,其余三家的符号计算功能都源出于Maple一家)。能为各种数学表达式绘制数学图形,还有独特的帧帧动画基本功能。是一个完美的科技工作平台。 但是,许多人也许还不了解,Mathematica的Notebook界面同时还是一个十分完善的科技文献写作环境。
它能方便地写出传统的2D数学表达式,具有足够的文本编辑排版功能,可以生成 “多媒并茂”的科技文档(把文本、公式、图形、动画、声音集于一身)。特别可爱的是,它能十分流畅的几乎是完美无缺的处理简体中文和繁体中文,无需经过“汉化”。它甚至可以进行任何一种语言的文字处理,只要配上相应的录入手段。Mathematica的Notebook还能把它所生成的文档转换格式,输送到其它软件环境中去使用。 仅就文字处理功能而言,它并不逊色于大名鼎鼎的Mord。如果再注意到它主营业务的那些看家本事(数值计算、符号计算、绘制图形、制播动画),你该想象得出来,它可以生成多么美妙的科技文献。你肯定知道,这样的科技文献会有多么大的使用范围:讲课使用的演示课件;学术报告的讲演稿;展览会上的展播解说;呈交上司的项目总结;合作者之间交流学术见解的通信文书,??。
对于科技人员来说,与一般的通用文字处理软件相比,它的优点真是太多了。由此有人给他送了一个外号:“Math-Word”或“Sciense-Word”!
如果你对Mathematica已不陌生,用它做过计算或绘图,现在你可以通过本书掌握它的科技文档处理功能;如果你还没有熟悉它的计算绘图功能,也可以先读这本书掌握它的文字处理功能,这也并不妨碍你回头再去熟悉它的计算绘图功能。 本书内容是,作者多年跟踪使用Mathematica的心得总结,内容独特新鲜。
第1章 Notebook的基本文字处理功能
1-1. Mathematica的界面
高版本的Mathematica有三种可做人机交互的前端界面。
1-1-1.Notebook界面
Notebook最常用,所以被称为主界面。它的调用命令是[开始|程序|Mathematica5| Mathematica5]或[C:\Program Files\ Wolfram Research \Mathematica \5.0\Mathmatica]。 软件安装之后,此界面在目录中的对应文件名和图标是
。执行此文件所调出的窗口界面如图1-1。
图1- 1 高版本Mathematica的前端界面(Notebook)
1-1-2.Text based界面
这种界面的调用是命令:[开始|程序|Mathematica5| Mathematica5 Kernel]或[C:\Program Files\Wolfram Research\Mathematica\ 5.0\ Math Kernel]。
在目录中的文件名和图标是:
。所调出的窗口界面如图1-2。
Mathematica的Text based界面
1-1-3.DOS界面
调用命令:[C:\Program Files\Wolfram Research\Mathematica\5.0\Math]。
在目录中的文件名和图标是:
。窗口界面如图1-3。
Mathematica的DOS界面
三种界面之中,NB(即NoteBook)最新,也最便于使用,曾有“科学计算草纸”之美称。它具有的完善的科技文档处理功能,又被称作“Math-Word”或 “Sciense-Word”。本书主要内容就是介绍这种Notebook界面的科技文档处理功能。以后,如无特殊说明,一律使用这种NB(Notebook)。
NoteBook的结构和本质
从属性来说,NoteBook既是一个计算、绘图、编程的工作平台,又是一个完美的文档处理器,能制作出图文式并茂的科技文档,保存起来就是一个文件。
NoteBook将文字处理、数学计算、图形绘制、动画制作多种功能集于一个环境,显然它的任务相当复杂而繁重。为使软件系统顺利辨识不同的任务,设计者采用的处理策略是使用一种叫做Cells的结构设计。
于是,Notebook就成了若干Cell的集合。也就是说,NB文档的所有内容都分置于不同的Cell当中,而NB也就没有不属于任何Cell的内容。
在Notebook当中,每个Cell负有不同的使命,可分为性质迥然有别的两大类: 一类,是程序类的Cell,负责接受并执行计算、推演、绘图任务,而且要返回结果; 另一类,是文本类的Cells,负责处理文字(接受录入信息,并作编辑排版然后保存起来)。文本类的Cell,还可以按着排版格式再加以细分,成为各种各样的文本类Cell。这就涉及到后面要讲的“Cell的样式”(即CellStyle)。CellStyle里面,含有两种信息::
(1) 表明Cell的类属的信息(是属于文本类还是程序类);
(2) 本Cell中使用了哪些排版命令。
从直观上说,Notebook就是文档,Cell就是段落。但从本质上说,Notebook和Cell都是由命令生成的“窗口区域图形”,因而必有其相应的生成命令(语句表达式)。 有关Notebook表达式和Cell表达式的知识,一般的初级使用者可以不必深究。高中级用户可以在本讲义的第2章中得到一些比较系统的知识。
2. 对Cells的几种常用操作
本段所讲各种操作,对于各种各类的Cell大都适用。
在对Cell进行种种组合操作之前,要保证将要被操作的Cell处于“可手工组合”的状态。保证这一状态的菜单命令是 [Cell | Cell Grouping | Manual Grouping ]。
2-1. 认识Cell的记号(标记符,Bracket)
在每个Cell右端,通常都会出现一条竖直的线段,上下两端带着不同形状的小钩。它就是这个Cell的标记符(Bracket)。
Cell标记符的主要作用是:1.标记本Cell的范围,2.在标记符上表示出Cell的类别。 在默认状态下,Cell标记符的形状显示为“后半个方括号(Bracket)”。 最常见也是使用最方便的形状是:文本类Cell是一种统一标记符,上头是双横线;程序类Cell标记符的标准(Standard)形状,是上头有空心的三角形,像是一面小旗。
在非默认状态下,程序类Cell标记符会产生形状变化,但这变化是由相关属性设置产生的,无需人工干预。

我要回帖

更多关于 notebook软件打开 的文章

 

随机推荐