函数中找两点的函数对称轴公式式(a+b/2)是怎么推导的

扫二维码下载作业帮
2亿+学生的选择
下载作业帮安装包
扫二维码下载作业帮
2亿+学生的选择
函数中找两点的对称轴公式(a+b/2)是怎么推导的?
ㄟ妆雪雪RjFw
扫二维码下载作业帮
2亿+学生的选择
设线段两端点坐标为(x1,y1)(x2,y2)以求中点横坐标x为例.从线段两端点和中点分别向Y轴做垂线.可以看到构成三个梯形,不考虑位于哪个象限则梯形面积 = (|x1| + |x2|) * h/2 = (|x1| + |x|) * (h/2)/2 + (|x| + |x2|) * (h/2)/2求解这个 方程可以得到|x|关于|x1|、|x2|的等式因为x与x1、x2的正负关系一致,所以x = (x1 + x2)/2同理,得y = (y1 + y2)/2
为您推荐:
其他类似问题
扫描下载二维码唐朝诗人李欣的诗《古从军行》开头两句说:“白日登山望峰火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题--将军饮马问题:
如图1所示,诗中将军在观望烽火之后从山脚下的A点出发,走到河旁边的P点饮马后再到B点宿营.请问怎样走才能使总的路程最短?
做法如下:如(1)图,从B出发向河岸引垂线,垂足为D,在AD的延长线上,取B关于河岸的对称点B′,连接AB′,与河岸线相交于P,则P点就是饮马的地方,将军只要从A出发,沿直线走到P,饮马之后,再由P沿直线走到B,所走的路程就是最短的.
(1)观察发现
再如(2)图,在等腰梯形ABCD中,AB=CD=AD=2,∠D=120°,点E、F是底边AD与BC的中点,连接EF,在线段EF上找一点P,使BP+AP最短.
作点B关于EF的对称点,恰好与点C重合,连接AC交EF于一点,则这点就是所求的点P,故BP+AP的最小值为2$\sqrt{3}$.
(2)实践运用
如(3)图,已知⊙O的直径MN=1,点A在圆上,且∠AMN的度数为30°,点B是弧AN的中点,点P在直径MN上运动,求BP+AP的最小值.
(3)拓展迁移
如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.
①求这条抛物线所对应的函数关系式;
②在抛物线的对称轴直线x=1上找到一点M,使△ACM周长最小,请求出此时点M的坐标与△ACM周长最小值.(结果保留根号)
(1)根据轴对称中最短路线问题,可以得出AC的长即为BP+AP的最小值,利用三角函数关系求出即可;
(2)根据轴对称中最短路线问题,得出BP′+AP′=BP′+A′P′=A′B,即A′B是BP+AP的最小值,求出即可;
(3)运用待定系数法求二次函数解析式,再求出直线与坐标轴的交点坐标,当AM+CM取最小值时,△ACM周长最小值,求出AM+CM最小值,即可得出.
(1)∵在等腰梯形ABCD中,AB=CD=AD=2,∠D=120°,点E、F是底边AD与BC的中点,
∴∠DAC=∠DCA=30°,
∴∠ACB=30°,
∴∠BAC=90°,
∴tan∠ACB=$\frac{AB}{AC}$,
∴AC=$\frac{2}{\frac{\sqrt{3}}{3}}$=$2\sqrt{3}$,
故答案为:2$\sqrt{3}$;
(2)如图作点A关于MN的对称点A′,则A′在⊙O上,
连接BA′交MN于P′点,此时BP′+AP′最小.
由对称性可知AP′=A′P′,
∴BP′+AP′=BP′+A′P′=A′B,
连接OA、OB、OA′,
可知弧AN=弧A′N,
则∠NOA′=∠NOA=2∠M=60°,
而点B为弧AN中点,
∴∠BON=30°
∴∠BOA′=90°
∴在Rt△OA′B中,A′B=$\frac{{\sqrt{2}}}{2}$
即BP+AP的最小值$\frac{{\sqrt{2}}}{2}$.
(3)①∵抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)、
C(0,-3)两点,分别代入二次函数解析式得:
∴$\left\{\begin{array}{l}{-\frac{b}{2a}=1}\\{a-b+c=0}\\{c=-3}\end{array}\right.$,
解得:a=1,b=-2,c=-3,
∴二次函数解析式为:y=x2-2x-3,
②得到直线BC:y=x-3,
∴M(1,-2),AC的长为:$\sqrt{10}$,
∴△ACM周长最小值即是:AM+CM最小时的值,
∵AM+CM=BC=3$\sqrt{2}$,
∴△ACM周长最小值为:$\sqrt{10}+3\sqrt{2}$.当前位置:
>>>如图,已知二次函数的图象经过A(2,0)、B(0,-6)两点。(1)求这个..
如图,已知二次函数的图象经过A(2,0)、B(0,-6)两点。(1)求这个二次函数的解析式(2)设该二次函数的对称轴与轴交于点C,连结BA、BC,求△ABC的面积。
题型:解答题难度:偏易来源:不详
(1)y=-x2+4x-6 (2)S△ABC=6试题分析:求函数解析式一般要求是把经过图像上的点代入即可,求三角形面积时,一般的知道底边的长与高就可求得。解:(1)把A(2,0)、B(0,-6)代入得:&&&&解得∴这个二次函数的解析式为(2)∵该抛物线对称轴为直线∴点C的坐标为(4,0)∴∴点评:熟知以上定义及性质,本题由已知根据性质公式易求之,属于基础题,难度小。
马上分享给同学
据魔方格专家权威分析,试题“如图,已知二次函数的图象经过A(2,0)、B(0,-6)两点。(1)求这个..”主要考查你对&&二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
定义:一般地,如果(a,b,c是常数,a≠0),那么y叫做x 的二次函数。 ①所谓二次函数就是说自变量最高次数是2;②二次函数(a≠0)中x、y是变量,a,b,c是常数,自变量x 的取值范围是全体实数,b和c可以是任意实数,a是不等于0的实数,因为a=0时,变为y=bx+c若b≠0,则y=bx+c是一次函数,若b=0,则y=c是一个常数函数。③二次函数(a≠0)与一元二次方程(a≠0)有密切联系,如果将变量y换成一个常数,那么这个二次函数就是一个一元二次函数。二次函数的解析式有三种形式: (1)一般式:(a,b,c是常数,a≠0); (2)顶点式: (a,h,k是常数,a≠0) (3)当抛物线与x轴有交点时,即对应二次好方程有实根x1和x2存在时,根据二次三项式的分解因式,二次函数可转化为两根式。如果没有交点,则不能这样表示。 二次函数的一般形式的结构特征:①函数的关系式是整式;②自变量的最高次数是2;③二次项系数不等于零。二次函数的判定:二次函数的一般形式中等号右边是关于自变量x的二次三项式;当b=0,c=0时,y=ax2是特殊的二次函数;判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成(a≠0)的形式,那么这个函数就是二次函数,否则就不是。二次函数的图像是一条关于对称的曲线,这条曲线叫抛物线。 抛物线的主要特征:①有开口方向,a表示开口方向:a&0时,抛物线开口向上;a&0时,抛物线开口向下;②有对称轴;③有顶点;④c 表示抛物线与y轴的交点坐标:(0,c)。 二次函数图像性质:轴对称:二次函数图像是轴对称图形。对称轴为直线x=-b/2a对称轴与二次函数图像唯一的交点为二次函数图像的顶点P。特别地,当b=0时,二次函数图像的对称轴是y轴(即直线x=0)。a,b同号,对称轴在y轴左侧b=0,对称轴是y轴a,b异号,对称轴在y轴右侧顶点:二次函数图像有一个顶点P,坐标为P ( h,k )当h=0时,P在y轴上;当k=0时,P在x轴上。即可表示为顶点式y=a(x-h)^2+k。h=-b/2a, k=(4ac-b^2)/4a。开口:二次项系数a决定二次函数图像的开口方向和大小。当a&0时,二次函数图像向上开口;当a&0时,抛物线向下开口。|a|越大,则二次函数图像的开口越小。决定对称轴位置的因素:一次项系数b和二次项系数a共同决定对称轴的位置。当a&0,与b同号时(即ab&0),对称轴在y轴左; 因为对称轴在左边则对称轴小于0,也就是- b/2a&0,所以 b/2a要大于0,所以a、b要同号当a&0,与b异号时(即ab&0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a&0, 所以b/2a要小于0,所以a、b要异号可简单记忆为左同右异,即当a与b同号时(即ab&0),对称轴在y轴左;当a与b异号时(即ab&0 ),对称轴在y轴右。事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。决定与y轴交点的因素:常数项c决定二次函数图像与y轴交点。二次函数图像与y轴交于(0,C)注意:顶点坐标为(h,k), 与y轴交于(0,C)。与x轴交点个数:a&0;k&0或a&0;k&0时,二次函数图像与x轴有2个交点。k=0时,二次函数图像与x轴只有1个交点。a&0;k&0或a&0,k&0时,二次函数图像与X轴无交点。当a&0时,函数在x=h处取得最小值ymin=k,在x&h范围内是减函数,在x&h范围内是增函数(即y随x的变大而变小),二次函数图像的开口向上,函数的值域是y&k当a&0时,函数在x=h处取得最大值ymax=k,在x&h范围内是增函数,在x&h范围内是减函数(即y随x的变大而变大),二次函数图像的开口向下,函数的值域是y&k当h=0时,抛物线的对称轴是y轴,这时,函数是偶函数。二次函数的最值:1.如果自变量的取值范围是全体实数,则当a&0时,抛物线开口向上,有最低点,那么函数在处取得最小值y最小值=;当a&0时,抛物线开口向下,有最高点,即当时,函数取得最大值,y最大值=。 也即是:如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当时,。2.如果自变量的取值范围是,那么,首先要看是否在自变量取值范围内,若在此范围内,则当x=时,;若不在此范围内,则需要考虑函数在范围内的增减性,如果在此范围内,y随x的增大而增大,则当x=x2 时,,当x=x1 时;如果在此范围内,y随x的增大而减小,则当x=x1时,,当x=x2时&。 求二次函数的解析式:最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况: (1)已知抛物线上三点的坐标,一般选用一般式; (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式; (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式; (4)已知抛物线上纵坐标相同的两点,常选用顶点式。 二次函数的应用:(1)应用二次函数才解决实际问题的一般思路: 理解题意;建立数学模型;解决题目提出的问题。 (2)应用二次函数求实际问题中的最值: 即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。求最值时,要注意求得答案要符合实际问题。 二次函数的三种表达形式:①一般式:y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。
②顶点式:y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。有时题目会指出让你用配方法把一般式化成顶点式。例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h&0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。具体可分为下面几种情况:当h&0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;当h&0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;当h&0,k&0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。
③交点式:y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] .已知抛物线与x轴即y=0有交点A(x1,0)和 B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。由一般式变为交点式的步骤:二次函数∵x1+x2=-b/a, x1?x2=c/a(由韦达定理得),∴y=ax2+bx+c=a(x2+b/ax+c/a)=a[x2-(x1+x2)x+x1?x2]=a(x-x1)(x-x2).重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向。a&0时,开口方向向上;a&0时,开口方向向下。a的绝对值可以决定开口大小。a的绝对值越大开口就越小,a的绝对值越小开口就越大。能灵活运用这三种方式求二次函数的解析式;能熟练地运用二次函数在几何领域中的应用;能熟练地运用二次函数解决实际问题。二次函数的其他表达形式:①牛顿插值公式:f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0)...(x-xn-1)+Rn(x)由此可引导出交点式的系数a=y/(x·x)(y为截距) 二次函数表达式的右边通常为二次三项式。双根式y=a(x-x1)*(x-x2)若ax2+bx+c=0有两个实根x1,x2,则y=a(x-x1)(x-x2)此抛物线的对称轴为直线x=(x1+x2)/2。③三点式已知二次函数上三个点,(x1,f(x1))(x2,f(x2))(x3,f(x3))则f(x)=f(x3)(x-x1)(x-x2)/(x3-x1)(x3-x2)+f(x2)(x-x1)*(x-x3)/(x2-x1)(x2-x3)+f(x1)(x-x2)(x-x3)/(x1-x2)(x1-x3)与X轴交点的情况当△=b2-4ac&0时,函数图像与x轴有两个交点。(x1,0), (x2,0);当△=b2-4ac=0时,函数图像与x轴只有一个交点。(-b/2a,0)。Δ=b2-4ac&0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b2-4ac的值的相反数,乘上虚数i,整个式子除以2a)二次函数解释式的求法:就一般式y=ax2+bx+c(其中a,b,c为常数,且a≠0)而言,其中含有三个待定的系数a ,b ,c.求二次函数的一般式时,必须要有三个独立的定量条件,来建立关于a ,b ,c 的方程,联立求解,再把求出的a ,b ,c 的值反代回原函数解析式,即可得到所求的二次函数解析式。
1.巧取交点式法:知识归纳:二次函数交点式:y=a(x-x1)(x-x2) (a≠0)x1,x2分别是抛物线与x轴两个交点的横坐标。已知抛物线与x轴两个交点的横坐标求二次函数解析式时,用交点式比较简便。①典型例题一:告诉抛物线与x轴的两个交点的横坐标,和第三个点,可求出函数的交点式。例:已知抛物线与x轴交点的横坐标为-2和1 ,且通过点(2,8),求二次函数的解析式。点拨:解设函数的解析式为y=a(x+2)(x-1),∵过点(2,8),∴8=a(2+2)(2-1)。解得a=2,∴抛物线的解析式为:y=2(x+2)(x-1),即y=2x2+2x-4。②典型例题二:告诉抛物线与x轴的两个交点之间的距离和对称轴,可利用抛物线的对称性求解。例:已知二次函数的顶点坐标为(3,-2),并且图象与x轴两交点间的距离为4,求二次函数的解析式。点拨:在已知抛物线与x轴两交点的距离和顶点坐标的情况下,问题比较容易解决.由顶点坐标为(3,-2)的条件,易知其对称轴为x=3,再利用抛物线的对称性,可知图象与x轴两交点的坐标分别为(1,0)和(5,0)。此时,可使用二次函数的交点式,得出函数解析式。
2.巧用顶点式:顶点式y=a(x-h)2+k(a≠0),其中(h,k)是抛物线的顶点。当已知抛物线顶点坐标或对称轴,或能够先求出抛物线顶点时,设顶点式解题十分简洁,因为其中只有一个未知数a。在此类问题中,常和对称轴,最大值或最小值结合起来命题。在应用题中,涉及到桥拱、隧道、弹道曲线、投篮等问题时,一般用顶点式方便.①典型例题一:告诉顶点坐标和另一个点的坐标,直接可以解出函数顶点式。例:已知抛物线的顶点坐标为(-1,-2),且通过点(1,10),求此二次函数的解析式。点拨:解∵顶点坐标为(-1,-2),故设二次函数解析式为y=a(x+1)2-2 (a≠0)。把点(1,10)代入上式,得10=a·(1+1)2-2。∴a=3。∴二次函数的解析式为y=3(x+1)2-2,即y=3x2+6x+1。②典型例题二:如果a&0,那么当 时,y有最小值且y最小=;如果a&0,那么,当时,y有最大值,且y最大=。告诉最大值或最小值,实际上也是告诉了顶点坐标,同样也可以求出顶点式。例:已知二次函数当x=4时有最小值-3,且它的图象与x轴两交点间的距离为6,求这个二次函数的解析式。点拨:析解∵二次函数当x=4时有最小值-3,∴顶点坐标为(4,-3),对称轴为直线x=4,抛物线开口向上。由于图象与x轴两交点间的距离为6,根据图象的对称性就可以得到图象与x轴两交点的坐标是(1,0)和(7,0)。∴抛物线的顶点为(4,-3)且过点(1,0)。故可设函数解析式为y=a(x-4)2-3。将(1,0)代入得0=a(1-4)2-3, 解得a=13.∴y=13(x-4)2-3,即y=13x2-83x+73。③典型例题三:告诉对称轴,相当于告诉了顶点的横坐标,综合其他条件,也可解出。例如:(1)已知二次函数的图象经过点A(3,-2)和B(1,0),且对称轴是直线x=3.求这个二次函数的解析式. (2)已知关于x的二次函数图象的对称轴是直线x=1,图象交y轴于点(0,2),且过点(-1,0),求这个二次函数的解析式. (3)已知抛物线的对称轴为直线x=2,且通过点(1,4)和点(5,0),求此抛物线的解析式. (4)二次函数的图象的对称轴x=-4,且过原点,它的顶点到x轴的距离为4,求此函数的解析式.④典型例题四:利用函数的顶点式,解图像的平移等问题非常方便。例:把抛物线y=ax2+bx+c的图像向右平移3 个单位, 再向下平移2 个单位, 所得图像的解析式是y=x2-3x+5, 则函数的解析式为_______。点拨:解先将y=x2-3x+5化为y=(x-32)2+5-94, 即y=(x-32)2+114。∵它是由抛物线的图像向右平移3 个单位, 再向下平移2 个单位得到的,∴原抛物线的解析式是y=(x-32+3)2+114+2=(x+32)2+194=x2+3x+7。
发现相似题
与“如图,已知二次函数的图象经过A(2,0)、B(0,-6)两点。(1)求这个..”考查相似的试题有:
744757686030703498678686479419726539扫二维码下载作业帮
2亿+学生的选择
下载作业帮安装包
扫二维码下载作业帮
2亿+学生的选择
哪位高手知道怎么证明点(a+b/2,0)是函数f(a+x)=-f(b-x)的对称中心.
扫二维码下载作业帮
2亿+学生的选择
设(m,n)是y=f(x)上任一点,则n=f(m),且(m,n)关于点((a+b)/2,0)的对称点为(a+b-m,-n)在条件f(a+x)=-f(b-x)中,令 x=m-a,得f(m)=-f(a+b-m),从而 f(a+b-m)=-f(m)=-n,即点(a+b-m,-n)在y=f(x)的图像上,所以y=f(x)的图像的对称中心是((a+b)/2,0)
为您推荐:
其他类似问题
令x=(b-a)/2+t则f(a+x)=f((a+b)/2+t)f(b-x)=f((a+b)/2-t)所以f((a+b)/2+t)=-f((a+b)/2-t)所以点((a+b)/2,0)是函数的对称中心
方法一(证明某点是不是对称中心的方法):设(m,n)是y=f(x)上任一点,则n=f(m),且(m,n)关于点((a+b)/2,0)的对称点为(a+b-m,-n)在条件f(a+x)=-f(b-x)中,令 x=m-a,得f(m)=-f(a+b-m),从而 f(a+b-m)=-f(m)=-n,即点(a+b-m,-n)在y=f(x)的图像上,<...
扫描下载二维码

我要回帖

更多关于 三角函数对称轴公式 的文章

 

随机推荐