可以同时持续多个心肌动作电位位吗?

动作电位_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
阅读已结束,下载文档到电脑
想免费下载更多文档?
定制HR最喜欢的简历
下载文档到电脑,方便使用
还剩2页未读,继续阅读
定制HR最喜欢的简历
你可能喜欢几个与动作电位有关问题的辨析(修改版)
Na+K+Ca+[1]始终处于开放状态,离子可以随时进出细胞,不受外界信号的明显影响。而电压门控通道则因膜电位变化而开启和关闭。
静息电位的形成是K+K+Na+50100K+Na+Cl-K+K+K+Na+[2]
Na+Na+Na+Na+Na+Na+K+Na+Na+K+K+Na+K+K+Na+K+Na+Na+Na+[3]
1K+K+Na+Na+Na+Na+K+Na+K+K+Na+K+Na+
Na+K+K+K+Na+K+Na+K+Na+K+K+Na+K+Na+Na+K+32[4]Na+K+K+Na+Na+K+Na+K+ATPATP
K+K+Na+Na+Na+Na+Na+Na+K+K+K+
离体神经纤维在两端同时受到刺激,产生两个神经冲动传导至中点并相遇后会抵消或停止传导,Na+Na+Na+0
Na+Ca+Na+Ca+[6]
Cl-Cl-K+K+Na+Ca+Na+Ca+[7]Na+2ABBCBCAABBBCCBBC[8]
已投稿到:
以上网友发言只代表其个人观点,不代表新浪网的观点或立场。君,已阅读到文档的结尾了呢~~
广告剩余8秒
文档加载中
动作电位有关疑难问题例析动作电位是指可兴奋细胞在受到适当刺激后,其细胞膜在静息电位的基础上发生的迅速而短暂的、可向周围扩布的电位波动。这种电位波动也可称为神经冲动或者兴奋。浙科版教材中关于动作电位的产生传导和传递的内容十分注重科学性,改正了以前版本教材的一些错误观点。但限于篇幅及学生的阅读层次,有关内在机理的解释不是很详尽,加上各种版本教参说法不一致,导致许多教师在该块内容上也模糊不清或者存在误..
扫扫二维码,随身浏览文档
手机或平板扫扫即可继续访问
动作电位 有关疑难问题例析
举报该文档为侵权文档。
举报该文档含有违规或不良信息。
反馈该文档无法正常浏览。
举报该文档为重复文档。
推荐理由:
将文档分享至:
分享完整地址
文档地址:
粘贴到BBS或博客
flash地址:
支持嵌入FLASH地址的网站使用
html代码:
&embed src='/DocinViewer-4.swf' width='100%' height='600' type=application/x-shockwave-flash ALLOWFULLSCREEN='true' ALLOWSCRIPTACCESS='always'&&/embed&
450px*300px480px*400px650px*490px
支持嵌入HTML代码的网站使用
您的内容已经提交成功
您所提交的内容需要审核后才能发布,请您等待!
3秒自动关闭窗口您所在位置: &
&nbsp&&nbsp&nbsp&&nbsp
动作电位有关问题的辨析.doc 4页
本文档一共被下载:
次 ,您可全文免费在线阅读后下载本文档。
下载提示
1.本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
2.该文档所得收入(下载+内容+预览三)归上传者、原创者。
3.登录后可充值,立即自动返金币,充值渠道很便利
需要金币:100 &&
动作电位有关问题的辨析.doc
你可能关注的文档:
··········
··········
动作电位有关问题的辨析 修改版)
动作电位的产生、传导与传递是高中生物学的重点和难点知识,本文就与之相关的几个问题进行了分析探讨。
动作电位也可称为神经冲动或者兴奋,其产生、传导与传递都牵涉到分子生物学、动物生理学等方面的机理,是高中生物学教学中的一大难点,同时也是近几年高考的热点。本文试就几个与动作电位有关的疑难问题进行辨析,以供师生参考。
Na+通道与K+通道在动作电位产生过程中的变化
   离子通道有许多种,根据其选择性可分为Na+通道、K+通道Ca+通道等。而根据其门控机制不同,又可分为非门控通道、化学门控通道、电压门控通道、机械门控通道等[1]。静息电位与动作电位的产生主要与非门控通道与电压门控通道有关。非门控通道始终处于开放状态,离子可以随时进出细胞,不受外界信号的明显影响。而电压门控通道则因膜电位变化而开启和关闭。
   静息电位的形成是非门控K+通道开放(事实上该通道一直开放),细胞膜对K+的通透性远大于Na+通透性而导致的(约50倍至100倍)。因为细胞膜内外的离子分布状况为:膜内有较多的K+和有机阴离子,膜外有较多的Na+和Cl-。所以静息时的离子移动主要表现为膜内K+顺浓度差往外扩散,相应的阴离子不能通过细胞膜,在膜两侧形成电位差。该电位差阻止了K+进一步的外流,进而达到浓度差与电位差对离子移动作用力相等的平衡状态。此时形成的外正内负的电位分布即静息电位,接近于K+的平衡电位,但一定程度上受Na+内流的影响而略为偏低[2]。
动作电位的产生则与电压门控通道的开放有关。适宜的刺激可使部分电压门控Na+通道开放,Na+内流而导致去极化。刺激达到一定强度以上,去极化至阈电位,则可继发性地引起更多Na+通道开放,使去极化更迅速。通过这种“正反馈”机制使Na+通道开放概率在极短时间内达到最大值,称为Na+通道的激活。此时Na+通透性快速增加超过K+通透性,导致进一步的去极化以及反极化,直至膜电位接近于Na+平衡电位为止,构成动作电位的上升支。电压门控Na+通道激活后又迅速失活(不能被激活的状态),电压门控K+通道激活。K+通透性再次超过Na+通透性,K+外流而导致复极化,形成动作电位的下降支。恢复到静息电位后电压门控K+通道关闭,而电压门控Na+通道则恢复到备用状态(通道关闭但可被激活的状态),以迎接下一次兴奋。电压门控K+通道同样是由于去极化而激活,不过其开放速度较慢,并且没有失活状态。阈下刺激只能使Na+通道少量开放,Na+少量内流,且不能再生性地使更多Na+通道开放,所以只能产生局部兴奋,不能形成动作电位[3]。
动作电位产生过程中不同阶段离子通道开闭情况及离子通透性变化可结合图1总结如下(注:各种离子通透性大小用离子电导大小表示):①阶段代表静息状态时,只有非门控K+通道开放,K+通透性远大于Na+通透性。②阶段代表外界刺激使电压门控Na+通道开放,导致膜去极化至阈电位,继而激活电压门控Na+通道,Na+通透性超过K+通透性,发生快速的去极化与反极化。③阶段电压门控Na+通道失活,电压门控K+通道激活,K+通透性超过Na+通透性,此时即复极化时期。④阶段电压门控K+通道关闭,电压门控Na+通道恢复到备用状态,离子通透性恢复到与①阶段相同。
Na+—K+泵在动作电位产生过程中的作用
有些参考资料认为Na+—K+泵的活动是导致复极化的原因。这种观点其实是错误的。复极化是电压门控K+通道激活使K+顺浓度差快速外流的结果。Na+—K+泵的作用是主动转运Na+和K+,即把Na+运出细胞同时把K+运进细胞,其速度比K+外流慢得多,每次转运的Na+和K+又接近相等,一般不伴随电位明显变化,不可能是复极化的主要原因。只在膜内Na+浓度过大时,泵出的Na+才会多于K+,最多可达到3:2,从而使膜电位在复极化以后向超极化方向变化,即膜内电位朝负值增加的方向变化[4]。Na+—K+泵对于维持膜两侧的离子浓度差非常重要,因为每兴奋一次,必然有少量K+外流和Na+内流,使得膜内外两种离子的浓度差减少。如果没有Na+—K+泵的主动转运,离子浓度差势必持续减少,直至不能产生兴奋。因此,每产生一次动作电位后的静息期,Na+—K+泵就会启动,从而始终维持一定的离子浓度差。这也就是兴奋需要消耗能量的原因,动作电位的产生虽不直接消耗ATP,但消耗了离子势能,而离子势能的储备需要消耗ATP。
外部溶液中Na+、K+浓度对膜电位及兴奋性的影响
   静息电位接近于K+的平衡电位,主要受膜内外的K+浓度差影响。动作电位接近于Na+平衡电位,主要受膜内外的Na+浓度差影响。将离体神经置于较低Na+浓度的溶液中,该神经
正在加载中,请稍后...

我要回帖

更多关于 动作电位恢复静息电位 的文章

 

随机推荐