为什么MOS电容在VGS为0时氧化层下仍有mos管增强型和耗尽型层

 上传我的文档
 下载
 收藏
该文档贡献者很忙,什么也没留下。
 下载此文档
正在努力加载中...
5-mos场效应管的特性
下载积分:800
内容提示:5-mos场效应管的特性
文档格式:PPT|
浏览次数:0|
上传日期: 09:42:54|
文档星级:
该用户还上传了这些文档
5-mos场效应管的特性
官方公共微信君,已阅读到文档的结尾了呢~~
[精华]5-mos场效应管的特征
扫扫二维码,随身浏览文档
手机或平板扫扫即可继续访问
[精华]5-mos场效应管的特征
举报该文档为侵权文档。
举报该文档含有违规或不良信息。
反馈该文档无法正常浏览。
举报该文档为重复文档。
推荐理由:
将文档分享至:
分享完整地址
文档地址:
粘贴到BBS或博客
flash地址:
支持嵌入FLASH地址的网站使用
html代码:
&embed src='/DocinViewer--144.swf' width='100%' height='600' type=application/x-shockwave-flash ALLOWFULLSCREEN='true' ALLOWSCRIPTACCESS='always'&&/embed&
450px*300px480px*400px650px*490px
支持嵌入HTML代码的网站使用
您的内容已经提交成功
您所提交的内容需要审核后才能发布,请您等待!
3秒自动关闭窗口增强型、耗尽型MOS场效应管
增强型、耗尽型MOS场效应管
根据导电方式的不同,MOSFET又分增强型、耗尽型。所谓增强型是指:当VGS=0时管子是呈截止状态,加
上正确的VGS后,多数载流子被吸引到栅极,从而―增强‖了该区域的载流子,形成导电沟道。&
沟道增强型MOSFET基本上是一种左右对称的拓扑结构,它是在P型半导体上生成一层SiO2&薄膜绝缘层,然后用光刻工艺扩散两个高掺杂的N型区,从N型区引出电极,一个是漏极D,一个是源极S。在源极和漏极之间的
绝缘层上镀一层金属铝作为栅极G。&&
当VGS=0&V时,漏源之间相当两个背靠背的二极管,在D、S之间加上电压不会在D、S间形成电流。&&当栅极加有电压时,若0<VGS<VGS(th)时,通过栅极和衬底间形成的电容电场作用,将靠近栅极下方的P型半导体中的多子空穴向下方排斥,出现了一薄层负离子的耗尽层;同时将吸引其中的少子向表层运动,但数量有限,
不足以形成导电沟道,将漏极和源极沟通,所以仍然不足以形成漏极电流ID。&&
进一步增加VGS,当VGS>VGS(th)时(&VGS(th)称为开启电压),由于此时的栅极电压已经比较强,在靠近栅极下方的P型半导体表层中聚集较多的电子,可以形成沟道,将漏极和源极沟通。如果此时加有漏源电压,就可以形成漏极电流ID。在栅极下方形成的导电沟道中的电子,因与P型半导体的载流子空穴极性相反,故称为反型层。
随着VGS的继续增加,ID将不断增加。在VGS=0V时ID=0,只有当VGS>VGS(th)后才会出现漏极电流,所
以,这种MOS管称为增强型MOS管。&&
VGS对漏极电流的控制关系可用iD=f(VGS(th))|VDS=const这一曲线描述,称为转移特性曲线。&&
转移特性曲线的斜率gm的大小反映了栅源电压对漏极电流的控制作用。&gm的量纲为mA/V,所以gm也
称为跨导。跨导。&
已投稿到:
以上网友发言只代表其个人观点,不代表新浪网的观点或立场。您所在位置: &
&nbsp&&nbsp&nbsp&&nbsp
集成电路设计技术与工具Ch05MOS场效应管的特性总结.ppt 67页
本文档一共被下载:
次 ,您可全文免费在线阅读后下载本文档。
下载提示
1.本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
2.该文档所得收入(下载+内容+预览三)归上传者、原创者。
3.登录后可充值,立即自动返金币,充值渠道很便利
需要金币:350 &&
你可能关注的文档:
第五章MOS场效应管的特性5.1MOS场效应管5.2MOS管的阈值电压5.3体效应 5.4MOSFET的温度特性5.5MOSFET的噪声5.6MOSFET尺寸按比例缩小5.7MOS器件的二阶效应 5.1MOS场效应管 5.1.1MOS管伏安特性的推导两个PN结:1)N型漏极与P型衬底;2)N型源极与P型衬底。同双极型晶体管中的PN结一样,在结周围由于载流子的扩散、漂移达到动态平衡,而产生了耗尽层。一个电容器结构:栅极与栅极下面的区域形成一个电容器,是MOS管的核心。MOSFET的三个基本几何参数栅长:
W氧化层厚度: toxMOSFET的三个基本几何参数Lmin、Wmin和tox由工艺确定Lmin:MOS工艺的特征尺寸(featuresize)决定MOSFET的速度和功耗等众多特性L和W由设计者选定通常选取L=Lmin,由此,设计者只需选取WW影响MOSFET的速度,决定电路驱动能力和功耗MOSFET的伏安特性:电容结构当栅极不加电压或加负电压时,栅极下面的区域保持P型导电类型,漏和源之间等效于一对背靠背的二极管,当漏源电极之间加上电压时,除了PN结的漏电流之外,不会有更多电流形成。当栅极上的正电压不断升高时,P型区内的空穴被不断地排斥到衬底方向。当栅极上的电压超过阈值电压VT,在栅极下的P型区域内就形成电子分布,建立起反型层,即N型层,把同为N型的源、漏扩散区连成一体,形成从漏极到源极的导电沟道。这时,栅极电压所感应的电荷Q为,Q=CVge式中Vge是栅极有效控制电压。非饱和时,在漏源电压Vds作用下,这些电荷Q将在?时间内通过沟道,因此有MOSFET的伏安特性—方程推导非饱和情况下,通过MOS管漏源间的电流Ids为:MOSFET特性曲线在非饱和区 ?线性工作区在饱和区(Ids与Vds无关).MOSFET是平方律器件!5.1.2MOSFET电容的组成MOS电容是一个相当复杂的电容,有多层介质:首先,在栅极电极下面有一层SiO2介质。SiO2下面是P型衬底,衬底是比较厚的。最后,是一个衬底电极,它同衬底之间必须是欧姆接触。MOS电容还与外加电压有关。1)当Vgs&0时,栅极上的负电荷吸引了P型衬底中的多数载流子—空穴,使它们聚集在Si表面上。这些正电荷在数量上与栅极上的负电荷相等,于是在Si表面和栅极之间,形成了平板电容器,其容量为, 通常,?ox=3.9?8.854?10-4F/cm2;A是面积,单位是cm2;tox是厚度,单位是cm。MOS电容—SiO2和耗尽层介质电容2)当Vgs&0时,栅极上的正电荷排斥了Si中的空穴,在栅极下面的Si表面上,形成了一个耗尽区。耗尽区中没有可以自由活动的载流子,只有空穴被赶走后剩下的固定的负电荷。这些束缚电荷是分布在厚度为Xp的整个耗尽区内,而栅极上的正电荷则集中在栅极表面。这说明了MOS电容器可以看成两个电容器的串联。以SiO2为介质的电容器——Cox以耗尽层为介质的电容器——CSi总电容C为:比原来的Cox要小些。MOS电容—束缚电荷层厚度耗尽层电容的计算方法同PN结的耗尽层电容的计算方法相同:利用泊松公式式中NA是P型衬底中的掺杂浓度,将上式积分得耗尽区上的电位差?:从而得出束缚电荷层厚度MOS电容—耗尽层电容这时,在耗尽层中束缚电荷的总量为,它是耗尽层两侧电位差?的函数,因此,耗尽层电容为,是一个非线性电容,随电位差的增大而减小。MOS电容—耗尽层电容特性随着Vgs的增大,排斥掉更多的空穴,耗尽层厚度Xp增大,耗尽层上的电压降?就增大,因而耗尽层电容CSi就减小。耗尽层上的电压降的增大,实际上就意味着Si表面电位势垒的下降,意味着Si表面能级的下降。一旦Si表面能级下降到P型衬底的费米能级,Si表面的半导体呈中性。这时,在Si表面,电子浓度与空穴浓度相等,成为本征半导体。MOS电容—耗尽层电容特性(续)3)若Vgs再增大,排斥掉更多的空穴,吸引了更多的电子,使得Si表面电位下降,能级下降,达到低于P型衬底的费米能级。这时,Si表面的电子浓度超过了空穴的浓度,半导体呈N型,这就是反型层。不过,它只是一种弱反型层。因为这时电子的浓度还低于原来空穴的浓度。随着反型层的形成,来自栅极正电荷发出的电力线,已部分地落在这些电子上,耗尽层厚度的增加就减慢了,相应的MOS电容CSi的减小也减慢了。MOS电容—凹谷特性5)当Vgs继续增大,反型层中电子的浓度增加,来自栅极正电荷的电力线,部分落在这些电子上,落在耗尽层束缚电子上的电力线数目就有所减少。耗尽层电容将增大。两个电容串联后,C将增加。当Vgs足够大时,反型层中的电子浓度已大到能起到屏蔽作用,全部的电力线落在电子上。这时,反型层中的电子将成为一种镜面反射,感应全部负电荷,于是,C=Cox。电容曲线出现了凹谷形,如图
正在加载中,请稍后...

我要回帖

更多关于 mos管vgs th 的文章

 

随机推荐