主轴运行过程中产生铸造缺陷产生原因主要有哪些,如何进行检测

导读:这是硬盘最主要的缺陷类型,导致这种缺陷的原因主要有:磁盘表面磁介质损伤、硬盘写功能不正常、校验码的算法差异,这种情况严格来说不一定是硬盘本身的缺陷,现在的硬盘大多采用嵌入式伺服,硬盘中每个正常的物理磁道都嵌入有一段或几段信息作为伺服信息,指硬盘中磁头组件的某部分不正常,硬盘无法被系统BIOS检测到,每个硬盘内部都有一个系统保留区(servicearea),硬盘在通电自检时,硬盘就进入准备状态,
⑤电子线路缺陷(The board of electronics defect)
⑥综合性能缺陷(Complex reliability defect)
1.坏扇区(也称缺陷扇区)
指不能被正常访问或不能被正确读写的扇区。一般表现为:高级格式化后发现有“坏簇(Bad Clusters);用SCANDISK等工具检查发现有“B”标记;或用某些检测工具发现有“扇区错误提示”等。
一般每个扇区可以记录512字节的数据,如果其中任何一个字节不正常,该扇区就属于缺陷扇区。每个扇区除了记录512字节的数据外,另外还记录有一些信息:标志信息、校验码、地址信息等,其中任何一部分信息不正常都导致该扇区出现缺陷。
多数专业检测软件在检测过程中发现缺陷时,都有类似的错误信息提示,常见的扇区缺陷主要有几种情况:
①校验错误(ECC uncorrectable errors,又称ECC错误)。系统每次在往扇区中写数据的同时,都根据这些数据经过一定的算法运算生成一个校验码(ECC=Error Correction Code),并将这个校验码记录在该扇区的信息区内。以后从这个扇区读取数据时,都会同时读取其校检码,并对数据重新运算以检查结果是否与校检码一致。如果一致,则认为这个扇区正常,存放的数据正确有效;如果不一致,则认为该扇区出错,这就是校验错误。这是硬盘最主要的缺陷类型。导致这种缺陷的原因主要有:磁盘表面磁介质损伤、硬盘写功能不正常、校验码的算法差异。
②IDNF错误(sector ID not found),即扇区标志出错,造成系统在需要读写时找不到相应的扇区。造成这个错误的原因可能是系统参数错乱,导致内部地址转换错乱,系统找不到指定扇区;也有可能是某个扇区记录的标志信息出错导致系统无法正确辨别扇区。
③AMNF错误(Address Mark Not Found),即地址信息出错。一般是由于某个扇区记录的地址信息出错,系统在对它访问时发现其地址信息与系统编排的信息不一致。
④坏块标记错误(Bad block mark)。某些软件或病毒程序可以在部分扇区强行写上坏块标记,让系统不使用这些扇区。这种情况严格来说不一定是硬盘本身的缺陷,但想清除这些坏块标记却不容易。
2.磁道伺服缺陷
现在的硬盘大多采用嵌入式伺服,硬盘中每个正常的物理磁道都嵌入有一段或几段信息作为伺服信息,以便磁头在寻道时能准确定位及辨别正确编号的物理磁道。如果某个物理磁道的伺服信息受损,该物理磁道就可能无法被访问。这就是“磁道伺服缺陷”。一般表现为,分区过程非正常中断;格式化过程无法完成;用检测工具检测时,中途退出或死机,等等。
3.磁头组件缺陷
指硬盘中磁头组件的某部分不正常,造成部分或全部物理磁头无法正常读写的情况。包括磁头磨损、磁头接触面脏、磁头摆臂变形、音圈受损、磁铁移位等。一般表现为通电后,磁头动作发出的声音明显不正常,硬盘无法被系统BIOS检测到;无法分区格式化;格式化后发现从前到后都分布有大量的坏簇,等等。
4.系统信息错乱
每个硬盘内部都有一个系统保留区(service area),里面分成若干模块保存有许多参数和程序。硬盘在通电自检时,要调用其中大部分程序和参数。如果能读出那些程序和参数模块,而且校验正常的话,硬盘就进入准备状态。如果某些模块读不出或校验不正常,则该硬盘就无法进入准备状态。一般表现为,PC系统的BIOS无法检测到该硬盘或检测到该硬盘却无法对它进行读写操作。如某些系列硬盘的常见问题:美钻二代系列硬盘通电后,磁头响一声,马达停转;Fujitsu MPG系列在通电后,磁头正常寻道,但BIOS却检测不到;火球系列,系统能正常认出型号,却不能分区格式化;Western Digital的EB、BB系列,能被系
统检测到,却不能分区格式化,等等。
5.电子线路缺陷
指硬盘的电子线路板中部分线路断路或短路,某些电气元件或IC芯片损坏等。有部分可以通过观察线路板发现缺陷所在,有些则要通过仪器测量后才能确认缺陷部位。一般表现为硬盘在通电后不能正常起转,或者起转后磁头寻道不正常,等等。
6.综合性能缺陷
有些硬盘在使用过程中部分芯片特性改变;或者有些硬盘受震动后物理结构产生微小变化(如马达主轴受损);或者有些硬盘在设计上存在缺陷……最终导致硬盘稳定性差,或部分性能达不到标准要求。一般表现为,工作时噪音明显增大;读写速度明显太慢;同一系列的硬盘大量出现类似故障;某种故障时有时无等等。
二、厂家处理缺陷的方式
用户在购买硬盘时,一般都通过各种工具检测硬盘没有缺陷后才会购买。而且,在质保期内可以找销售商将硬盘退回厂家修理。那么,厂家如何保证新硬盘不会被检测到缺陷呢?返修的硬盘又如何处理缺陷呢?首先,让我们来认识硬盘工厂的一些基本处理流程:
1.在生产线上装配硬盘的硬件部分,用特别设备往盘片写入伺服信号(Servo write)。
2.将硬盘的系统保留区(service area)格式化,并向系统保留区写入程序模块和参数模块。系统保留区一般位于硬盘0物理面的最前面几十个物理磁道。写入的程序模块一般用于硬盘内部管理,如低级格式化程序、加密解密程序、自监控程序、自动修复程序等等。写入的参数多达近百项:如型号、系列号、容量、口令、生产厂家与生产日期、配件类型、区域分配表、缺陷表、出错记录、使用时间记录、S.M.A.R.T表等等,数据量从几百KB到几MB不等。有时参数一经写入就不再改变,如型号、系列号、生产时间等;而有些参数则可以在使用过程中由内部管理程序自动修改,如出错记录、使用时间记录、S.M.A.R.T记录等。也有些专业的维修人员可以借助专业的工具软件,随意读取、修改写入硬盘中的程序模块和参数模块。
3.将所使用的盘片表面按物理地址全面扫描,检查出所有的缺陷磁道和缺陷扇区,并将这些缺陷磁道和缺陷扇区按实际物理地址记录在永久缺陷列表(P-list:Permanent defect list)中。这个扫描过程非常严格,能把不稳定不可靠的磁道和扇区也检查出来,视同缺陷一并处理。现在的硬盘密度极高,盘片生产过程再精密也很难完全避免缺陷磁道或缺陷扇区。一般新硬盘的P-list中都有少则数十,多则上万个缺陷记录。P-list是保留在系统保留区中,一般用户是无法查看或修改的。有些专业的维修人员借助专业的工具软件,可以查看或修改大部分硬盘中的P-list。
4.系统调用内部低级格式化程序,根据相应的内部参数进行内部低级格式化。在内部低级格式化过程中,对所有的磁道和扇区进行编号、信息重写、清零等工作。在编号时,采用跳过(skipped)的方法忽略掉记录在P-list中的缺陷磁道和缺陷扇区,保证以后用户不会也不能使用到那些缺陷磁道和缺陷扇区。因此,新硬盘在出售时是无法被检测到缺陷的。如果是返修的硬盘,一般就在厂家特定的维修部门进行检测维修。
小知识:什么是硬盘的磁道和扇区?磁道是磁盘一个面上的单个数据存储圆圈。如果将磁道作为一个存储单元,从数据管理效率来看实在是太低了,因此,磁道被分成若干编上号的区域,称之为扇区。这些扇区代表了磁道的分段(如图)。在PC系统中,通过标准格式化的程序产生的扇区容量都为512字节。这里大家需注意的是“扇区”与“簇”的关系,“簇”是操作系统在读或写一个文件时能处理的最小磁盘单元,一个簇等于一个或多个扇区。
三、硬盘缺陷的处理
如果不在硬盘工厂中,对普通用户或维修人员来说,又如何处理硬盘的缺陷呢?前面我
们把硬盘的缺陷分为六大类,不同类型的缺陷用不同的处理方法。
1.对于综合性能缺陷,一般涉及到稳定性问题,用户随时有丢失数据的危险,可以说是“用之担惊,弃之可惜”。维修人员很难从根本上解决问题,建议用户还是趁早更换硬盘。
2.对于磁头组件缺陷,解决办法是更换磁头组件,这对设备及环境要求较高,维修成本也很高。除非是要求恢复其中的数据,否则不值得进行修复。有条件的维修公司可以在百级净化室中更换硬盘的磁头组件,对数据进行拯救。
3.对于线路缺陷,一般要求维修人员有电子线路基础,要有测试线路的经验和焊接芯片的设备,当然还要有必需的配件以备更换。目前许多专业维修硬盘的公司都有条件解决这类缺陷。对普通用户而言,最简单的判别和解决办法是找一个相同的正常线路板换上试试。
4.对于系统信息错乱,需要有专业的工具软件才能解决。首先要找个与待修硬盘参数完全相同的正常硬盘,读出其内部所有模块并保存下来;检查待修硬盘的系统结构,查到出错的模块,并将正常模块的参数重新写入。笔者用这个方法成功地修复了数以千计有这种缺陷类型的硬盘,而且一般不会破坏原有数据。要想写某系列硬盘的系统信息,相应的工具软件必须有严格针对性;该硬盘的CPU专用指令集;该硬盘的Firmware结构;内部管理程序和参数模块结构。一般只有硬盘厂家才能编写这样的专业工具软件,而且视为绝密技术,不向外界提供。但也有一些专业的硬盘研究所研究开发类似的专业工具软件,一般要价很高而且很难买到。
5.对于伺服缺陷,也要借助于专业工具。相应的专业工具可以通过重写来纠正伺服信息,解决部分磁道伺服缺陷。如果有部分无法纠正,则要对盘片进行物理磁道扫描找出有伺服缺陷的磁道,添加到P-list(或另外的专门磁道缺陷列表)中。然后,运行硬盘内部的低级格式化程序。这段程序能自动根据需要调用相关的参数模块,自动完成硬盘的低格过程,不需要PC系统的干预。
PC-3000 专业级硬盘修复套件(原产俄罗斯)
坏扇区是最常见的缺陷类型,下面笔者着重论述。
四、坏扇区的修复原理
按“三包”规定,如果硬盘在质保期内出现缺陷,商家应该为用户更换或修理。现在大容量的硬盘出现一个坏扇区的概率实在很大,如果全部送修的话,硬盘商家就要为售后服务忙碌不已了。很多硬盘商家都说,硬盘出现少量坏扇区往往是病毒作怪或某些软件造成的,不是真正的坏扇区,只要运行硬盘厂家提供的某些软件,就可以纠正了。到底是怎么回事呢?从前面对坏扇区的说明来看,坏扇区有多种可能的原因,修复的方法也有几种:
1.通过重写校验码、标志信息等可以纠正一部分坏扇区。现在硬盘厂家都公开提供有一些基本的硬盘维护工具,如各种版本的DM、POWERMAX、DLGDIAG等,其中都包括有这样的功能项:Zero fill(零填充)或Lowlevel format(低级格式化)。进行这两项功能都会对硬盘的数据进行清零,并重写每个扇区的校验码和标志信息。如果不是磁盘表面介质损伤的话,大部分的坏扇区可以纠正为正常状态。这就是常听说的:“逻辑坏扇区可以修复”的道理。
2.调用自动修复机制替换坏扇区。为了减少硬盘返修的概率,硬盘厂商在硬盘内部设计了一个自动修复机制?Automatic Reallcation或Automatic Reassign?。现在生产的硬盘都有这样的功能:在对硬盘的读写过程中,如果发现一个坏扇区,则由内部管理程序自动分配一个备用扇区来替换该扇区,并将该扇区物理位置及其替换情况记录在G-list(增长缺陷表,Grown defects list?中。这样一来,少量的坏扇区有可能在使用过程中被自动替换掉了,对用户的使用没有太大的影响。也有一些硬盘自动修复机制的激发条件要严格一些,需要运行某些软件来检测判断坏扇区,并发出相应指令激发自动修复功能。比如常用的Lformat(低
格)?DM中的Zero fill,Norton中的Wipeinfo和校正工具,西数工具包中的wddiag,IBM的DFT中的Erase,还有一些半专业工具如:HDDspeed、MHDD、HDDL、HDDutility等(大家可以上网搜索下载)。这些工具之所以能在运行过后消除了一些坏扇区,很重要的原因就是这些工具可以在检测到坏扇区时激发自动修复机制。如果读者能查看G-list就知道,这些“修复工具”运行前后,G-list记录有可能增加一定数量。如:用HDDspeed可以查看所有Quantum Fireball系列的P-list和G-list;MHDD可以查看IBM和FUJITSU的P-list和G-list。
当然,G-list的记录不会无限制,所有硬盘的G-list都会限定在一定数量范围内。如火球系列限度是500条,美钻二代的限度是636条,西数BB的限度是508条,等等。超过限度,自动修复机制就不能再起作用。这就是为何少量的坏扇区可以通过上述工具修复,而坏扇区多了不能通过这些工具修复。
3.用专业软件将缺陷扇区记录在P-list中,并进行内部低级格式化。用户在使用硬盘时,是不能按物理地址模式来访问硬盘的。而是按逻辑地址模式来访问。硬盘在通电自检时,系统会从系统保留区读取一些特定参数(与内部低级格式化时调用的参数有密切关系)存在缓冲区里,用作物理地址与逻辑地址之间转换的依据。有些专业软件可以将检测到的坏扇区的逻辑地址转换为对应的物理地址,直接记录在P-list中,然后调用内部低级格式化程序进行低级格式化。这样可以不受G-list的限制,能修复大量的坏扇区,达到厂家修复的效果。
pc3000运行地要求:586主板必须要有isa擦槽,32m内存,IRQ12中断没有被占用 刷新FW方法:
FW是指厂商预先写在硬盘负磁道上的信息。可以找一个FW好的盘,FLASH应该是电路板上的ROM把上面的FLASH(比如29f102bb)解下来,利用LAB-TOOL48重抄一份,在装上去就OK.在硬盘负磁道上的信息,就是固件信息。其实,所谓的负磁道、0道、正磁道都不是指绝对位置,而是相对的位置。
⑷如何生成*.ldr和*.RAM文件?
只有Maxtor DSP / Poker 和IBM的模块可以生成 LDR和RAM文件, 其他的模块目前只有由ACELAB提供。 生成的方法如下:
接入一个好盘,选择相应的模块进入到主菜单
选1-1-1,输入文件名,生成RAM
选1-4,输入文件名,生成LDR
刷写固件过程中的注意事项:
1。加载LDR或RAM以后,不要忙着进行下一步,等硬盘回到待命状态后(第2、4灯亮)再往下做。如果硬盘不能回到待命状态,可尝试使用“电机停转”命令
2。在写入新的固件之前,务必做好备份工作
3。固件文件:RAM、LDR、RPM、SMB中,RAM和LDR独立于RPM和SMB。也就是说,可以用A的RAM和LDR驱动硬盘后写入B的RPM和SMB。
4。刷写固件后一定要主机断电从起。
5。如果写了P表,一定要低格后再做缺陷表。
6。很多迈拓写了固件后读写变慢,可通过复位4模块或写回1E#模块解决。
7。慎用SELFTEST,原因看下一帖。
不用安全模式维修maxtor的方法:
我的体会是:安全模式有的时候反而不好加载ldr。 用主盘的跳线进入dos, 先用ac_ident进入硬盘识别程序, 如果能识别成功,再进入维修模块加载ldr的成功率很高。 有时即便ac-ident无法识别硬盘,再进入维修模块也容易成功。大家试试。ac_ident是专用于WD硬盘的识别程序,对其他品牌不适用。楼主可以试试MT、IBM盘,此法大概不灵。
以美钻一代 二代 三代和金钻八代为主。 “安全模式”下,硬盘在刚通电的时候不允许主轴
包含总结汇报、办公文档、IT计算机、专业文献、应用文书、教程攻略、党团工作、人文社科、旅游景点以及硬盘维修精典教材等内容。本文共10页
相关内容搜索检测更小、更致命缺陷所面临的障碍
检测更小、更致命缺陷所面临的障碍
发布: | 作者: | 来源:
| 查看:532次 | 用户关注:
  与更先进技术节点相伴而生的不利之处在于,随着器件尺寸的缩小,那些在以前节点上曾经不太重要的缺陷和颗粒可能会变成器件杀手。这样一来,就要求器件制造商具备更强大的、能够对越来越小的缺陷和颗粒进行检测的能力。虽然在半导体产业刚刚起步时,检测能力与尺寸缩小的缺陷之间的赛跑就已经开始并持续至今。但是现在及不远的将来,对3D结构进行形状表征面临着巨大障碍和各种基本限制,会给检查、测量和测试平台技术带来严
  与更先进技术节点相伴而生的不利之处在于,随着器件尺寸的缩小,那些在以前节点上曾经不太重要的缺陷和颗粒可能会变成器件杀手。这样一来,就要求器件制造商具备更强大的、能够对越来越小的缺陷和颗粒进行检测的能力。虽然在半导体产业刚刚起步时,检测能力与尺寸缩小的缺陷之间的赛跑就已经开始并持续至今。但是现在及不远的将来,对3D结构进行形状表征面临着巨大障碍和各种基本限制,会给检查、测量和测试平台技术带来严重的挑战。 浸没式光刻带来的困难   浸没式光刻将加大缺陷检测的难度。正如Applied Materials公司工艺诊断和控制部门的市场策略经理Ehud Tzuri所说的那样,发现缺陷的难度增大“不仅是因为出现新的缺陷类型,还因为缺陷的尺寸大小。大多数的新缺陷都很大而且通常已被很好地了解,比如与浸没式光刻有关的水泡、水痕等等。”这些缺陷能够被控制到与干法光刻相同的程度,因为已经知道它们的来源。   &&&  然而似是而非的是,由于浸没式光刻的分辨率更高,因此出来尺寸更小的致命缺陷。晶圆上超过70%的缺陷都小于50nm。在早期的表征过程中,许多缺陷会被以前的设备漏检,不是因为它们不存在,而是因为这些设备无法检测到它们。这些小的桥接、基脚等极微小的缺陷――曾经被忽略或不用确认――现在已经变得很重要了(图1)。   必须对这些微小的缺陷进行检测。“提高分辨率是最佳的办法。”Tzuri说:“然而,传统的明场显微镜,即便是用DUV光源,也已经达到分辨率的极限了。因此不可能分辨出非常密集的图形,比如目前小于55nm的NAND闪存图形。” Applied Materials公司的解决方案使用结合深紫外(DUV)和激光照明的3-D采集方法,从而使缺陷检测的分辨率能够达到1/10波长的范围。   随着22nm节点的接近,光学检查将遇到很多问题,因此用电子束设备来检测极微小缺陷的必要性不断上升。这就要求提高电子束设备的单位时间的产量以适应大规模生产的需要――一个工程性的挑战。当然,光学和电子束方法可能会被结合使用。   有用的破坏性方法   FEI公司纳米电子事业群的产品市场经理Larry Dworkin相信,在32和22nm节点,对TEM数据的需求会大为增加。“系统被用于在整个晶圆上进行FIB辅助的TEM薄层准备工作,而晶圆的其余部分则能够被送回生产线。用TEM来分析这片小的薄层就可以确认缺陷的产生根源。”一些65和45nm器件制造商已经在这样做,而且将来还可能需要更多的扫描TEM和TEM图像,来研究那些只能通过电子束检查或电子探针来观察的缺陷(图2)。   在22nm节点到来之前,TEM必须从离线的实验室技术转变为进入fab的线上技术。短期目标是使检测周期缩短到2小时左右,而长期目标则是必须具有移动性。在应变硅领域需要考虑的重要因素是,当晶圆被切开时,样品内的应力会发生变化。这就要求采用新的TEM样品准备技术以防止薄层的变形。   在通往22nm节点的道路上,缺陷检测问题的严重程度将主要取决于我们是否使用目前的晶体管设计――尽管变得更小――在这种情况下会更多地用到TEM;标准的截面SEM和基本的自顶至底的CD-SEM无法测量或量化那些必须被观察的缺陷。取而代之的是finFET等3D结构。然而,传统的SEM和自顶至底CD-SEM技术不足以测量这些结构,因此非破坏性的测量技术成为必须。  一个明显的选择是散射测量。但问题在于它是否能够处理尺寸微小的、复杂度高的finFET结构,以及是否需要进行截面测量来帮助建立和验证散射测量的模型,或者是否最终需要这种技术来验证在线测量的结果。如果需要散射测量来全面了解finFET结构在22nm节点会发生什么,某些形式的截面测量可能是不可避免的。   分辨率和材料     设计规则的缩小推动了分辨率的提高。测量设备必须提供更高的分辨率来测量尺寸等于或小于设计规则的缺陷,特别是对逻辑电路而言。KLA-Tencor公司晶圆检查事业群的副总裁Mike Kirk相信,这不但会推动光学系统及其保真度的提升,还会提高图像计算的要求,因为必须处理更小的信息像素。他说:“从0.25mm节点到现在,像素的尺寸大约缩小了3倍。”   根据Kirk所说,向更高分辨率发展的速度很慢,因为如果采用20nm的像素,测量设备的操作会变得很慢和很贵。他说:“正如扫描式光刻机的开发者关注k因子一样,我们也有一个类似的因子,称之为缺陷与像素的比率。通过在像素尺寸给定的条件下找到尺寸不断变小的缺陷,我们不断地尝试着提高这个比率。为了获得更多的信息,我们必须缩小像素。这意味着更好的处理过程、更好的算法和对于给定像素的分辨率更高的光学系统――更高的数值孔径。”   另一个涉及到的问题与新材料有关。确定一个缺陷的物理起因以及其光学或电学图像是很复杂的。由于存在近场干涉效应,电介质也或多或少会吸收一些光,而且测量设备不能被设计成只针对具有特定厚度、n和k值的给定层(因为用户需要改变测量要求以针对下一个节点的器件或稍有不同的器件),因此要求不同的光学性质。光学系统的照明和检测方案都必须具有足够的灵活性,以应对可能会被采用的不同结构或材料。   在开发阶段,计量供应商必须与fab紧密合作。器件制造商不会只因为某种材料具有所需的电学性质或热管理预算就决定使用它;他们还想知道它能否被检查、测量和控制。他们在工艺开发的早期就做好相关的决定,然后请计量供应商为先进的材料和设计规则提供设备来帮助他们选择。Kirk 说:“问题在于他们可能会先选择六种不同的设备,而后来却决定只用一种,因此我们必须帮助提供所有的六种设备,并且需要在合适的时间拥有合适的测试平台。”这意味着在很早的阶段就应该为fab进行复杂的缺陷和器件建模,以保证设备具有合适的数值孔径、照明、波长、角度和采集几何结构。   粗糙度问题     亚22nm节点的缺陷检测和噪声抑制是有待解决的棘手问题。在制作栅极线条时,图形转移一般都是不完美的,而且器件的边缘都会存在一些粗糙度。芯片与芯片之间(die-to -die)或晶体管与晶体管之间不可能是完全均匀的。Kirk说:“设备将它(非均匀性造成的局部涨落)当作缺陷,而用户在其尺寸大到足以引起麻烦之前不希望它被标记出来。”问题是没有人能够先验地知道这个尺寸将是多大。在线边缘粗糙度的范畴内,可能会在沟槽底部找到一个小的基脚。这个从线条内伸出的小突刺会导致短接或泄漏;因此,必须采集来自尺寸小于20或15nm的特征结构的信号,而这些信号被掩藏在LER背底噪声的海洋内。   掩膜版设计也会引起系统缺陷。在给定的工艺窗口下,某一个特定的结构可能会在整个芯片内重复数次,而针对它的稍微强烈的光学临近修正(OPC)偶尔会失效。如果出现这种情况,Fab工程师必须知道并追踪到它的设计。他还想知道系统失效的来源,比如是不是刻蚀腔。可能存在使晶圆内的刻蚀不均匀的特殊边界条件和设置范围。系统缺陷被指出来,并确定它们是来源于掩膜版还是工艺设备;与此同时还必须找出随机缺陷,而那些无关紧要的缺陷被忽略掉。   Rudolph Technologies公司检查事业部的市场主管Rajiv Roy说:“在0.25mm节点,我们可以结合使用微观检查设备和一些宏观检查平台来解决缺陷检测和再检查问题。而在45和22nm节点,那些设备被用于检测32nm的关键缺陷。我们必须从微观检测的观点来考虑发现关键缺陷的拥有成本以获得最高的投资回报率。”   这简化了微观检查的基本原理。目前,从微观缺陷中过滤出宏观缺陷变得十分有用。宏观检查的成本已经足够低,但还需要进行再检查,这要求人们对缺陷进行观察并判断其重要性。现在,这项技术已经能够进行动态图像捕捉,再加上功能强大的判定设备,手工再检查可能会被淘汰。技术的发展使得高速、全自动的宏观检查和再检查得以实现(图3)。  Rudolph公司数据分析和再检查事业部的副总裁兼总经理Mike Plisinski指出,如何有效地将数据转化为信息仍在探索中。“我们现有的技术能够减少目前fab生产过程中产生的海量数据,并将其转化为可用的信息。”他说:“市面上总是有空间信号分析系统在出售,但是象ADC系统一样,它们从来都不能提供合适的性能和易用性来满足生产的要求。目前已经有些算法能够做到这点。我们已经成功地将用户必须再检查的数据量减少了20-30%。”  LER和线宽粗糙度(LWR)的重要性与日俱增,这就是为什么需要自动化程度更高的分类引擎的原因。可以用模数转换器(ADC)引擎来判断捕获的缺陷并将它归类;如果它属于已知的缺陷类型,那么用户就知道引起问题的原因;如果是未知的类型,用户至少知道有一个图形的形式需要检查。如果没有全自动系统,就必须进行手动再检查,这会很耗时,而且成品率的提升不会太快。     传统上,SEM不太专注于ADC。针对SEM的ADC是存在的,但它直到最近才变得比较普遍。这意味着需要维持多ADC系统,这可能会出现问题。需要采用专家系统来简化分析过程。  套刻精度和掩膜版   当尺寸变小时,令人讨厌的缺陷将变得具有破坏性,Jau同意这个观点。“图形错误或系统缺陷会导致不合适的OPC或工艺窗口缩小等问题,从而正在成为主要的成品率杀手。DFM号称能够解决这个问题;然而,它需要传感器来观察这个问题并反馈到设计端。”他说:“采用有效的计量或检查设备作为传感器已 经变得必不可少。”   掩膜版缺陷是个严重的问题,因为它们会被复制。“晶圆上的一个缺陷可能会使一块芯片失效。”Veeco Instruments公司的高级应用工程师Ingo Schmitz说:“但是如果在掩膜版上有一个致命的缺陷,它能使占1/4晶圆面积的整个闪存区域失效,而且根据程度的不同,它甚至可能会毁掉整个晶圆。”   已经出现的掩膜版修复方法有两种。一种是聚焦离子束(FIB)技术,另一种利用原子力显微镜(AFM)。后者类似于AFM设备,用刀片状的针尖磨掉多余的材料,比如多余的铬,来修复掩膜版。这就需要知道掩膜版上的缺陷是突出的缺陷还是针孔。而光学技术就很难对它们进行表征。   使用基于束的修复方法――基本上是离子束研磨或淀积――必须首先知道缺陷的体积以计算淀积、刻蚀或研磨步骤所需的离子剂量。掩膜版制造厂先对缺陷进行定位,然后用AFM来分类和表征它们的几何结构和体积。而修复所需的剂量取决于形态测量的结果。   现在,尺寸为15到20nm的颗粒已经开始引起关注。AFM应该对这样小的颗粒有足够的敏感度,而且可能还需要具备足够的技术能力来检测小到5-10nm的颗粒。如果缺陷本质上是光学性的 ,比如水印,AFM技术就会受到挑战,因为它使用的技术与步进式光刻机不同。水印或沾污会导致印制错误,而对形貌变化敏感的AFM却可能无法探测到它们。   SEM也无法避免与形貌有关的问题。当使用SEM来对缺陷进行表征时,SEM引起的冲压会使反应腔的内容物脱落到掩膜版上,从而带来二次损害,比如缺陷(如图4所示)。  为了使计量能够不断地提供所需的缺陷检测平台,必须填补设计与制造之间的空白。随着设计复杂度的上升,系统缺陷也在增多。发现系统缺陷,将它们和随机缺陷区分开来以消除前者的产生根源,会变得非常困难。   套刻精度已经成为越来越严重的测量挑战,因为现在基于光学的测量方法已经接近其极限。Hermes Microvision公司的执行副总裁Jack Jau说:“这不是一个工程开发的问题。扩展现有的测量方法似乎很困难,所以SEM等创新方法的使用就变得很有必要,需要进行深入的研发。”
本页面信息由华强电子网用户提供,如果涉嫌侵权,请与我们客服联系,我们核实后将及时处理。
&&& 目前,处理器性能的主要衡量指标是时钟频率。绝大多数的集成电路 (IC) 设计都基于同

我要回帖

更多关于 软件缺陷产生的原因 的文章

 

随机推荐