开机的主板坏了能开机吗是否能用SFX电源实现

【Fractal DesignNode 202】FD(Fractal Design)Node 202 Slim机箱 立卧两用/ITX主板/SFX电源/智能风道/支持310mm显卡【行情 报价 价格 评测】-京东
Fractal DesignNode 202
PLUS会员专享价
您购买此商品可享受专属价
选择新地址
¥暂无报价
规格与包装
商品名称:Fractal DesignNode 202
商品编号:3595525
商品毛重:4.13kg
商品产地:中国大陆
机箱类型:MINI机箱
板材厚度:0.8mm
支持冷排:不支持
游戏性能:骨灰级
支持主板:MINI-ITX(迷你型)
商品介绍加载中...
品牌FD(Fractal Design)
型号Node 202
类型Slim 机箱
电源不带电源
材质ABS塑料/SECC镀锌钢板
板材厚度0.8mm
主板兼容MINI-ITX
尺寸80 x 320 x 385mm
显卡最长支持31cm以下
CPU散热器限高56mm
面板接口2个USB3.0,音频输入/输出
音频接口HD;1个耳机接口;1个麦克风接口
散热系统采用智能散热内部设计,主板和显卡安装槽独立分开设置
风扇位显卡安装槽有2个120mm的风扇安装位,不可安装水冷
特性Node 202机箱在内部布局上已将易发热元件分开独立安置于靠近自由气流的位置
特殊说明只支持Mini-ITX主板, SFX电源
权利声明:京东上的所有商品信息、客户评价、商品咨询、网友讨论等内容,是京东重要的经营资源,未经许可,禁止非法转载使用。
注:本站商品信息均来自于合作方,其真实性、准确性和合法性由信息拥有者(合作方)负责。本站不提供任何保证,并不承担任何法律责任。
价格说明:
京东价:京东价为商品的销售价,是您最终决定是否购买商品的依据。
划线价:商品展示的划横线价格为参考价,该价格可能是品牌专柜标价、商品吊牌价或由品牌供应商提供的正品零售价(如厂商指导价、建议零售价等)或该商品在京东平台上曾经展示过的销售价;由于地区、时间的差异性和市场行情波动,品牌专柜标价、商品吊牌价等可能会与您购物时展示的不一致,该价格仅供您参考。
折扣:如无特殊说明,折扣指销售商在原价、或划线价(如品牌专柜标价、商品吊牌价、厂商指导价、厂商建议零售价)等某一价格基础上计算出的优惠比例或优惠金额;如有疑问,您可在购买前联系销售商进行咨询。
异常问题:商品促销信息以商品详情页“促销”栏中的信息为准;商品的具体售价以订单结算页价格为准;如您发现活动商品售价或促销信息有异常,建议购买前先联系销售商咨询。
您好!只支持Mini-ITX主板, SFX电源。感谢您对京东的支持!祝您购物愉快!
您好!CPU散热器限高:56mm。感谢您对京东的支持!祝您购物愉快!
您好!合金的,有塑料部分。感谢您对京东的支持!祝您购物愉快!
您好!支持310mm显卡。感谢您对京东的支持!祝您购物愉快!
您好!没有的。感谢您对京东的支持!祝您购物愉快!
心中疑惑就问问买过此商品的同学吧~
iframe(src='//www.googletagmanager.com/ns.html?id=GTM-T947SH', height='0', width='0', style='display: visibility:')SilverStone Technology Co., Ltd.产品介绍:FT03-MINI
堡垒系列&&&&&FT03-MINI
? 超迷你的截面积与机壳周围无线材? 充裕的空间设计给CPU散热(散热器限高:82mm)? 加长型主机板螺柱可支持主机板背部装置组件? 搭配14公分风扇同时兼容入门级水冷散热? 支持2.5英寸与3.5英寸硬盘? 兼容于Mini-DTX/Mini-ITX主机板与SFX电源? 支持标准长度扩充卡(10寸)
&&&&&&&&&轻巧、省电的Mini-ITX计算机是未来的消费趋势之一,银欣将机壳体积再缩减,开发出全新FT03-MINI超迷你机箱。保留简洁美感的同时,让体积更为小巧。以最大厚度达2.5mm的全铝喷砂外壳、无任何线材破坏的优雅外观,再搭配FT03-MINI超迷你的截面积能大幅增加空间利用率;毫无疑问地,FT03-MINI为Mini-ITX机箱,创立了全新的标准。&&&&&&&&&
机壳内部采用银欣引以为傲的烟囱式散热架构,透过将Mini-ITX主机板旋转90度达成自然界中最具效率的热对流散热。此外,FT03-MINI在如此玲珑的体积下,还能规划出,最大兼容10吋 (254mm) 的扩充卡插槽以及支持1颗3.5英寸与2颗2.5英寸的硬盘槽,同时还能安装入门级的水冷散热产品。FT03-MINI不只小巧,也能兼顾专业玩家们的扩充需求,作为堡垒系列的最新机种,FT03-MINI将成为最受注目的超迷你机箱。
FT03S-MINI
显示卡长度参考:
ATI Radeon HD
NVIDIA GeForce 9800GT - 9"
NVIDIA GeForce 9600GT/GSO - 9"
NVIDIA GeForce 8800GS/GT/GTS - 9"
NVIDIA GeForce GTX 680 - 10"
SATA III cable with non-scratch locking mechanism and 90° connector
Get a SST-CLEARCMOS add-on to conveniently clear CMOS without opening the case.
先进热导管直触薄型CPU散热器
CPU cooler designed for SFF.
SFX ST45SF is smaller and has shorter cables to enable additional room inside the case
SFX PSU with 80 PLUS Gold efficiency and 100% modular cables
标准SFX电源之典范
SFX尺寸电源的全新里程碑
标准SFX电源之典范
9.5mm SATA 8X内接吸入式薄型DVD刻录机
FT03-MINI 說明書
FT03-MINI 高分辨率照片
FT03-MINI eDM (CN-FT03-MINI-EDM.pdf)
A:以目前Intel规画的ITX而言,大部分主机板的CPU位置都过于靠近PCIE插座,导致一般120mm以上规格的空冷散热器都无法正常安
装。虽然一般而言顶级的空冷散热器效果会强于水冷,但是那是在同等风扇规模为前提。而目前的状况是这些ITX主机板最多使用到
92mm规模的空冷散热器。而水冷系统则不会受到主机板步局的限制,你可以将水冷排安装在底部。所以经过我们测试,水冷系统比较
适合在FT03-MINI。
A:There are two main types of heat pipes used in popular aftermarket coolers, they are groove and powder.
Groove heat pipes are very susceptible to gravity while powder heat pipes are less so.
To achieve best performance in either heat pipe technology, they need to be placed horizontally or have the heat source side located below the other end of the heat pipe.
We recommend choosing and installing components with heat pipes carefully by taking into consideration of the following examples:
Motherboard:
The orientation of an enthusiast
motherboard in a normal ATX case
The orientation of an enthusiast
motherboard in the FT03-MINI As the illustrations above
show, most enthusiast motherboards with heat pipes will work fine in the FT03-MINI,
the heat source is located below other parts of the heat pipe.
CPU cooler:
Horizontal style cooler
orientation
Good orientation
Bad orientation
CPU coolers can be rotated when installing on motherboards, the illustration
here shows a SilverStone NT06-E
VGA cooler
The illustration here shows a VGA cooler
that will not work well in the FT03-MINI because the heat source side (touching the
GPU) ends up being located higher than the other end.From Wikipedia, the free encyclopedia
An ATX motherboard
Comparison of some common
form factors
ATX (Advanced Technology eXtended) is a motherboard configuration specification developed by
in 1995 to improve on previous
like the . It was the first major change in ,
design in many years, improving standardization and interchangeability of parts. The specification defines the key mechanical dimensions, mounting point, I/O panel, power and connector interfaces between a , a
ATX is the most common motherboard design. Other standards for smaller boards (including , , , and ) usually keep the basic rear layout but reduce the size of the board and the number of expansion slots. Dimensions of a full-size ATX board are 12 × 9.6 in (305 × 244 mm), which allows many ATX chassis to also accept
boards. The official ATX specifications were released by Intel in 1995 and have been revised numerous times since. The most recent ATX motherboard specification is version 2.2. The most recent ATX12V power supply unit specification is 2.31, released in February 2008. EATX (Extended ATX) is a bigger version of the ATX motherboard with 12 x 13 inch dimensions. Advantages of having an EATX motherboard is the support for dual
In 2004, Intel announced the
(Balanced Technology eXtended) standard, intended as a replacement for ATX. As of 2017, the ATX design still remains popular, while BTX has been introduced by some manufacturers.
ATX I/O plates for motherboard rear connectors
On the back of the computer case, some major changes were made to the AT standard. Originally AT style cases had only a
connector and expansion slots for add-on card backplates. Any other onboard interfaces (such as
and ) had to be connected via
to connectors which were mounted either on spaces provided by the case or brackets placed in unused expansion slot positions.
ATX allowed each motherboard manufacturer to put these ports in a rectangular area on the back of the system with an arrangement they could define themselves, though a number of general patterns depending on what ports the motherboard offers have been followed by most manufacturers. Cases are usually fitted with a snap-out panel, also known as an I/O plate or I/O shield, in one of the common arrangements. If necessary, I/O plates can be replaced to suit a motherboard
the I/O plates are usually included with motherboards not designed for a particular computer. The computer will operate correctly without a plate fitted, although there will be open gaps in the case and the EMI/RFI screening will be compromised. Panels were made that allowed fitting an AT motherboard in an ATX case. Some ATX motherboards come with an integrated I/O plate.
ATX also made the
keyboard and mouse connectors ubiquitous. AT systems used a 5-pin
for the keyboard and were generally used with serial port mice (although PS/2 mouse ports were also found on some systems). Many modern motherboards are phasing out the PS/2-style keyboard and mouse connectors in favor of the more modern . Other legacy connectors that are slowly being phased out of modern ATX motherboards include 25-pin
. In their place are onboard peripheral ports such as , , ,
(both analog and ), video (analog , , , or ), extra
ports, and Wi-Fi.
ATX, , and AT motherboard compatible dimensions and bore positions
ATX motherb rear is on left.
Several ATX-derived designs have been specified that use the same power supply, mountings and basic back panel arrangement, but set different standards for the size of the board and number of expansion slots. Standard ATX provides seven slots at 0.8 in (20 mm) the popular
size removes 2.4 inches (61 mm) and three slots, leaving four. Here width refers to the distance along the external connector edge, while depth is from front to rear. Note each larger size inherits all previous (smaller) colors area.
has conflated the term
with a more recent 15 × 15 cm (5.9 × 5.9 in) design. Since references to Mini ATX have been removed from ATX specifications since the adoption of microATX, the AOpen definition is the more contemporary term and the one listed above is apparently only of historical significance.
A number of manufacturers have added one, two or three additional expansion slots (at the standard 0.8 inch spacing) to the standard 12-inch ATX motherboard width.
Form factors considered obsolete in 1999 included Baby-AT, full size AT, and the semi-proprietary LPX for low-profile cases. Proprietary motherboard designs such as those by Compaq, Packard-Bell, Hewlett Packard and others existed, and were not interchangeable with multi-manufacturer boards and cases. Portable and notebook computers had custom motherboards unique to their particular products.
Organization
Dimensions
12 × 9.6 in (305 × 244 mm)
Original, successor to AT motherboard
Server System Infrastructure Forum
12 × 10.5 in (305 × 267 mm)
Compact Electronics Bay
Server System Infrastructure Forum
16.2 × 13 in (411 × 330 mm)
Midrange Electronics Bay
Server System Infrastructure Forum
12 × 13 in (305 × 330 mm)
Enterprise Electronics Bay
Server System Infrastructure Forum
12 × 10.5 in (305 × 267 mm)
Thin Electronics Bay, for rack-mount, has board component height specification
9.6 × 9.6 in (244 × 244 mm)
Can fit in to ATX, and EATX cases.
9 × 7.5 in (229 × 191 mm)
Extended ATX (standard)
Supermicro/
12 × 13 in (305 × 330 mm)
Screw holes not completely compatible with some ATX cases. Designed for dual CPUs, and quad double slot video cards.wi
Extended ATX (commonly)
12 × 10.1 in (305 × 257 mm), 12 × 10.4 in (305 × 264 mm), 12 × 10.5 in (305 × 267 mm) and 12 × 10.7 in (305 × 272 mm)
Screw holes not completely compatible with EEB
Supermicro
13.68 × 13 in (347 × 330 mm)
Enhanced Extended ATX
14.4 × 9.6 in (366 × 244 mm)
Intended for multiple double-slot video cards, and dual CPUs,
13.5 × 10.3 in (343 × 262 mm)
Gigabyte Corporation
13.6 × 10.4 in (345 × 264 mm)
14 × 16.75 in (356 × 425 mm).
Discontinued 2008
6.7 x 6.7in (170 × 170 mm).
Aimed at home theatre or other fanless applications
12.8 × 10.5 in (325 × 267 mm)
Canceled 2006. Also micro, nano, and pico variants. Not generally compatible with ATX mounting.
13.6 × 15 in (345 × 381 mm)
Dual processors, 12 RAM slots
Supermicro
16.48 × 13 in (419 × 330 mm) and others
Quad processors, not compatible with ATX mounting
Although true E-ATX is 12 × 13 in (305 × 330 mm) most motherboard manufacturers also refer to motherboards with measurements 12 × 10.1 in (305 × 257 mm), 12 × 10.4 in (305 × 264 mm), 12 × 10.5 in (305 × 267 mm) and 12 × 10.7 in (305 × 272 mm) as E-ATX. While E-ATX and SSI EEB (Server System Infrastructure (SSI) Forum's Enterprise Electronics Bay (EEB)) share the same dimensions, the screw holes of the two standa rendering them incompatible.
unveiled a Foxconn F1 motherboard prototype, which has the same width as a standard ATX motherboard, but an extended 14.4" length to accommodate 10 slots. The firm called the new 14.4 × 9.6 in (366 × 244 mm) design of this motherboard "Ultra ATX" in its CES 2008 showing. Also unveiled during the January 2008 CES was the
Armorsuit PC-P80 case with 10 slots designed for the motherboard.
The name "XL-ATX" has been used by at least three companies in different ways.
In September 2009,
had already released a 13.5 × 10.3 in (343 × 262 mm) "XL-ATX" motherboard as its EVGA X58 Classified 4-Way SLI.
Gigabyte Technology launched another XL-ATX motherboard, with model number GA-X58A-UD9 in 2010 measuring at 13.6 × 10.3 in (345 × 262 mm), and GA-X79-UD7 in 2011 measuring at 12.8 × 10.0 in (324 × 253 mm). In April 2010, Gigabyte announced its 12.8 × 9.6 in (325 × 244 mm) GA-890FXA-UD7 motherboard that allowed all seven slots to be moved downward by one slot position. The added length could have allowed placement of up to eight expansion slots, but the top slot position is vacant on this particular model.
released MSI X58 Big Bang in 2010, MSI P67 Big Bang Marshal in 2011, MSI X79 Xpower Big Bang 2 in 2012 and MSI Z87 Xpower in 2013 all of them are 13.6 × 10.4 in (345 × 264 mm). Although these boards have room for additional expansion slots (9 and 8 total, respectively), all three provide only seven
the topmost positions are left vacant to provide more room for the CPU, chipset and associated cooling.
released a new motherboard, the "Super Record 2", or SR-2, whose size surpasses that of the "EVGA X58 Classified 4-Way SLI". The new board is designed to accommodate two Dual QPI LGA1366 socket CPUs (e.g. ), similar to that of the
motherboard that could accommodate two Intel Core 2 Quad processors and has a total of seven PCI-E slots and 12 DDR3 RAM slots. The new design is dubbed "HPTX" and is 13.6 × 15 in (345 × 381 mm).
The ATX specification requires the power supply to produce three main outputs, +3.3 V, +5 V and +12 V. Low-power -12 V and +5 VSB (standby) supplies are also required. The -12 V supply was primarily used to provide the negative supply voltage for
ports and is also used by one pin on
slots primarily to provide a reference voltage for some models of . The 5 VSB supply is used to produce trickle power to provide the soft-power feature of ATX when a PC is turned off, as well as powering the
to conserve the charge of the . A -5 V output was originally required because it was
it was removed in later versions of the ATX standard, as it became obsolete with the removal of the ISA bus expansion slots (the ISA bus itself is still found in any computer which is compatible with the old IBM PC specification (e.g., not found in the .)
Originally, the motherboard was powered by one 24-pin connector. An ATX power supply provides a number of peripheral power connectors and (in modern systems) two connectors for the motherboard: a 8-pin auxiliary connector providing additional power to the CPU and a main 24-pin power supply connector, an extension of the original 20-pin version. 20-pin MOLEX 39-29-9202 at the motherboard. 20-pin MOLEX 39-01-2200 at the cable. The connector pin pitch is 4.2 mm (one sixth of an inch).
Pinouts of ATX 2.x motherboard power connectors, 24-pin (top) and four-pin "P4" (bottom), as viewed into mating side of the plugs
ATX 20-PIN
24-pin ATX pins 11, 12, 23 and 24 form a detachable separate four-pin plug, making it backward-compatible with 20-pin ATX receptacles
24-pin ATX12V 2.x power supply connector
+3.3 V
+3.3 V
+3.3 V sense
+3.3 V
-12 V
Power on
+5 V standby
+12 V
+12 V
+3.3 V
     Light-blue background denotes control signals.
     Light-green background denotes the pins present only in the 24-pin connector.
In the 20-pin connector, pins 13–22 are numbered 11–20 respectively.
Supplies +3.3 V power and also has a second low-current wire for .
A control signal that is
to +5 V by the PSU and must be driven low to turn on the PSU.
A control signal that is low when other outputs have not yet reached, or are about to leave, correct voltages.
Formerly -5 V (     white wire), absent in m it was optional in ATX and ATX12V v1.2 and deleted since v1.3.
Molex connector part numbers
Female/receptacle
on PS cable
Male/vertical header
extender cable
39-01-2040
39-28-1043
39-01-2046
39-01-2200
39-28-1203
39-01-2206
39-01-2240
39-28-1243
39-01-2246
Four wires have special functions:
PS_ON# (power on) is a signal from the motherboard to the power supply. When the line is connected to ground (by the motherboard), the power supply turns on. It is internally pulled up to +5 V inside the power supply.
PWR_OK () is an output from the power supply that indicates that its output has stabilized and is ready for use. It remains low for a brief time (100–500 ) after the PS_ON# signal is pulled low.
+5 VSB (+5 V standby) supplies power even when the rest of the supply wire lines are off. This can be used to power the circuitry that controls the power-on signal.
+3.3 V sense should be connected to the +3.3 V on the motherboard or its power connector. This connection allows
of the voltage drop in the power-supply wiring. Some manufacturers also provided a +5 V sense wire (typically colored pink) connected to one of the red +5 V wires on some models of power supply, however, the inclusion of such wire was a non-standard practice and was never part of any official ATX standard.
Generally, supply voltages must be within ±5% of their nominal values at all times. The little-used negative supply voltages, however, have a ±10% tolerance. There is a specification for ripple in a 10 Hz–20 MHz bandwidth:
Supply (V)
Range, min. to max. (V)
Ripple, p. to p., max. (mV)
±5% (±0.25 V)
+4.75 V to +5.25
±10% (±0.50 V)
-4.50 V to -5.50
±5% (±0.60 V)
+11.40 V to +12.60
±10% (±1.20 V)
-10.80 V to -13.20
±5% (±0.165 V)
+3.135 V to +3.465
+5 standby
±5% (±0.25 V)
+4.75 V to +5.25
The 20–24-pin Molex Mini-Fit Jr. has a power rating of 600 volts, 8 amperes maximum per pin (while using 18 AWG wire). As large server motherboards and 3D graphics cards have required progressively more and more power to operate, it has been necessary to revise and extend the standard beyond the original 20-pin connector, to allow more current using multiple additional pins in parallel. The low circuit voltage is the restriction on power flow throug at the maximum rated voltage, a single Mini-Fit Jr pin would be capable of ;watts.
ATX power supplies generally have the dimensions of 150 × 86 × 140 mm (5.9 × 3.4 × 5.5 in),:23–24 with the width and height being the same as the preceding
(Low Profile eXtension) form factor (which are often incorrectly referred to as "AT" power supplies due to their ubiquitous use in later AT and Baby AT systems, even though the actual AT power supply form factor was physically larger) and share a common mounting layout of four screws arranged on the back side of the unit. That last dimension, the 140 mm depth, is frequently varied, with depths of 160, 180, 200 and 230 mm used to accommodate higher power or modular connectors.
Original AT cases (flat case style) had an integrated power switch that protruded from the power supply and sat flush with a hole in the AT chassis. It utilized a paddle-style DPST switch and was similar to the PC and PC-XT style power supplies.
Later AT (so-called "Baby AT") and LPX style computer cases had a power button that was directly connected to the system
(PSU). The general configuration was a double-pole latching mains voltage switch with the four pins connected to wires from a four-core cable. The wires were either
to the power button (making it difficult to replace the power supply if it failed) or
were used.
Typical ATX 1.3 . From left to right, the connectors are 20-pin motherboard, 4-pin "P4 connector", fan RPM monitor (note the lack of a power wire), SATA power connector (black), "Molex connector" and floppy connector.
Interior view in an ATX power supply
An ATX power supply is typically controlled by an electronic switch connected to the power button on the computer case and allows the computer to be turned off by the . In addition, many ATX power supplies have an equivalent-function manual switch on the back that also ensures no power is being sent to the components. When the switch on the power supply is turned off, however, the computer cannot be turned on with the front power button.
The power supply's connection to the motherboard was changed from the older AT and LPX AT and LPX had two similar connectors that could be accidentally interchanged by forcing the different keyed connectors into place, usually causing short-circuits and irreversible damage to the motherboard (the rule of thumb for safe operation was to connect the side-by-side connectors with the black wires together). ATX used one large, keyed connector which could not be connected incorrectly. The new connector also provides a 3.3 volt source, removing the need for motherboards to derive this voltage from the 5 V rail. Some motherboards, particularly those manufactured after the introduction of ATX but while LPX equipment was still in use, supported both LPX and ATX PSUs.
If using an ATX PSU for purposes other than powering an ATX motherboard, power can be fully turned on (it is always partly on to operate "wake-up" devices) by shorting the "power-on" pin on the ATX connector (pin 16, green wire) to a black wire (ground), which is what the power button on an ATX system does. At least the specified minimum load required by the PSU the standard does not specify operation without load and a conforming PSU may shut down, output incorrect voltages, or otherwise malfunction, but will not be hazardous or damaged.
The original ATX specification called for a power supply to be located near to the CPU with the power supply fan drawing in cooling air from outside the chassis and directing it onto the processor. It was thought that in this configuration, cooling of the processor would be achievable without the need of an active heatsink. This recommendation was removed from
modern ATX power supplies usually exhaust air from the case.
ATX, introduced in late 1995, defined three types of power connectors:
4-pin "" — transferred directly from AT standard: +5 V and +12 V for
hard disks, CD-ROMs, 5.25 inch floppy drives and other peripherals.
— transferred directly from AT standard: +5 V and +12 V for 3.5 inch floppy drives and other peripherals.
main motherboard connector — new to the ATX standard.
A supplemental 6-pin AUX connector providing additional 3.3 V and 5 V supplies to the motherboard, if needed. This was used to power the CPU in motherboards with CPU
which required 3.3 volt and/or 5 volt rails and could not get enough power through the regular 20-pin .
The power distribution specification defined that most of the PSU's power should be provided on 5 V and 3.3 V rails, because most of the electronic components (CPU, RAM, chipset, PCI, AGP and ISA cards) used 5 V or 3.3 V for power supply. The 12 V rail was only used by fans and motors of peripheral devices (HDD, FDD, CD-ROM, etc.)
While designing the Pentium 4 platform in , the standard 20-pin ATX power connector was found insufficient to meet increasing power- the standard was significantly revised into ATX12V 1.0 (ATX12V 1.x is sometimes inaccurately called ATX-P4). ATX12V 1.x was also adopted by AMD Athlon XP and Athlon 64 systems. However, some early model Athlon XP and MP boards (including some server boards) and later model lower-end motherboards do not have the 4-pin connector as described below.
Numbering of the ATX revisions may be a little confusing: ATX refers to the design, and goes up to version 2.2 in 2004 (with the 24 pins of ATX12V 2.0) while ATX12V describes only the PSU. For instance, ATX 2.03 is pretty commonly seen on PSU from 2000 & 2001 and often include the P4 12V connector, even if the norm itself does not define it yet!
The main changes and additions in ATX12V 1.0 (released in February 2000) were:
Increased the power on the 12 V rail (power on 5 V and 3.3 V rails remained mostly the same).
An extra 4-pin mini fit JR (Molex 39-01-2040), 12-volt connector to power the CPU.
Formally called the +12 V Power Connector, this is commonly referred to as the P4 connector because this was first needed to support the
processor.
Before the Pentium 4, processors were generally powered from the 5 V rail. Later processors operate at much lower voltages, typically around 1 V and some draw over 100 A. It is infeasible to provide power at such low voltages and high currents from a standard system power supply, so the Pentium 4 established the practice of generating it with a
on the motherboard next to the processor, powered by the 4-pin 12 V connector.
This is a minor revision from August 2000. The power on the 3.3 V rail was slightly increased and other smaller changes were made.
A relatively minor revision from January 2002. The only significant change was that the -5 V rail was no longer required (it became optional). This voltage was required by the ISA bus, which is no longer present on almost all modern computers.
Introduced in April 2003 (a month after 2.0). This standard introduced some changes, mostly minor. Some of them are:
Slightly increased the power on 12 V rail.
Defined minimal required PSU efficiencies for light and normal load.
Defined acoustic levels.
Introduction of Serial ATA power connector (but defined as optional).
Guidance for the -5 V rail was removed (but it was not prohibited).
ATX12V 2.x brought a very significant design change regarding power distribution. By analyzing the power demands of then-current PCs, it was determined that it would be much cheaper and more practical to power most PC components from 12 V rails, instead of from 3.3 V and 5 V rails.
In particular, PCI Express expansion cards take much of
from the 12 V rail (up to 5.5 A), while the older
up to 1 A on 12 V and up to 6 A on 3.3 V. The CPU is also driven by a 12 V rail, while it was done by a 5 V rail on older PCs (before the Pentium 4).
ATX-450PNF by FSP Group
The power demands of PCI Express were incorporated in ATX12V 2.0 (introduced in February 2003), which defined quite different power distribution from ATX12V 1.x:
Most power is now provided on 12 V rails. The standard specifies that two independent 12 V rails (12 V2 for the four-pin connector and 12 V1 for everything else) with independent overcurrent protection are needed to meet the power requirements safely (some very high power PSUs have more than two rails, recommendations for such large PSUs are not given by the standard).
The power on 3.3 V and 5 V rails was significantly reduced.
The main ATX power connector was extended to 24 pins. The extra four pins provide one additional 3.3 V, 5 V and 12 V circuit.
The six-pin AUX connector from ATX12V 1.x was removed because the extra 3.3 V and 5 V circuits which it provided are now incorporated in the 24-pin main connector.
The power supply is required to include a .
Many other specification changes and additions
This is a minor revision from June 2004. An errant reference for the -5 V rail was removed. Other minor changes were introduced.
This is a minor revision from March 2005. The power was slightly increased on all rails. Efficiency requirements changed.
Also released in March 2005 it includes corrections and specifies High Current Series wire terminals for 24-pin main and 4-pin +12 V power connectors.
Effective March 2007. Recommended efficiency was increased to 80% (with at least 70% required) and the 12 V minimum load requirement was lowered. Higher efficiency generally results in less power consumption (and less ) and the 80% recommendation brings supplies in line with new
mandates. The reduced load requirement allows compatibility with processors that draw very little power during startup. The absolute over-current limit of 240 VA per rail was removed, allowing 12 V lines to provide more than 20 A per rail.[]
This revision became effective on February 2008. It added a maximum allowed ripple/noise specification of 400 millivolts to the PWR_ON and PWR_OK signals, requires that the DC power must hold for more than 1 millisecond after the PWR_OK signal drops, clarified country-specific
requirements, added a section about Climate Savers, updated recommended power supply configuration charts, and updated the cross-regulation graphs.
This the unofficial name given to the later revisions of the v2.31 spec.
This is the current version of the ATX12V spec, published in April 2013. It is specified in Revision 1.31 of the 'Design Guide for Desktop Platform Form Factors', though it is also unofficially known as ATX12V v2.4.
An SFX power supply unit
SFX is merely a design for a power supply casing, with the power specifications almost identical to ATX. Thus, an SFX power supply is mostly
with the ATX power supply as the main difference is it the only electrical difference is that the SFX specifications do not require the -5 V rail. Since -5 V is required only by some ISA-bus expansion cards, this is not an issue with modern hardware and decreases productions costs. As a result, ATX pin 20, which carried -5 V, is absent in cu it was optional in ATX and ATX12V version 1.2 and deleted as of ATX version 1.3.
SFX has dimensions of 125 × 100 × 63.5 mm (width × depth × height), with a 60 mm fan, compared with the standard ATX dimensions of 150 × 86 × 140 mm. Optional 80 or 40 mm fan replacement increases or decreases the height of an SFX unit.
Some manufacturers and retailers incorrectly market SFX power supplies as uATX or MicroATX power supplies.[]
A TFX power supply unit
Another small power supply design with standard ATX specification connectors. Generally 5.75×3.25×2.5 in (D) × (W) × (H) (146×83×64 mm).
Provides a
style motherboard connector which is incompatible with the standard ATX motherboard connector.
This is an ATX12V power supply derivative made by AMD to power its Athlon MP (dual processor) platform. It was used only on high-end Athlon MP motherboards. It has a special 8-pin supplemental connector for motherboard, so an AMD GES PSU is required for such motherboards (those motherboards will not work with ATX(12 V) PSUs).
a. ATX12V-GES 24-pin P1 motherboard connector. The pinout on the motherboard connector is as follows when viewing the motherboard from above:
3.3 V
3.3 V
3.3 V
3.3 V
3.3 V
-12 V
5 V SB
b. ATX12V-GES 8-pin P2 motherboard connector. This pinout on the motherboard connector is as follows when viewing the motherboard from above:
Yellow striped black
Yellow striped black
Yellow striped black
is defined in Server System Infrastructure (SSI) and used primarily by /multi-core systems such as , ,
and . It has a 24-pin main connector (same as ATX12V v2.x), an 8-pin secondary connector and an optional 4-pin tertiary connector. Rather than include the extra cable, many power supply makers implement the 8-pin connector as two combinable 4-pin connectors to ensure backwards compatibility with ATX12V motherboards.
High-performance video card power demands dramatically increased during the 2000s and some high-end graphics cards have power demands that exceed
slot capabilities. For these cards, supplementary power was delivered through a standard 4-pin peripheral or floppy power connector. Midrange and high-end PCIe graphics cards manufactured after 2004 typically use a standard 6 or 8-pin PCIe power connector directly from the PSU.
Although the ATX power supply specifications are mostly vertically compatible in both ways (both electrically and physically), there are potential issues with mixing old motherboards/systems with new PSUs and vice versa. The main issues to consider are the following:
The power allocation between 3.3 V, 5 V and 12 V
is very different between older and newer ATX PSU designs, as well as between older and newer PC system designs.
Older PSUs may not have connectors which are required for newer PC systems to properly operate.
Newer systems generally have higher power requirements than older systems.
This is a practical guidance what to mix and what not to mix:
Older systems (before Pentium 4 and Athlon XP platforms) were designed to draw most power from 5 V and 3.3 V rails.
Because of the DC-DC converters on the motherboard that convert 12 V to the low voltages required by the Intel Pentium 4 and AMD Athlon XP (and subsequent) processors, such systems draw most of their power from the 12 V rail.
Original ATX PSUs have power distribution designed for pre-P4/XP PCs. They lack the supplemental 4-pin 12-volt CPU power connector, so they most likely cannot be used with P4/XP or newer motherboards. Adapters do exist but power drain on the 12 V rail must be checked very carefully. There is a chance it can work without connecting the 4-pin 12 V connector, but caution is advised.
ATX12V 1.x PSUs have power distribution designed for P4/XP PCs, but they are also greatly suitable for older PCs, since they give plenty of power (relative to old PCs' needs) both on 12 V and on 5 V/3.3 V. It is not recommended to use ATX12V 1.x PSUs on ATX12V 2.x motherboards because those systems require much more power on 12 V than ATX12V 1.x PSUs provide.
ATX12V 2.x PSUs have power distribution designed for late P4/XP PCs and for Athlon 64 and Core Duo PCs. They can be used with earlier P4/XP PCs, but the power distribution will be significantly suboptimal, so a more powerful ATX12V 2.0 PSU should be used to compensate for that discrepancy. ATX12V 2.x PSUs can also be used with pre-P4/XP systems, but the power distribution will be greatly suboptimal (12 V rails will be mostly unused, while the 3.3 V/5 V rails will be overloaded), so this is not recommended.
Systems that use an ISA bus should have a PSU that provides the -5 V rail, which became optional in ATX12V 1.2 and was subsequently phased out by manufacturers.
Some proprietary brand-name systems require a matching proprietary power supply, but some of them may also support standard and interchangeable power supplies.
Efficiency in power supplies means the extent to which power is not wasted in converting
from a household supply to regulated . Computer power supplies vary from around 70% to over 90% efficiency.
Various initiatives exist to improve the efficiency of computer power supplies.
promotes energy saving and reduction of greenhouse gas emissions by encouraging development and use of more efficient power supplies.
certifies a variety of efficiency levels for power supplies and encourages their use via financial incentives. Efficient power supplies also save money b as a result they use less electricity to power the same computer, and they emit less waste heat which results significant energy savings on central air conditioning in the summer. The gains of using an efficient power supply are more substantial in computers that use a lot of power.
Although a power supply with a larger than needed power rating will have an extra margin of safety against overloading, such a unit is often less efficient and wastes more electricity at lower loads than a more appropriately sized unit. For example, a 900-watt power supply with the
efficiency rating (which means that such a power supply is designed to be at least 85-percent efficient for loads above 180 W) may only be 73% efficient when the load is lower than 100 W, which is a typical idle power for a desktop computer. Thus, for a 100 W load, losses for this supply would be 37 W; if the same power supply was put under a 450 W load, for which the supply's efficiency peaks at 89%, the loss would be only 56 W despite supplying 4.5 times the useful power. For a comparison, a 500-watt power supply carrying the
efficiency rating (which means that such a power supply is designed to be at least 82-percent efficient for loads above 100 W) may provide an 84-percent efficiency for a 100 W load, wasting only 19 W.
Mark, S Prowse, D Mueller, Scott (September 2012). Authorized Cert Guide: CompTIA A+. Pearson Education.  .
(PDF) 2014.
(PDF). February .
Scot Mueller, Upgrading and Repairing PCs, Eleventh Edition, Que Books, 1999,  , page 1255
. Hardwaresecrets.com. Archived from
on 24 October .
Thomas Soderstrom. . Tom's Hardware 2014.
. TechPowerUp 2014.
. Evga.com 2014.
. Evga.com 2014.
(PDF). . April 2013. p. 26. Archived from
() on October 21, .
. wikihow.com
. pcguide.com
. Molex.com 2014.
. Intel Corporation. August 2000. p. 28. Archived from
(pdf) on .
. Createch.com 2014.
. Pinouts.ru 2014.
. Pinouts.ru 2014.
(pdf). Intel Corporation. April 2003. p. 38.
(pdf). Intel Corporation. June 2004. p. 44.
(PDF). Formfactors.org 2014.
. YouTube 2014.
(PDF). Archived from
(PDF) on .
. Pcguide.com 2014.
October 3, 2009, at the .
Christoph Katzer (). . . p. 3.
(PDF). . 2008.
Martin Kaffei (). . . p. 4.
Wikimedia Commons has media related to .
ATX Motherboard Specifications
ATX Power Supply Specifications
(Power Supply Design Guide for Desktop Platform Form Factors, v1.1)
(Power Supply Design Guide for Desktop Platform Form Factors, v1.2)
(Power Supply Design Guide for Desktop Platform Form Factors, v1.31)
EPS Power Supply Specifications
: Hidden categories:

我要回帖

更多关于 拔掉主板电池才能开机 的文章

 

随机推荐