调用opencv函数中cvAbsDiff函数怎么用

2883人阅读
OpenCV图像处理(38)
有很多函数有mask,代表掩码,如果某位mask是0,那么对应的src的那一位就不计算,mask要和矩阵/ROI/的大小相等
大多数函数支持ROI,如果图像ROI被设置,那么只处理ROI部分
少部分函数支持COI,如果COI设置,只处理感兴趣的通道
矩阵逻辑运算
void cvAnd(const CvArr* src1, const CvArr* src2, CvArr* dst, const CvArr* mask=NULL);//
void cvAndS(const CvArr* src, CvScalar value, CvArr* dst, const CvArr* mask=NULL);//
void cvOr(const CvArr* src1, const CvArr* src2, CvArr* dst, const CvArr* mask=NULL);//
void cvOrS(const CvArr* src, CvScalar value, CvArr* dst, const CvArr* mask=NULL);//
void cvXor(const CvArr* src1, const CvArr* src2, CvArr* dst, const CvArr* mask=NULL);//
void cvXorS(const CvArr* src, CvScalar value, CvArr* dst, const CvArr* mask=NULL);//
void cvNot(const CvArr* src,CvArr* dst);//矩阵取反
矩阵算术运算 绝对值
void cvAbs(const CvArr* src,CvArr* dst);
void cvAbsDiff(const CvArr* src1,const CvArr* src2, CvArr* dst);//两矩阵相减取绝对值
void cvAbsDiffS(const CvArr* src, CvArr* dst,CvScalar value);//矩阵减去一个数取绝对值
void cvAdd(const CvArr* src1,const CvArr* src2,CvArr* dst,const CvArr* mask = NULL);//两数组相加,dst(I)=src1(I)+src2(I) if mask(I)!=0
void cvAddS(const CvArr* src,CvScalar value,CvArr*dst,const CvArr* mask = NULL);//数组和一个数相加,dst(I)=src(I)+value if mask(I)!=0
void cvAddWeighted(const CvArr* src1,double alpha,const CvArr* src2,double beta,double gamma,CvArradded to each sum* dst);//带权相加相当于dst(x,y) = α ? src1(x,y) + β ? src2(x,y) + γ
void cvSub(const CvArr* src1, const CvArr* src2, CvArr* dst, const CvArr* mask=NULL);//矩阵减法,dst(I)=src1(I)-src2(I) if mask(I)!=0
void cvSubS(const CvArr* src, CvScalar value, CvArr* dst, const CvArr* mask=NULL);//矩阵减数,dst(I)=src(I)-value if mask(I)!=0
void cvSubRS(const CvArr* src, CvScalar value, CvArr* dst, const CvArr* mask=NULL);//数减矩阵,dst(I)=value-src(I) if mask(I)!=0
void cvDiv(const CvArr* src1, const CvArr* src2, CvArr* dst, double scale=1);//scale*src1(i)/src2(i),如果src1=NULL,则计算scale/src2(i)
void cvMul(const CvArr* src1,const CvArr* src2,CvArr* dst,double scale=1);//两矩阵元素之间的简单乘法,一般的矩阵点乘用cvGEMM();
void cvPow(const CvArr* src, CvArr* dst, double power);//为每个src的数求power次方
void cvExp(const CvArr* src, CvArr* dst);//dst(I)=EXP(src(I))
void cvLog(const CvArr* src, CvArr* dst);//
线性代数计算 加&乘
void cvScaleAdd(const CvArr* src1, CvScalar scale, const CvArr* src2, CvArr* dst);//src1和scale的乘积加上src2
void cvCrossProduct(const CvArr* src1,const CvArr* src2,CvArr* dst);//计算两个3D向量(单通道)的叉乘运算
double cvDotProduct(const CvArr* src1, const CvArr* src2);//两个向量点乘
void cvGEMM(const CvArr* src1, const CvArr* src2, double alpha, const CvArr* src3, double beta, CvArr* dst, int tABC=0);//乘加运算的始祖
&&& 由通用乘加函数参与定义的两个具体宏
&&&&&&& cvMatMul(const CvArr* src1,const CvArr* src2,CvArr* dst);
&&&&&&& cvMatMulAdd(const CvArr* src1,const CvArr* src2,const CvArr* src3,CvArr* dst);
CvScalar cvTrace(const CvArr* mat);//计算对角线上的元素和
void cvTransform(const CvArr* src, CvArr* dst, const CvMat* transmat, const CvMat* shiftvec=NULL);//dst=transmat · src + shiftvec
void cvPerspectiveTransform(const CvArr* src, CvArr* dst, const CvMat* mat);//把矩阵每个元素中三个通道当做一个矩阵,乘mat,mat是一个3×3或者4×4的转换矩阵
void cvTranspose(const CvArr* src, CvArr* dst);
void cvMulTransposed(const CvArr* src, CvArr* dst, int order, const CvArr* delta=NULL, double scale=1.0);//(src-delta)乘以它的转置再乘以scale
double cvInvert(const CvArr* src,CvArr* dst,int method=CV_LU);//求原矩阵的逆矩阵,默认使用高斯消去法
&&& 方阵可逆的充要条件是|A|!=0
&&& method取值为CV_LU高斯消去法(默认)&&& CV_SVD 奇异值分解SVD&&& CV_SVD_SYM对称矩阵的SVD
double cvDet(const CvArr* mat);//计算方阵行列式,一定是单通道的
&&& 小型方阵直接计算,大型方阵用高斯消去法计算
&&& 如果矩阵正定对称,用奇异值分解的方法解决cvSVD();
特征向量特征值
void cvEigenVV(CvArr* mat, CvArr* evects, CvArr* evals, double eps=0);//计算对称矩阵的特征值和特征向量,evects输出特征向量,evals输出特征值,eps雅可比方法停止参数
&&& 要求三个矩阵都是浮点类型,10×10以下该方法有效,20×20以上的矩阵不能计算出结果,为节约计算量,eps通常设为DBL_EPSILON(10^-15)
&&& 如果给定的矩阵是对称正定矩阵,那么考虑使用cvSVD();
void cvCalcCovarMatrix(const CvArr** vects, int count, CvArr* cov_mat, CvArr* avg, int flags);//给定一组大小和类型相同的向量,向量的个数,计算标记,输出协方差正阵和每个向量的平均值矩阵
&&& CV_COVAR_NORMAL&&& 普通计算协方差和平均值,输出的是n×n的协方差阵
&&& CV_COVAR_SCRAMBLED&&& 快速PCA“Scrambled”协方差,输出的是m×m的协方差阵
&&& CV_COVAR_USE_AVERAGE&&& 平均值是输入的
&&& CV_COVAR_SCALE&&& 重新缩放输出的协方差矩阵
&&&&&&& 四个flag通过并运算协同发挥作用,前两个不能并
CvSize cvMahalonobis(const CvArr* vec1,const CvArr* vec2,CvArr* mat);
int cvSolve(const CvArr* src1, const CvArr* src2, CvArr* dst, int method=CV_LU);//Solves a linear system or least-squares problem.
void cvSVD(CvArr* A, CvArr* W, CvArr* U=NULL, CvArr* V=NULL, int flags=0);//Performs singular value decomposition of a real floating-point matrix.
void cvSVBkSb(const CvArr* W, const CvArr* U, const CvArr* V, const CvArr* B, CvArr* X, int flags);//Performs singular value back substitution.
void cvCmp(const CvArr* src1, const CvArr* src2, CvArr* dst, int cmp_op);//两矩阵比较运算
&&& CV_CMP_EQ - src1(I) 是否相等
&&& CV_CMP_GT - src1(I) 是否大于
&&& CV_CMP_GE - src1(I) 是否大于等于
&&& CV_CMP_LT - src1(I) 是否小于
&&& CV_CMP_LE - src1(I) 是否小于等于
&&& CV_CMP_NE - src1(I) 是否不等
&&&&&&& 如果判断为假,dst设为0,如果判断为真,dst设为0xff
void cvCmpS(const CvArr* src, double value, CvArr* dst, int cmp_op);//矩阵和一个数字比较运算
矩阵内转换 类型转换
void cvConvertScale(const CvArr* src,CvArr* dst,double scale,double shift);//矩阵首先乘以scale再加上shift,然后把src中的数据类型转换成dst类型,但是src和dst通道数需要相等
void cvConvertScaleAbs(const CvArr* src,CvArr* dst,double scale,double shift);//在src到dst类型转换前,先做绝对值
void cvCvtColor(const CvArr* src,CvArr* dst, int code);//图像 颜色空间转换,src要为8U 16U 32F,dst的数据类型需要和src相同,通道数看code
&&& code格式如:CV_原色彩空间2目的色彩空间&&& 色彩空间要考虑RGB的顺序
&&& 支持的颜色空间包括:RGB&&& RGB565&&& RGB555&&& GRAY RGBA&&& XYZ&&& YCrCb&&& HSV&&& HLS&&& Luv&&& BayerRG
void cvFlip(const CvArr* src, CvArr* dst=NULL, int flip_mode=0);//图像绕x、y轴旋转。当用在一维数组上时并且flip_mode&0,可以用来颠倒数据排列
&&& flip_mode=0:左右对称values of the conversion resul
&&& flip_mode&0:上下对称
&&& flip_mode&0:中心对称
矩阵间操作 void cvCopy(const CvArr* src,CvArr* dst,const CvArr* mask=NULL);
void cvMerge(const CvArr* src0,const CvArr* src1,const CvArr* src2,const CvArr* src3,CvArr* dst);//多个数组合并成一个,类型和尺寸都相同,dst有多个通道,src可以赋值NULL
void cvSplit(cosnt CvArr* src,CvArr* dst0,CvArr* dst1,CvArr* dst2,CvArr* dst3);//一个多通道数组分解成多个数组,类型尺寸都想同,dst可以赋值NULL
void cvRepeat(const CvArr* src, CvArr* dst);//在dst中重复叠加src,dst(i,j)=src(i mod rows(src), j mod cols(src))
CvMat* cvReshape(const CvArr* originalarr, CvMat* headerdata, int new_cn, int new_rows=0);//把一个originalarr(可以是已经有内容的图片),转换为有新的通道数、新的行数的数据(CvMat*只含数据,没有图片头)
CvArr* cvReshapeMatND(const CvArr* arr, int sizeof_header, CvArr* header, int new_cn, int new_dims, int* new_sizes);
void cvLUT(const CvArr* src, CvArr* dst, const CvArr* lut);//src是8bit类型的数据,lut是一张一维查找表,拥有256个通道数类型和dst相同的元素,src的某一位置的元素数值n,到 lut的n位置查找的内容填入dst的相应src的n元素的位置
统计运算 最大最小
void cvMax(const CvArr* src1, const CvArr* src2, CvArr* dst);
void cvMaxS(const CvArr* src, double value, CvArr* dst);//找较大值放到dst中
void cvMin(const CvArr* src1,const CvArr* src2,CvArr* dst);
void cvMins(const CvArr* src,double value,CvArr* dst);//找较小值放到dst中
void cvMinMaxLoc(const CvArr* arr, double* min_val, double* max_val, CvPoint* min_loc=NULL, CvPoint* max_loc=NULL, const CvArr* mask=NULL);
&&& 找出全局某个通道中最大最小的值,和她们的位置,如果不止一个通道,一定要设置COI
int cvCountNonZero( const CvArr* arr );//统计非零的个数
是否落在范围内
void cvInRange(const CvArr* src,const CvArr* lower,const CvArr* upper,CvArr* dst);
void cvInRangeS(const CvArr* src,CvScalar lower,CvScalar upper,CvArr* dst);//判断原数组中的每个数大小是否落在对应的lower、upper数组位置数值的中间
&&& if( lower(i)&=src(i)&upper(i) ){ dst(i)=0 }else{ dst(i)=0; }
平均值标准差
CvScalar cvAvg(const CvArr* arr,const CvArr* mask = NULL);//计算mask非零位置的所有元素的平均值,如果是图片,则单独计算每个通道上的平均值,如果COI设置了,只计算该COI通道的平均值
void cvAvgSdv(const CvArr* arr, CvScalar* mean, CvScalar* std_dev, const CvArr* mask=NULL);//计算各通道的平均值,标准差,支持COI
double cvNorm(const CvArr* arr1,const CvArr* arr2=NULL,int norm_type=CV_L2,const CvArr* mask=NULL);//计算一个数组的各种范数
&&& 如果arr2为NULL,norm_type为
&&&&&&& CV_C 求所有数取绝对值后的最大值,CV_L1 求所有数的绝对值的和,CV_L2求所有数的平方和的平方根
&&& 如果arr2不为NULL,norm_type为
&&&&&&& CV_C arr1和arr2对应元素差的绝对值中的最大值&&& CV_L1 arr1和arr2对应元素差的绝对值的和&&& CV_L2 arr1和arr2的差平方和的平方根
&&&&&&& CV_RELATIVE_C&&& CV_RELATIVE_L1&&& CV_RELATIVE_L2 上面结果除以cvNorm(arr2,NULL,对应的norm_type);
cvNormalize(const CvArr* src,CvArr* dst,double a=1.0,double b=0.0,int norm_type=CV_L2,const CvArr* mask=NULL);
&&& CV_C&&& CV_L1&&& CV_L2&&& CV_MINMAX
cvReduce(const CvArr* src,CvArr* dst,int dim,int op=CV_REDUCE_SUM);//根据一定规则,把矩阵约简为向量
&&& dim&&& 决定约简到行还是列&&& 1:约简到单个列,0:约简到单个行,-1:根据dst的CvSize,决定约简到行还是列
&&& op&&& 决定按什么规则约简
&&&&&&& CV_REDUCE_SUM - 行/列的和
&&&&&&& CV_REDUCE_AVG -&&& 行/列平均值
&&&&&&& CV_REDUCE_MAX - 行/列中最大值
&&&&&&& CV_REDUCE_MIN -&&& 行/列中最小值
取得设置数组信息 得到指定行列
CvMat* cvGetCol(const CvArr* arr,CvMat* submat,int col);
CvMat* cvGetCols(const CvArr* arr,CvMat* submat,int start_col,int end_col);//取目标矩阵的某列/连续几列,submat和返回值的实际数据还是在原矩阵中,只是修改了头部和数据指针,没有数据拷贝
CvMat* cvGetRow(const CvArr* arr,CvMat* submat,int row);
CvMat* cvGetRows(const CvArr* arr,CvMat* submat,int start_row,int end_row);
得到对角线
CvMat* cvGetDiag(const CvArr* arr,CvMat* submat,int diag=0);//取矩阵arr的对角线,结果放在向量中,并不要求原矩阵是方阵,diag表示从哪个位置开始取对角线
int cvGetDims(const CvArr* arr,int* sizes=NULL);//获取数组的维数和每一维的大小,sizes十一个数组的头指针。图像或者矩阵的维数一定是2,先行数后列数
int cvGetDimSize(const CvArr* arr,int index);//获取某一维的大小
CvSize cvGetSize(const CvArr* arr);//返回矩阵和图像的大小。小的结构体一般都是直接返回值而不是重新分配指针,分配指针的效率可能比直接返回值效率更低
截取矩形矩阵
CvMat* cvGetSubRect(const CvArr* arr, CvMat* submat, CvRect rect);//从输入的数组中根据输入的矩形截取一块数组中的矩形,返回的CvMat*就是submat
得到和设置元素&&&&&&& 因为效率原因,实际很少会直接用到这些方法,而是根据实际的应用来决定如何操作每一个数
uchar* cvPtr1D(CvArr* arr,int idx0,int* type);//得到的是指针,所以可以修改,比下面的效率更高
uchar* cvPtr2D(CvArr* arr,int idx0,int idx1,int* type);
uchar* cvPtr3D(CvArr* arr,int idx0,int idx1,int idx2,int* type);
uchar* cvPtrND(CvArr* arr,int* idx,int* type,int create_node=1,unsigned* precalc_hashval=NULL);//int* idx是一个数组指针,里面保存着索引
double cvGetReal1D(const CvArr* arr,int idx0);//得到的是具体值
double cvGetReal2D(const CvArr* arr,int idx0,int idx1);
double cvGetReal3D(const CvArr* arr,int idx0,int idx1,int idx2);
double cvGetRealND(const CvArr* arr,int* idx);
CvScalar cvGet1D(const CvArr* arr,int idx0);
CvScalar cvGet2D(const CvArr* arr,int idx0,int idx1);
CvScalar cvGet3D(const CvArr* arr,int idx0,int idx1,int idx2);
CvScalar cvGetND(const CvArr* arr,int* idx);
double cvmGet(const CvMat* mat, int row, int col);//仅仅用于矩阵单通道浮点数的获取,由于是inline并且没有类型判断,所以效率比较高
void cvSetReal1D(CvArr* arr, int idx0, double value);
void cvSetReal2D(CvArr* arr, int idx0, int idx1, double value);
void cvSetReal3D(CvArr* arr, int idx0, int idx1, int idx2, double value);
void cvSetRealND(CvArr* arr, int* idx, double value);
void cvSet1D(CvArr* arr, int idx0, CvScalar value);
void cvSet2D(CvArr* arr, int idx0, int idx1, CvScalar value);
void cvSet3D(CvArr* arr, int idx0, int idx1, int idx2, CvScalar value);
void cvSetND(CvArr* arr, int* idx, CvScalar value);
void cvmSet(CvMat* mat, int row, int col, double value);//仅仅用于设置单通道浮点类型的矩阵
void cvClearND(CvArr* arr, int* idx);//把多维数组的某位置设置为0
void cvSet(CvArr* arr, CvScalar value, const CvArr* mask=NULL);//把数组每个元素都设为value
void cvSetZero(CvArr* arr);//对普通矩阵,每位都设为0;对稀疏矩阵,删除所以元素
一般算数运算 int cvRound(double value ); int cvFloor( double value ); int cvCeil( double value);//求和double最(上/下)接近的整数
float cvSqrt(float value);//求平方根
float cvInvSqrt(float value);//求平方根倒数
float cvCbrt(float value);//求立方根
float cvCbrt(float value);//求两个向量的夹角
int cvIsNaN(double value);//判断是否是合法数
int cvIsInf(double value);//判断是否无穷
void cvCartToPolar(const CvArr* x, const CvArr* y, CvArr* magnitude, CvArr* angle=NULL, int angle_in_degrees=0);//
void cvPolarToCart(const CvArr* magnitude, const CvArr* angle, CvArr* x, CvArr* y, int angle_in_degrees=0);//
void cvSolveCubic(const CvArr* coeffs, CvArr* roots);//求三次方方程解,coeffs作为三次方程的系数,可以是三元(三次方系数为1)或者四元
随机数生成 CvRNG cvRNG(int64 seed=-1);//生成随机数生成器
unsigned cvRandInt(CvRNG* rng);
double cvRandReal(CvRNG* rng);
void cvRandArr(CvRNG* rng, CvArr* arr, int dist_type, CvScalar param1, CvScalar param2);//
&&& dist_type决定生成随机数组中的分布&&& CV_RAND_UNI均匀分布&&& CV_RAND_NORMAL正态/高斯分布
&&& param1:均匀分布中的下界(包含),正态分布中的平均值
&&& param2:均匀分布中的上界(不包含),正态分布中的偏差
void cvDFT(const CvArr* src, CvArr* dst, int flags, int nonzero_rows=0);
int cvGetOptimalDFTSize(int size0);
void cvMulSpectrums(const CvArr* src1, const CvArr* src2, CvArr* dst, int flags);
void cvDCT(const CvArr* src, CvArr* dst, int flags);
&&相关文章推荐
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
访问:5193799次
积分:37296
积分:37296
排名:第111名
原创:378篇
转载:12篇
评论:2980条
阅读:5166
文章:23篇
阅读:566012
(4)(5)(1)(1)(1)(3)(1)(3)(5)(5)(5)(8)(4)(3)(3)(7)(10)(4)(2)(3)(1)(3)(7)(2)(1)(4)(1)(3)(17)(14)(7)(8)(7)(6)(3)(7)(7)(3)(3)(7)(5)(6)(11)(24)(6)(11)(10)(13)(11)(34)(39)(2)(23)(6)本帖子已过去太久远了,不再提供回复功能。Opencv图像处理常用函数
&OpenCV的全称是:Open Source Computer Vision
Library。OpenCV是一个基于(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows和Mac
OS操作系统上。它轻量级而且高效——由一系列 C 函数和少量 C++
类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了和计算机视觉方面的很多通用算法。
1、cvLoadImage:将图像文件加载至内存;
2、cvNamedWindow:在屏幕上创建一个窗口;
3、cvShowImage:在一个已创建好的窗口中显示图像;
4、cvWaitKey:使程序暂停,等待用户触发一个按键操作;
5、cvReleaseImage:释放图像文件所分配的内存;
6、cvDestroyWindow:销毁显示图像文件的窗口;
7、cvCreateFileCapture:通过参数设置确定要读入的AVI文件;
8、cvQueryFrame:用来将下一帧视频文件载入内存;
9、cvReleaseCapture:释放CvCapture结构开辟的内存空间;
10、cvCreateTrackbar:创建一个滚动条;
&11、cvSetCaptureProperty:设置CvCapture对象的各种属性;
12、cvGetCaptureProperty:查询CvCapture对象的各种属性;
13、cvGetSize:当前图像结构的大小;
14、cvSmooth:对图像进行平滑处理;
15、cvPyrDown:图像金字塔,降采样,图像缩小为原来四分之一;
16、cvCanny:Canny边缘检测;
17、cvCreateCameraCapture:从摄像设备中读入数据;
18、cvCreateVideoWriter:创建一个写入设备以便逐帧将视频流写入视频文件;
19、cvWriteFrame:逐帧将视频流写入文件;
20、cvReleaseVideoWriter:释放CvVideoWriter结构开辟的内存空间;
21、CV_MAT_ELEM:从矩阵中得到一个元素;
22、cvAbs:计算数组中所有元素的绝对值;
23、cvAbsDiff:计算两个数组差值的绝对值;
24、cvAbsDiffS:计算数组和标量差值的绝对值;
25、cvAdd:两个数组的元素级的加运算;
26、cvAddS:一个数组和一个标量的元素级的相加运算;
27、cvAddWeighted:两个数组的元素级的加权相加运算(alpha运算);
28、cvAvg:计算数组中所有元素的平均值;
29、cvAvgSdv:计算数组中所有元素的绝对值和标准差;
30、cvCalcCovarMatrix:计算一组n维空间向量的协方差;
31、cvCmp:对两个数组中的所有元素运用设置的比较操作;
32、cvCmpS:对数组和标量运用设置的比较操作;
33、cvConvertScale:用可选的缩放值转换数组元素类型;
34、cvCopy:把数组中的值复制到另一个数组中;
35、cvCountNonZero:计算数组中非0值的个数;
36、cvCrossProduct:计算两个三维向量的向量积(叉积);
37、cvCvtColor:将数组的通道从一个颜色空间转换另外一个颜色空间;
38、cvDet:计算方阵的行列式;
39、cvDiv:用另外一个数组对一个数组进行元素级的除法运算;
40、cvDotProduct:计算两个向量的点积;
&41、cvEigenVV:计算方阵的特征值和特征向量;
42、cvFlip:围绕选定轴翻转;
43、cvGEMM:矩阵乘法;
44、cvGetCol:从一个数组的列中复制元素;
45、cvGetCols:从数据的相邻的多列中复制元素;
46、cvGetDiag:复制数组中对角线上的所有元素;
47、cvGetDims:返回数组的维数;
48、cvGetDimSize:返回一个数组的所有维的大小;
49、cvGetRow:从一个数组的行中复制元素值;
50、cvGetRows:从一个数组的多个相邻的行中复制元素值;
&51、cvGetSize:得到二维的数组的尺寸,以CvSize返回;
52、cvGetSubRect:从一个数组的子区域复制元素值;
53、cvInRange:检查一个数组的元素是否在另外两个数组中的值的范围内;
54、cvInRangeS:检查一个数组的元素的值是否在另外两个标量的范围内;
55、cvInvert:求矩阵的逆;
56、cvMahalonobis:计算两个向量间的马氏距离;
57、cvMax:在两个数组中进行元素级的取最大值操作;
58、cvMaxS:在一个数组和一个标量中进行元素级的取最大值操作;
59、cvMerge:把几个单通道图像合并为一个多通道图像;
60、cvMin:在两个数组中进行元素级的取最小值操作;
&61、cvMinS:在一个数组和一个标量中进行元素级的取最小值操作;
62、cvMinMaxLoc:寻找数组中的最大最小值;
63、cvMul:计算两个数组的元素级的乘积(点乘);
64、cvNot:按位对数组中的每一个元素求反;
65、cvNormalize:将数组中元素进行归一化;
66、cvOr:对两个数组进行按位或操作;
67、cvOrs:在数组与标量之间进行按位或操作;
68、cvReduce:通过给定的操作符将二维数组简为向量;
69、cvRepeat:以平铺的方式进行数组复制;
70、cvSet:用给定值初始化数组;
&71、cvSetZero:将数组中所有元素初始化为0;
72、cvSetIdentity:将数组中对角线上的元素设为1,其他置0;
73、cvSolve:求出线性方程组的解;
74、cvSplit:将多通道数组分割成多个单通道数组;
75、cvSub:两个数组元素级的相减;
76、cvSubS:元素级的从数组中减去标量;
77、cvSubRS:元素级的从标量中减去数组;
78、cvSum:对数组中的所有元素求和;
79、cvSVD:二维矩阵的奇异值分解;
80、cvSVBkSb:奇异值回代计算;
&81、cvTrace:计算矩阵迹;
82、cvTranspose:矩阵的转置运算;
83、cvXor:对两个数组进行按位异或操作;
84、cvXorS:在数组和标量之间进行按位异或操作;
85、cvZero:将所有数组中的元素置为0;
86、cvConvertScaleAbs:计算可选的缩放值的绝对值之后再转换数组元素的类型;
87、cvNorm:计算数组的绝对范数,
绝对差分范数或者相对差分范数;
88、cvAnd:对两个数组进行按位与操作;
89、cvAndS:在数组和标量之间进行按位与操作;&
90、cvScale:是cvConvertScale的一个宏,可以用来重新调整数组的内容,并且可以将参数从一种数
&&&&&&&&&&&&&&&&&
据类型转换为另一种;
&91、cvT:是函数cvTranspose的缩写;
92、cvLine:画直线;
93、cvRectangle:画矩形;
94、cvCircle:画圆;
95、cvEllipse:画椭圆;
96、cvEllipseBox:使用外接矩形描述椭圆;
97、cvFillPoly、cvFillConvexPoly、cvPolyLine:画多边形;
98、cvPutText:在图像上输出一些文本;
99、cvInitFont:采用一组参数配置一些用于屏幕输出的基本个特定字体;
100、cvSave:矩阵保存;
&101、cvLoad:矩阵读取;
102、cvOpenFileStorage:为读/写打开存储文件;
103、cvReleaseFileStorage:释放存储的数据;
104、cvStartWriteStruct:开始写入新的数据结构;
105、cvEndWriteStruct:结束写入数据结构;
106、cvWriteInt:写入整数型;
107、cvWriteReal:写入浮点型;
108、cvWriteString:写入字符型;
109、cvWriteComment:写一个XML或YAML的注释字串;
110、cvWrite:写一个对象;
&111、cvWriteRawData:写入多个数值;
112、cvWriteFileNode:将文件节点写入另一个文件存储器;
113、cvGetRootFileNode:获取存储器最顶层的节点;
114、cvGetFileNodeByName:在映图或存储器中找到相应节点;
115、cvGetHashedKey:为名称返回一个惟一的指针;
116、cvGetFileNode:在映图或文件存储器中找到节点;
117、cvGetFileNodeName:返回文件的节点名;
118、cvReadInt:读取一个无名称的整数型;
119、cvReadIntByName:读取一个有名称的整数型;
120、cvReadReal:读取一个无名称的浮点型;
&121、cvReadRealByName:读取一个有名称的浮点型;
122、cvReadString:从文件节点中寻找字符串;
123、cvReadStringByName:找到一个有名称的文件节点并返回它;
124、cvRead:将对象解码并返回它的指针;
125、cvReadByName:找到对象并解码;
126、cvReadRawData:读取多个数值;
127、cvStartReadRawData:初始化文件节点序列的读取;
128、cvReadRawDataSlice:读取文件节点的内容;
129、cvGetModuleInfo:检查IPP库是否已经正常安装并且检验运行是否正常;
130、cvResizeWindow:用来调整窗口的大小;
&131、cvSaveImage:保存图像;
132、cvMoveWindow:将窗口移动到其左上角为x,y的位置;
133、cvDestroyAllWindow:用来关闭所有窗口并释放窗口相关的内存空间;
134、cvGetTrackbarPos:读取滑动条的值;
135、cvSetTrackbarPos:设置滑动条的值;
136、cvGrabFrame:用于快速将视频帧读入内存;
137、cvRetrieveFrame:对读入帧做所有必须的处理;
138、cvConvertImage:用于在常用的不同图像格式之间转换;
139、cvErode:形态腐蚀;
140、cvDilate:形态学膨胀;
&141、cvMorphologyEx:更通用的形态学函数;
142、cvFloodFill:漫水填充算法,用来进一步控制哪些区域将被填充颜色;
143、cvResize:放大或缩小图像;
144、cvPyrUp:图像金字塔,将现有的图像在每个维度上都放大两倍;
145、cvPyrSegmentation:利用金字塔实现图像分割;
146、cvThreshold:图像阈值化;
147、cvAcc:可以将8位整数类型图像累加为浮点图像;
148、cvAdaptiveThreshold:图像自适应阈值;
149、cvFilter2D:图像卷积;
150、cvCopyMakeBorder:将特定的图像轻微变大,然后以各种方式自动填充图像边界;
151、cvSobel:图像边缘检测,Sobel算子;
152、cvLaplace:拉普拉斯变换、图像边缘检测;
153、cvHoughLines2:霍夫直线变换;
154、cvHoughCircles:霍夫圆变换;
155、cvRemap:图像重映射,校正标定图像,图像插值;
156、cvWarpAffine:稠密仿射变换;
157、cvGetQuadrangleSubPix:仿射变换;
158、cvGetAffineTransform:仿射映射矩阵的计算;
159、cvCloneImage:将整个IplImage结构复制到新的IplImage中;
160、cv2DRotationMatrix:仿射映射矩阵的计算;
161、cvTransform:稀疏仿射变换;
162、cvWarpPerspective:密集透视变换(单应性);
163、cvGetPerspectiveTransform:计算透视映射矩阵;
164、cvPerspectiveTransform:稀疏透视变换;
165、cvCartToPolar:将数值从笛卡尔空间到极坐标(极性空间)进行映射;
166、cvPolarToCart:将数值从极性空间到笛卡尔空间进行映射;
167、cvLogPolar:对数极坐标变换;
168、cvDFT:离散傅里叶变换;
169、cvMulSpectrums:频谱乘法;
170、cvDCT:离散余弦变换;
171、cvIntegral:计算积分图像;
172、cvDistTransform:图像的距离变换;
173、cvEqualizeHist:直方图均衡化;
174、cvCreateHist:创建一新直方图;
175、cvMakeHistHeaderForArray:根据已给出的数据创建直方图;
176、cvNormalizeHist:归一化直方图;
177、cvThreshHist:直方图阈值函数;
178、cvCalcHist:从图像中自动计算直方图;
179、cvCompareHist:用于对比两个直方图的相似度;
180、cvCalcEMD2:陆地移动距离(EMD)算法;
181、cvCalcBackProject:反向投影;
182、cvCalcBackProjectPatch:图块的方向投影;
183、cvMatchTemplate:模板匹配;
184、cvCreateMemStorage:用于创建一个内存存储器;
185、cvCreateSeq:创建序列;
186、cvSeqInvert:将序列进行逆序操作;
187、cvCvtSeqToArray:复制序列的全部或部分到一个连续内存数组中;
188、cvFindContours:从二值图像中寻找轮廓;
189、cvDrawContours:绘制轮廓;
190、cvApproxPoly:使用多边形逼近一个轮廓;
191、cvContourPerimeter:轮廓长度;
192、cvContoursMoments:计算轮廓矩;
193、cvMoments:计算Hu不变矩;
194、cvMatchShapes:使用矩进行匹配;
195、cvInitLineIterator:对任意直线上的像素进行采样;
196、cvSampleLine:对直线采样;
197、cvAbsDiff:帧差;
198、cvWatershed:分水岭算法;
199、cvInpaint:修补图像;
200、cvGoodFeaturesToTrack:寻找角点;
201、cvFindCornerSubPix:用于发现亚像素精度的角点位置;
202、cvCalcOpticalFlowLK:实现非金字塔的Lucas-Kanade稠密光流算法;
203、cvMeanShift:mean-shift跟踪算法;
204、cvCamShift:camshift跟踪算法;
205、cvCreateKalman:创建Kalman滤波器;
206、cvCreateConDensation:创建condensation滤波器;
207、cvConvertPointsHomogenious:对齐次坐标进行转换;
208、cvFindChessboardCorners:定位棋盘角点;
209、cvFindHomography:计算单应性矩阵;
210、cvRodrigues2:罗德里格斯变换;
211、cvFitLine:直线拟合算法;
212、cvCalcCovarMatrix:计算协方差矩阵;
213、cvInvert:计算协方差矩阵的逆矩阵;
214、cvMahalanobis:计算Mahalanobis距离;
215、cvKMeans2:K均值;
216、cvCloneMat:根据一个已有的矩阵创建一个新矩阵;
217、cvPreCornerDetect:计算用于角点检测的特征图;
218、cvGetImage:CvMat图像数据格式转换成IplImage图像数据格式;
219、cvMatMul:两矩阵相乘;
以上网友发言只代表其个人观点,不代表新浪网的观点或立场。

我要回帖

更多关于 opencv train函数用法 的文章

 

随机推荐