C2030O2Na氯化钠的溶解度度

PMCID: PMC2968844{2,2′-[4,5-Dibromo-o-phenyl&#x000enebis(nitrilo&#x000dimethyl&#x000idyne)]diphenolato-&#x0034
O,N,N′,O′}(methanol-&#x003O)copper(II)a,*Correspondence e-mail:
This article has been
other articles in PMC.In the title compound, [Cu(C20H12Br2N2O2)(CH3OH)], the CuII ion, and the C, O and hydr&#x000oxy H atoms of the coordinated methanol mol&#x000ecule are located on a twofold rotation axis, while the methyl H atoms are disordered over two sites about the rotation axis. The CuII ion is coordinated by two N atoms [Cu—N = 1.960 (4) Å] and two O atoms [Cu—O = 1.908 (4) Å] from the tetra&#x000dentate Schiff base ligand and by one O atom [Cu—O = 2.324 (6) Å] of the methanol molecule in a square-pyramidal geometry. In the crystal structure, inter&#x000molecular O—HO hydrogen bonds link complex mol&#x000ecules into extended chains along [001].For a related crystal structure, see Saha et al. (2007). For general background related to Schiff base compounds, see: Ghosh et al. (2006); Nayka et al. (2006); Singh et al. (2007); Yu et al. (2007).
Crystal data
[Cu(C20H12Br2N2O2)(CH4O)]
r = 567.72Orthorhombic,
a = 19.164 (4) Å
b = 19.416 (4) Å
c = 5.3287 (10) Å
V = ) Å3
Z = 4Mo Kα radiation&#x003 = 5.16 mm−1
T = 273 K0.21 × 0.15 × 0.13 mm
Data collection
Bruker APEXII CCD area-detector diffractometerAbsorption correction: multi-scan (SADABS; Sheldrick, 1996) T
min = 0.411, T
max = 0.554 (expected range = 0.379&#x)9881 measured reflections2004 independent reflections1517 reflections with I > 2σ(I)
int = 0.046
Refinement
2 > 2σ(F
2)] = 0.043
2) = 0.111
S = 1.062004 reflections137 parameters242 restraintsH-atom parameters constrainedΔρmax = 1.23 e Å−3
Δρmin = &#x e Å−3
Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.Hydrogen-bond geometry (Å, °)Crystal structure: contains datablocks global, I. DOI:
(15K, cif)Structure factors: contains datablocks I. DOI:
(99K, hkl)Additional supplementary materials: ; ;
Experimental
The Schiff base ligand was synthesized by condensation of
4,5-dibromo-1,2-diaminobenzene and 2-hydroxy-benzaldehyde with the ratio 1:2
in ethanol. The synthesis of the title complex was carried out by reacting
Cu(ClO4)2.6H2O, and the schiff-base ligand (1:1, molar ratio) in
methanol. After the stirring process was continued for about 10 min at room
temperature, the mixture was filtered and the filtrate was allowed to partial
evaporate in air for sevral days to produce crystals suitable for X-ray
diffraction with a yield about 55%.
Refinement
H atoms were included using the HFIX command in SHELXL-97
(Sheldrick, 2008), with C—H = 0.96 and 0.93 Å; O-H = 0.82Å
and were allowed for as riding atoms with Uiso(H)
= 1.5Ueq(Cmethyl) and (Uiso(H) = 1.2Ueq(C,O).Figures The molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. All H-atoms are omitted for clarity. Unlabelled atoms are related by the symmetry operator (x, -y+3/2, z).Crystal data [Cu(C20H12Br2N2O2)(CH4O)]F(000) = 1116Mr = 567.72Dx = 1.902 Mg m−3Dm = 1.902 Mg m−3Dm measured by not measuredOrthorhombic, PnmaMo Kα radiation, &#x003 = 0.71073 ÅHall symbol:
-P 2ac 2nCell parameters from 1834 reflectionsa = 19.164 (4) Åθ = 3.0&#x°b = 19.416 (4) ŵ = 5.16 mm−1c = 5.3287 (10) ÅT = 273 KV = )
Å3Block, redZ = 40.21 × 0.15 × 0.13 mmData collection Bruker APEXII CCD area-detector diffractometer2004 independent reflectionsRadiation source: fine-focus sealed tube1517 reflections with I > 2σ(I)graphiteRint = 0.046 and ω scansθmax = 26.0°, θmin = 2.1°Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −23→16Tmin = 0.411, Tmax = 0.554k = −23→239881 measured reflectionsl = −6→6Refinement Refinement on F2Primary atom site location: structure-invariant direct methodsLeast-squares matrix: fullSecondary atom site location: difference Fourier mapR[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring siteswR(F2) = 0.111H-atom parameters constrainedS = 1.06w = 1/[σ2(Fo2) + (0.0453P)2 + 5.5878P]
where P = (Fo2 + 2Fc2)/32004 reflections(Δ/σ)max < 0.001137 parametersΔρmax = 1.23 e Å−3242 restraintsΔρmin = &#x e Å−3Special details Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes.Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger.Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) xyzUiso*/UeqOcc. (<1)Cu10.12529 (5)0.75001.11061 (15)0.0314 (2)Br1&#x66 (3)0.66291 (3)0.15521 (10)0.0450 (2)O10.1647 (2)0.68206 (19)1.3271 (6)0.0423 (9)O20.2119 (3)0.75000.8053 (11)0.0547 (10)H2A0.19900.75000.65870.066*N10.0729 (2)0.6827 (2)0.9116 (7)0.0301 (9)C10.0321 (3)0.7138 (3)0.7227 (9)0.0347 (9)C2&#x0 (3)0.6782 (3)0.5479 (9)0.0367 (9)H2&#x60.63040.54560.044*C3&#x5 (3)0.7142 (3)0.3777 (9)0.0327 (10)C40.0738 (3)0.6172 (3)0.9476 (10)0.0394 (8)H40.04720.59050.83910.047*C50.1119 (3)0.5817 (3)1.1386 (9)0.0392 (8)C60.1546 (3)0.6165 (3)1.3181 (9)0.0397 (9)C70.1889 (3)0.5735 (3)1.4984 (10)0.0416 (9)H70.21770.59361.61820.050*C80.1056 (3)0.5104 (3)1.1487 (10)0.0425 (9)H80.07720.48891.03080.051*C90.1388 (3)0.4700 (3)1.3222 (10)0.0441 (10)H90.13390.42241.32260.053*C100.1804 (3)0.5040 (3)1.4990 (11)0.0433 (10)H100.20300.47791.62070.052*C110.2775 (5)0.75000.8417 (18)0.067 (2)H11A0.30030.72740.70400.101*0.50H11B0.28780.72600.99470.101*0.50H11C0.29380.79660.85390.101*0.50Atomic displacement parameters (Å2) U11U22U33U12U13U23Cu10.0344 (5)0.0327 (5)0.0269 (4)0.000&#x4 (4)0.000Br10.0519 (4)0.0464 (4)0.0369 (3)&#x3 (3)&#x3 (2)&#x4 (2)O10.053 (2)0.039 (2)0.036 (2)0.0042 (18)&#x2 (17)0.0006 (16)O20.048 (2)0.076 (2)0.040 (2)0.000&#x0 (18)0.000N10.031 (2)0.032 (2)0.027 (2)0.0034 (18)&#x9 (17)0.0005 (18)C10.0348 (17)0.0422 (17)0.0272 (16)0.0003 (15)&#x9 (15)0.0008 (15)C20.0377 (19)0.042 (2)0.0308 (18)&#x0 (17)&#x7 (17)0.0007 (17)C30.033 (2)0.040 (2)0.0252 (19)&#x0 (18)&#x3 (17)&#x8 (18)C40.0398 (16)0.0449 (17)0.0336 (16)0.0007 (15)&#x7 (14)0.0008 (14)C50.0406 (17)0.0443 (17)0.0327 (16)0.0021 (15)&#x4 (15)0.0009 (15)C60.0397 (17)0.0469 (18)0.0326 (16)0.0026 (16)&#x5 (15)0.0020 (15)C70.0446 (19)0.0446 (19)0.0355 (18)0.0035 (18)&#x9 (17)0.0017 (17)C80.0452 (18)0.0444 (18)0.0380 (18)0.0005 (17)&#x2 (16)0.0017 (16)C90.048 (2)0.044 (2)0.0400 (19)0.0020 (18)&#x9 (17)0.0039 (17)C100.047 (2)0.0451 (19)0.0381 (19)0.0044 (18)&#x4 (17)0.0055 (17)C110.052 (4)0.090 (4)0.060 (4)0.0000.002 (4)0.000Geometric parameters (Å, °) Cu1—O1i1.908 (4)C4—C51.430 (7)Cu1—O11.908 (3)C4—H40.9300Cu1—N1i1.960 (4)C5—C81.390 (8)Cu1—N11.960 (4)C5—C61.429 (7)Cu1—O22.324 (6)C6—C71.432 (7)Br1—C31.886 (5)C7—C101.358 (8)O1—C61.289 (7)C7—H70.9300O2—C111.271 (9)C8—C91.368 (7)O2—H2A0.8199C8—H80.9300N1—C41.285 (7)C9—C101.399 (8)N1—C11.410 (6)C9—H90.9300C1—C21.392 (7)C10—H100.9300C1—C1i1.405 (10)C11—H11A0.9600C2—C31.383 (7)C11—H11B0.9600C2—H20.9300C11—H11C0.9600C3—C3i1.388 (10)O1i—Cu1—O187.5 (2)N1—C4—H4116.9O1i—Cu1—N1i93.95 (16)C5—C4—H4116.9O1—Cu1—N1i172.22 (18)C8—C5—C6119.6 (5)O1i—Cu1—N1172.22 (18)C8—C5—C4117.7 (5)O1—Cu1—N193.95 (16)C6—C5—C4122.7 (5)N1i—Cu1—N183.6 (2)O1—C6—C5125.3 (5)O1i—Cu1—O298.09 (16)O1—C6—C7118.9 (5)O1—Cu1—O298.09 (16)C5—C6—C7115.9 (5)N1i—Cu1—O289.29 (16)C10—C7—C6121.7 (5)N1—Cu1—O289.29 (16)C10—C7—H7119.1C6—O1—Cu1127.0 (3)C6—C7—H7119.1C11—O2—Cu1126.8 (6)C9—C8—C5123.8 (5)C11—O2—H2A116.4C9—C8—H8118.1Cu1—O2—H2A116.8C5—C8—H8118.1C4—N1—C1122.6 (4)C8—C9—C10116.7 (6)C4—N1—Cu1124.8 (3)C8—C9—H9121.6C1—N1—Cu1112.6 (3)C10—C9—H9121.6C2—C1—C1i119.8 (3)C7—C10—C9122.3 (5)C2—C1—N1124.8 (5)C7—C10—H10119.2C1i—C1—N1115.4 (3)C9—C10—H10118.5C3—C2—C1119.9 (5)O2—C11—H11A109.5C3—C2—H2120.1O2—C11—H11B109.5C1—C2—H2120.1H11A—C11—H11B109.5C2—C3—C3i120.3 (3)O2—C11—H11C109.5C2—C3—Br1117.7 (4)H11A—C11—H11C109.5C3i—C3—Br1121.90 (15)H11B—C11—H11C109.5N1—C4—C5126.3 (5)Symmetry codes: (i) x, −y+3/2, z.Hydrogen-bond geometry (Å, °) D—H···AD—HH···AD···AD—H···AO2—H2A···O1ii0.822.303.009 (6)145Symmetry codes: (ii) x, y, z−1.Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ).Bruker (2001). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.Ghosh, R., Rahaman, S. H., Lin, C. N., Lu, T. H. & Ghosh, B. K. (2006). Polyhedron, 25, 3104&#x.Nayka, M., Koner, R., Lin, H. H., Flörke, U., Wei, H. H. & Mohanta, S. (2006). Inorg. Chem.45, 10764&#x.
[]Saha, P. K., Dutta, B., Jana, S., Bera, R., Saha, S., Okamoto, K. & Koner, S. (2007). Polyhedron, 26, 563&#x.Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.Sheldrick, G. M. (2008). Acta Cryst. A64, 112&#x.
[]Singh, K., Barwa, M. S. & Tyagi, P. (2007). Eur. J. Med. Chem.42, 394&#x.
[]Yu, T. Z., Zhang, K., Zhao, Y. L., Yang, C. H., Zhang, H., Fan, D. W. & Dong, W. K. (2007). Inorg. Chem. Commun.10, 401&#x.Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography&扫二维码下载作业帮
3亿+用户的选择
下载作业帮安装包
扫二维码下载作业帮
3亿+用户的选择
(2008o虹口区二模)下表是甲、乙两种固体的部分溶解度(单位:g/100&g水)数据,下列分析正确的是(  )
温度(℃)
甲的溶解度
乙的溶解度
38.8A.甲中混有少量的乙,可以用冷却热饱和溶液的方法得到较纯净的甲B.10℃时,含水100g的乙的饱和溶液中,放入12.5g甲,甲不能溶解C.控制温度在20℃~30℃之间,甲、乙两种物质饱和溶液的质量分数可能相等D.甲是易溶的物质,乙是可溶的物质
周灰灰2694
扫二维码下载作业帮
3亿+用户的选择
A、由表可看出甲的溶解度随温度变化不大,而乙的溶解度随温度变化较大,所以说甲中混有少量乙,如果要得到较纯净的甲不能用冷却热饱和溶液的方法,而应该用蒸发结晶法.故A错误;B、10℃时,含水100g的乙的饱和溶液中,放入12.5g甲,甲还能继续溶解,又因为10℃时,甲的溶解度为35.8g,所以12.5g甲能全部溶解.故B错误;C、在20℃~30℃之间,甲的溶解度在36.0g~36.3g之间,而乙的溶解度在21.5g~38.8g,所以甲、乙的溶解度在20℃~30℃之间的某一温度下有可能相等,所以甲、乙两种物质饱和溶液的质量分数可能相等.故C正确;D、在20℃时,甲的溶解度是36.0g,乙的溶解度是21.5g,二者都大于10g,所以甲和乙都是易容物质.故D错误.故选:C
为您推荐:
(1)物质结晶方法有两种:①冷却热饱和溶液法,适用于溶解度随温度变化较大的物质.②蒸发结晶法,适用于溶解度随温度变化不大的物质.(2)一种溶剂里可以溶解多种溶质.(3)在同一温度下,如果两种物质的溶解度相同,那么在该温度下这两种物质的饱和溶液的质量分数相等.(4)在20℃时,溶解度大于10克的为易溶物质,溶解度小于10克而大于1克的为可溶物质.
本题考点:
溶质的质量分数、溶解性和溶解度的关系;溶液的概念、组成及其特点.
考点点评:
此题考查了对溶液概念的理解、溶解度及溶质的质量分数等知识点,虽然考查的知识点较多,知识覆盖面较大,但此题比较简单,容易做出来.
扫描下载二维码您所在位置: &
&nbsp&&nbsp&nbsp&&nbsp
分析化学(四川000华东理工大学第六版)总结.doc 35页
本文档一共被下载:
次 ,您可全文免费在线阅读后下载本文档。
下载提示
1.本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
2.该文档所得收入(下载+内容+预览三)归上传者、原创者。
3.登录后可充值,立即自动返金币,充值渠道很便利
需要金币:100 &&
分析化学(四川000华东理工大学第六版)总结
你可能关注的文档:
··········
··········
分析化学(四川大学和华东理工大学第六版)总结
第一节 分析化学及其任务和作用
定义:研究物质的组成、含量、结构和形态等化学信息的分析方法及理 论的科学,是化学学科的一个重要分支,是一门实验性、应用性很强的学科
分析方法的分类
一、按任务分类
定性分析:鉴定物质化学组成(化合物、元素、离子、基团)
定量分析:测定各组分相对含量或纯度
结构分析:确定物质化学结构(价态、晶态、平面与立体结构)
二、按对象分类:无机分析,有机分析
三、按测定原理分类
(一)化学分析
定义:以化学反应为为基础的分析方法,称为化学分析
定性分析 重量分析:用称量方法求得生成物W重量 定量分析 滴定分析:从与组分反应的试剂R的浓度和体积求得组分C的含量 反应式:mC+nR→CmRn X
特点:仪器简单,结果准确,灵敏度较低,分析速度较慢,适于常量组分分析
(二)仪器分析:以物质的物理或物理化学性质为基础建立起来的分析方法。
仪器分析分类:电化学分析
电导分析、电位分析、库伦分析等)、光学分析 (紫外分光光度法、红外分光光度法、原子吸收分光光度核磁共振波谱分析等)、色谱分析(液相色谱、气相色谱等)、质谱分析、放射化学分析、流动注射分析、热分析
特点:灵敏,快速,准确,易于自动化,仪器复杂昂贵,适于微量、痕量组分分析
四、按被测组分含量分类
-常量组分分析: 1%;微量组分分析:0.01%~1%;痕量组分分析;
五、按分析的取样量分类 试样重 试液体积
常量分析 0.1g 10ml
半微量 0.1~0.01g 10~1ml
微量 10~0.1mg 1~0.01ml
超微量分析 0.1mg ﹤0.01ml
六、按分析的性质分类:例行分析(常规分析)、仲裁分析
试样分析的基本程序
1、取样(采样):要使样品具有代表性,足够的量以保证分析的进行
2、试样的制备:用有效的手段将样品处理成便于分析的待测样品,必要时要进行样品的分离与富集。
3、分析测定:要根据被测组分的性质、含量、结果的准确度的要求以及现有条件选择合适的测定方法。
4、结果的计算和表达:根据选定的方法和使用的仪器,对数据进行正确取舍和处理,合理表达结果。
误差和分析数据处理
定量分析中的误差就其来源和性质的不同,可分为系统误差、偶然误差和过失误差。
一、系统误差
定义:由于某种确定的原因引起的误差,也称可测误差
特点:①重现性,②单向性,③可测性(大小成比例或基本恒定)
方法误差: 由于不适当的实验设计或所选方法不恰当所引起。
仪器误差: 由于仪器未经校准或有缺陷所引起。
试剂误差: 试剂变质失效或杂质超标等不合格 所引起
操作误差: 分析者的习惯性操作与正确操作有一定差异所引起。
操作误差与操作过失引起的误差是不同的。
二、偶然误差
定义:由一些不确定的偶然原因所引起的误差,也叫随机误差. 偶然误差的出现服从统计规律,呈正态分布。
①随机性(单次)
②大小相等的正负误差出现的机会相等。
③小误差出现的机会多,大误差出现的机会少。
三、过失误差
1、过失误差:由于操作人员粗心大意、过度疲劳、精神不集中等引起的。其表现是出现离群值或异常值。
2、过失误差的判断——离群值的舍弃
在重复多次测试时,常会发现某一数据与平均值的偏差大于其他所有数据,这在统计学上称为离群值或异常值。
离群值的取舍问题,实质上就是在不知情的情况下,区别两种性质不同的偶然误差和过失误差。
离群值的检验方法:
(1)Q 检验法:该方法计算简单,但有时欠准确。
设有n个数据,其递增的顺序为x1,x2,…,xn-1,xn,其中x1或xn可能为离群值。
当测量数据不多(n 3~10)时,其Q的定义为
具体检验步骤是:
将各数据按递增顺序排列;2)计算最大值与最小值之差;3)计算离群值与相邻值之差;
计算Q值;5)根据测定次数和要求的置信度,查表得到Q表值;6)若Q
Q表,则舍去可疑值,否则应保留。
该方法计算简单,但有时欠准确。
(2)G检验法:该方法计算较复杂,但比较准确。
具体检验步骤是:
1)计算包括离群值在内的测定平均值;2)计算离群值与平均值
之差的绝对值
3)计算包括离群值在内的标准偏差S4)计算G值。
Gα,n ,则舍去可疑值,否则应保留
测量值的准确度和精密度
一、准确度与误差
1.准确度:指测量结果与真值的接近程度,反映了测量的正确性,越接近准确度越高。系统误差影响分析结果的准确度 。
2.误差:准确度的高低可用误差来表示。误差有绝对误差和相对
误差之分。
(1)绝对误差:测量值x与真实值μ之差
正在加载中,请稍后... 上传我的文档
 下载
 收藏
该文档贡献者很忙,什么也没留下。
 下载此文档
正在努力加载中...
天津大学物理化学第五版(下)答案
下载积分:500
内容提示:天津大学物理化学第五版(下)答案
文档格式:PDF|
浏览次数:8|
上传日期: 00:29:19|
文档星级:
全文阅读已结束,如果下载本文需要使用
 500 积分
下载此文档
该用户还上传了这些文档
天津大学物理化学第五版(下)答案
关注微信公众号

我要回帖

更多关于 气体溶解度 的文章

 

随机推荐