分类讨论解方程,转化思想,方程思想 有没

高中数学求解,不用方程思想哦_百度知道
高中数学求解,不用方程思想哦
我有更好的答案
//e.jpg" target="_blank" title="点击查看大图" class="ikqb_img_alink"><img class="ikqb_img" src="http://e.hiphotos.com/zhidao/wh%3D600%2C800/sign=bbbea858d/1ad5ad6eddc451da1d0a0e76b3fdaa.jpg" esrc="http://e.hiphotos<a href="http.hiphotos.baidu.com/zhidao/pic/item/1ad5ad6eddc451da1d0a0e76b3fdaa.baidu.baidu
求cos(丌/4 —a)的值,然后sin(a)=sin(丌/4—(丌/4—a))这个展开就是了
为您推荐:
其他类似问题
方程思想的相关知识
&#xe675;换一换
回答问题,赢新手礼包&#xe6b9;
个人、企业类
违法有害信息,请在下方选择后提交
色情、暴力
我们会通过消息、邮箱等方式尽快将举报结果通知您。&#xe621; 上传我的文档
&#xe602; 下载
&#xe60c; 收藏
该文档贡献者很忙,什么也没留下。
&#xe602; 下载此文档
活用分类讨论思想解决方程问题
下载积分:1800
内容提示:活用分类讨论思想解决方程问题
文档格式:PDF|
浏览次数:9|
上传日期: 15:39:01|
文档星级:&#xe60b;&#xe60b;&#xe60b;&#xe60b;&#xe60b;
全文阅读已结束,如果下载本文需要使用
&#xe71b; 1800 积分
&#xe602;下载此文档
该用户还上传了这些文档
活用分类讨论思想解决方程问题
关注微信公众号有关数学思想的资料
思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。数学思想是对数学事实与理论经过概括后产生的本质认识;基本数学思想则是体现或应该体现于中的具有奠基性、总结性和最广泛的数学思想,它们含有传统数学思想的精华和现代数学思想的基本特征,并且是历史地发展着的。通过数学思想的培养,数学的能力才会有一个大幅度的提高。掌握数学思想,就是掌握数学的精髓。
函数与方程思想
函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。
的方程思想是:实际问题→问题→代数问题→方程问题。宇宙世界,充斥着等式和不等式。我们知道,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;求值问题是通过解方程来实现的……等等;不等式问题也与方程是近亲,密切相关。列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。
函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。它体现了“联系和变化”的观点。一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:f(x)、f
(x)的单调性、奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。在解决问题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。另外,方程问题、不等式问题、集合问题、数列问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。
函数知识涉及的知识点多、面广,在概念性、应用性、理解性都有一定的要求,所以是高考中考查的重点。我们应用函数思想的几种常见题型是:遇到变量,构造函数关系解题;有关的不等式、方程、最小值和最大值之类的问题,利用函数观点加以分析;含有多个变量的数学问题中,选定合适的主变量,从而揭示其中的函数关系;实际应用问题,翻译成数学语言,建立数学模型和函数关系式,应用函数性质或不等式等知识解答;等差、等比数列中,通项公式、前n项和的公式,都可以看成n的函数,数列问题也可以用函数方法解决。
数形结合思想
“数无形,少直观,形无数,难入微”,利用“”可使所要研究的问题化难为易,化繁为简。把和相结合,例如对几何问题用代数方法解答,对代数问题用几何方法解答,这种方法在解析几何里最常用。例如求根号((a-1)^2+(b-1)^2)+根号(a^2+(b-1)^2)+根号((a-1)^2+b^2)+根号(a^2+b^2)的最小值,就可以把它放在坐标系中,把它转化成一个点到(0,1)、(1,0)、(0,0)、(1,1)四点的距离,就可以求出它的最小值。
分类讨论思想
当一个问题因为某种量或图形的情况不同而有可能引起问题的结果不同时,需要对这个量或图形的各种情况进行分类讨论。比如解不等式|a-1|&4的时候,就要分类讨论a的取值情况。
当一个问题可能与某个建立关联时,可以构造方程并对方程的性质进行研究以解决这个问题。例如证明柯西不等式的时候,就可以把柯西不等式转化成一个二次方程的判别式。
从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的的、有意识的整体处理。整体思想方法在代数式的化简与求值、解方程(组)、几何解证等方面都有广泛的应用,整体代入、叠加叠乘处理、整体运算、整体设元、整体处理、几何中的补形等都是整体思想方法在解数学问题中的具体运用。
在于将未知的,陌生的,复杂的问题通过演绎归纳转化为已知的,熟悉的,简单的问题。,,因式分解,,,乃至古代数学的尺规作等数学理论无不渗透着转化的思想。常见的转化方式有:一般
特殊转化,等价转化,复杂简单转化,数形转化,构造转化,联想转化,转化等。
转化思想亦可在狭义上称为划归思想。化归思想就是将待解决的或者难以解决的问题A经过某种转化手段,转化为有固定解决模式的或者容易解决的问题B,通过解决问题B来解决问题A的方法。
隐含条件思想
没有明文表述出来,但是根据已有的明文表述可以推断出来的条件,或者是没有明文表述,但是该条件是一个常规或者真理。
把两个(或两类)不同的数学对象进行比较,如果发现它们在某些方面有相同或类似之处,那么就推断它们在其他方面也可能有相同或类似之处。
为了描述一个实际现象更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。
归纳推理思想
由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理称为归纳推理(简称归纳),简言之,归纳推理是由部分到整体,由个别到一般的推理
另外,还有思想等数学思想,例如概率统计思想是指通过概率统计解决一些实际问题,如摸奖的中奖率、某次考试的综合分析等等。另外,还可以用概率方法解决一些面积问题。
我来举例子~~图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
平行四边形出现,对称中心等分点。
梯形里面作高线,平移一腰试试看。
平行移动对角线,补成三角形常见。
证相似,比线段,添线平行成习惯。
等积式子比例换,寻找线段很关键。
直接证明有困难,少麻烦。
斜边上面作高线,比例中项一大片。
半径与弦长计算,弦心距来中间站。
圆上若有一切线,切点圆心半径连。
切线长度的计算,勾股定理最方便。
要想证明是切线,半径垂线仔细辨。
是直径,成半圆,想成直角径连弦。
弧有中点圆心连,垂径定理要记全。
圆周角边两条弦,直径和弦端点连。
弦切角边切线弦,同弧对角等找完。
要想作个外接圆,各边作出中垂线。
还要作个内接圆,内角平分线梦圆
如果遇到相交圆,不要忘作公共弦。
内外相切的两圆,经过切点公切线。
若是添上连心线,切点肯定在上面。
要作等角添个圆,证明题目少困难。
辅助线,是虚线,画图注意勿改变。
假如图形较分散,对称旋转去实验。
基本作图很关键,平时掌握要熟练。
解题还要多心眼,经常总结方法显。
切勿盲目乱添线,方法灵活应多变。
分析综合方法选,困难再多也会减。
虚心勤学加苦练,成绩上升成直线。
极限思想是的基本思想,中的一系列重要概念,如函数的连续性、导数以及定积分等等都是借助于极限来定义的。如果要问:“数学分析是一门什么学科?”那么可以概括地说:“数学分析就是用极限思想来研究函数的一门学科”。
数学思想较之于数学基础知识及常用数学方法又处于更高层次,它来源于数学基础知识及常用的数学方法,
在运用数学基础知识及方法处理数学问题时,具有指导性的地位。&一&常用的数学方法:配方法,换元法,消元法,待定系数法;&二&常用的数学思想:数形结合思想,方程与函数思想,建模思想,分类讨论思想和化归与转化思想等。&三&数学思想方法主要来源于:观察与实验,概括与抽象,类比,归纳和演绎等
数学思想方法
思想是指人们对数学理论和内容的本质的认识,是数学思想的具体化形式,实际上两者的本质是相同的,差别只是站在不同的角度看问题。通常混称为“数学思想方法”。常见的数学四大思想为:函数与方程、转化与化归、分类讨论、数形结合。
函数与方程
函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与
数学思想方法
不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。
的方程思想是:实际问题→问题→代数问题→方程问题。宇宙世界,充斥着等式和不等式。我们知道,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;求值问题是通过解方程来实现的……等等;不等式问题也与方程是近亲,密切相关。列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。
函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。它体现了“联系和变化”的观点。一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:f(x)、f
(x)的单调性、奇偶性、周期性、最大值和最小值、等,要求我们熟练掌握的是、二次函数、、指数函数、、三角函数的具体特性。在解题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。另外,方程问题、不等式问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。
函数知识涉及的知识点多、面广,在概念性、应用性、理解性都有一定的要求,所以是高考中考查的重点。我们应用函数思想的几种常见题型是:遇到变量,构造函数关系解题;有关的不等式、方程、最小值和最大值之类的问题,利用函数观点加以分析;含有多个变量的数学问题中,选定合适的主变量,从而揭示其中的函数关系;实际应用问题,翻译成数学语言,建立数学模型和函数关系式,应用函数性质或不等式等知识解答;等差、等比中,通项公式、前n项和的公式,都可以看成n的函数,数列问题也可以用函数方法解决。
等价转化是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式法、简单的问题。历年高考,等价转化思想无处不见,我们要不断培养和训练自觉的转化意识,将有利于强化解决数学问题中的应变能力,提高思维能力和技能、技巧。
转化有等价转化与非等价转化。等价转化要求转化过程中前因后果是充分必要的,才保证转化后的结果仍为原问题的结果。非等价转化其过程是充分或必要的,要对结论进行
数学思想领悟
必要的修正(如无理方程化有理方程要求验根),它能给人带来思维的闪光点,找到解决问题的突破口。我们在应用时一定要注意转化的等价性与非等价性的不同要求,实施等价转化时确保其等价性,保证逻辑上的正确。
著名的,莫斯科大学教授C.A.雅洁卡娅曾在一次向数学奥林匹克参赛者发表《什么叫解题》的演讲时提出:“解题就是把要解题转化为已经解过的题”。数学的解题过程,就是从未知向已知、从复杂到简单的化归转换过程。
等价转化思想方法的特点是具有灵活性和多样性。在应用等价转化的思想方法去解决数学问题时,没有一个统一的模式去进行。它可以在数与数、形与形、数与形之间进行转换;它可以在宏观上进行等价转化,如在分析和解决实际问题的过程中,普通语言向数学语言的翻译;它可以在符号系统内部实施转换,即所说的恒等变形。消去法、换元法、数形结合法、求值求范围问题等等,都体现了等价转化思想,我们更是经常在函数、方程、不等式之间进行等价转化。可以说,等价转化是将恒等变形在方面的形变上升到保持命题的真假不变。由于其多样性和灵活性,我们要合理地设计好转化的途径和方法,避免死搬硬套题型。
在数学操作中实施等价转化时,我们要遵循熟悉化、简单化、直观化、标准化的原则,即把我们遇到的问题,通过转化变成我们比较熟悉的问题来处理;或者将较为繁琐、复杂的问题,变成比较简单的问题,比如从超越式到代数式、从无理式到有理式、从分式到整式…等;或者比较难以解决、比较抽象的问题,转化为比较直观的问题,以便准确把握问题的求解过程,比如数形结合法;或者从非标准型向标准型进行转化。按照这些原则进行数学操作,转化过程省时省力,有如顺水推舟,经常渗透等价转化思想,可以提高解题的水平和能力。
在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。有关的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性,所以在高考试题中占有重要的位置。
引起分类讨论的原因主要是以下几个方面:
问题所涉及到的数学概念是分类进行定义的。如|a|的定义分a&0、a=0、a&0三种情况。这种分类讨论题型可以称为概念型。
问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。如等比数列的前n项和的公式,分q=1和q≠1两种情况。这种分类讨论题型可以称为性质型。
&#9314; 解含有的题目时,必须根据参数的不同取值范围进行讨论。如解不等式ax&2时分a&0、a=0和a&0三种情况讨论。这称为含参型。
另外,某些不确定的数量、不确定的图形的形状或位置、不确定的结论等,都主要通过分类讨论,保证其完整性,使之具有确定性。
进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。其中最重要的一条是“不漏不重”。
解答分类讨论问题时,我们的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论。
中学数学的基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识,如平面几何、立体几何等;一类是关于数形结合的知识,主要体现是。
数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用的方程来精确地阐明曲线的几何性质。
曾说过:“数学是研究现实世界的量的关系与空间形式的科学。”数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关的精确刻划与空间形式的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决。“数”与“形”是一对矛盾,宇宙间万物无不是“数”和“形”的矛盾的统一。先生说过:“数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。 ”
数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。
数学中的知识,有的本身就可以看作是数形的结合。如:的定义是借助于来定义的;任意角的三角函数是借助于或单位圆来定义的。
数学思想在人类文明中的作用
1、数学与自然科学:
在天文学领域里,在第谷·布拉埃观察的基础上,提出了天体运动三定律: (a)行星在轨道上绕太阳运动,太阳在此椭圆的一个焦点上。
(b)从太阳到行星的向径在相等的时间内扫过的面积是F(如图)。
(c)行星绕太阳公转的周期的平方与椭圆轨道C的半长轴的立方成正比。
开普勒是世界上第一个用数学公式描述天体运动的人,他使天文学从的静态几何学转化为动力学。这一定律出色地证明了核心的数学原理。的确是,现象的数学结构提供了理解现象的钥匙。
的相对论是物理学中,乃至整个宇宙的一次伟大革命。其核心内容是时空观的改变。的时空观认为时间与空间不相干。爱因斯坦的时空观却认为时间和空间是相互联系的。促使爱因斯坦做出这一伟大贡献的仍是数学的思维方式。爱因斯坦的空间概念是相对论诞生50年前数学家里曼为他准备好的概念。
在生物学中,数学使生物学从经验科学上升为理论科学,由定性科学转变为定量科学。它们的结合与相互促进已经产生并将继续产生许多奇妙的结果。生物学的问题促成了数学的一大分支——的诞生与发展,到今天生物数学已经成为一门完整的学科。它对生物学的新应用有以下三个方面:生命科学、生理学、脑科学。
2、数学与社会科学
如果说在自然科学中,更多的是运用数学的计算公式及计算能力;那么在社会科学的领域中,就更能体现出数学思想的作用。
要借助数学的思想,首先,必须发明一些基本公理,然后通过严密的数学推导证明,从这些公理中得出人类行为的定理。而公理又是如何产生的呢?借助经验和思考。而在社会学的领域中,公理自身应该有足够的证据说明他们合乎人性,这样人们才会接受。说到社会科学,就不免提一下数学在政治领域中的作用。1曾说:“政治可以转化为一门科学”。而在政治学公理中,的社会契约论具有非常重要的意义,它不仅仅是的代表,也推动了整个社会的进步。西方的资产阶级的文明比起的文明是进步了许多,但它必将被社会主义、共产主义文明所取代。共产党人提出的“解放全人类”——为人民谋幸福、“为人民服务”和“三个代表”应当也必将成为政府的基本公理。
在政治中不能不提的便是民主,而民主最为直接的表现形式就是选举。而数学在选票分配问题上发挥着重要作用。选票分配首先就是要公平,而如何才能做到公平呢?1952年数学家阿罗证明了一个令人吃惊的定理——,即不可能找到一个公平合理的选举系统。这就是说,只有相对合理,没有绝对合理。原来世上本无“公平”!阿罗不可能定理是数学应用于社会科学的一个里程碑。
在经济学中,数学的广泛而深入的应用是当前经济学最为深刻的变革之一。现代经济学的发展对其自身的逻辑和严密性提出了更高的要求,这就使得经济学与数学的结合成为必然。首先,严密的可以保证经济学中推理的可靠性,提高讨论问题的效率。其次,具有客观性与严密性的数学方法可以抵制经济学研究中先入为主的偏见。第三,经济学中的数据分析需要,数学方法可以解决经济生活中的定量分析。
在人口学、伦理学、哲学等其他社会科学中也渗透着数学思想……
如何寻找数学的思想方法
数学认识的一般性与特殊性
数学作为对客观事物的一种认识,与其他科学认识一样,其认识的发生和发展过程遵循实践——认识——再实践的认识路线。但是,数学对象(量)的特殊性和抽象性,又产生与其他科学不同的、特有的认识方法和理论形式。由此产生数学认识论的特有问题。
数学认识的一般性
认识论是研究认识的本质以及认识发生、发展一般规律的学说,它涉及认识的来源、感性认识与理性认识的关系、认识的真理性等问题。数学作为对客观事物的一种认识,其认识论也同样需要探讨这些问题;其认识过程,与其他科学认识一样,也必然遵循实践——认识——再实践这一辩证唯物论的认识路线。
事实上,数学史上的许多新学科都是在解决现实问题的实践中产生的。最古老的算术和几何学产生于日常生活、生产中的计数和测量,这已是不争的历史事实。数学家应用已有的数学知识在解决生产和科学技术提出的新的数学问题的过程中,通过试探或试验,发现或创造出解决新问题的具体方法,归纳或概括出新的公式、概念和原理;当新的数学问题积累到一定程度后,便形成的新问题(对象)类或新领域,产生解决这类新问题的一般方法、公式、概念、原理和思想,形成一套经验知识。这样,有了新的问题类及其解决问题的新概念、新方法等经验知识后,就标志着一门新的数学分支学科的产生,例如,17世纪的。由此可见,数学知识是通过实践而获得的,表现为一种经验知识的积累。
这时的数学经验知识是零散的感性认识,概念尚不精确,有时甚至导致推理上的矛盾。因此,它需要经过去伪存真、去粗取精的加工制作,以便上升为有条理的、系统的理论知识。
数学知识由经验知识形态上升为理论形态后,数学家又把它应用于实践,解决实践中的问题,在应用中检验理论自身的真理性,并且加以完善和发展。同时,社会实践的发展,又会提出新的数学问题,迫使数学家创造新的方法和思想,产生新的数学经验知识,即新的数学分支学科。由此可见,数学作为一种认识,与其他科学认识一样,遵循着感性具体——理性抽象——理性具体的辩证认识过程。这就是数学认识的一般性。
数学认识的特殊性
科学的区分在于研究对象的特殊性。数学研究对象的特殊性就在于,它是研究事物的量的规定性,而不研究事物的质的规定性;而“量”是抽象地存在于事物之中的,是看不见的,只能用思维来把握,而思维有其自身的逻辑规律。所以数学对象的特殊性决定了数学认识方法的特殊性。这种特殊性表现在数学知识由经验形态上升为理论形态的特有的认识方法——公理法或演绎法,以及由此产生的特有的理论形态——公理系统和。因此,它不能像自然科学那样仅仅使用观察、归纳和实验的方法,还必须应用演绎法。同时,作为对数学经验知识概括的公理系统,是否正确地反映经验知识呢?数学家解决这个问题与自然科学家不尽相同。特别是,他们不是被动地等待实践的裁决,而是主动地应用形式化方法研究公理系统应该满足的性质:无矛盾性、完全性和公理的独立性。为此,数学家进一步把公理系统抽象为形式系统。因此,演绎法是数学认识特殊性的表现。
概括数学本质的尝试
数学认识的一般性表明,数学的感性认识表现为数学知识的经验性质;数学认识的特殊性表明,数学的理性认识表现为数学知识的演绎性质。因此,认识论中关于感性认识与理性认识的关系在数学认识论中表现为数学的经验性与演绎性的关系。所以,认识数学的本质在于认识数学的经验性与演绎性的辩证关系。那么史上是如何论述数学的经验性与演绎性的关系,从而得出他们对数学本质的看法的呢?
数学哲学史上最早探讨数学本质的是古希腊哲学家。他在《理想国》中提出认识的四个阶段,认为数学是处于从感性认识过渡到理性认识的一个阶梯,是一种理智认识。这是柏拉图对数学知识在认识论中的定位,第一次触及数学的本质问题。
17世纪经验论哲学家J.洛克在批判R.笛卡尔的天赋观念中建立起他的唯物主义经验论,表述了数学经验论观点。他强调数学知识来源于经验,但又认为属于论证知识的数学不如直觉知识清楚和可靠。
德国哲学家兼数学家在建立他的唯理论哲学中,阐述了唯理论的数学哲学观。他认为:“全部算术和全部几何学都是天赋的”;数学只要依靠矛盾原则就可以证明全部算术和几何学;数学是属于推理真理。他否认了数学知识具有经验性。
德国哲学家为了克服唯理论与经验论的片面性,运用他的先验论哲学,从判断的分类入手,论述了数学是“”。由于这一观点带有先验性和调和性,所以它并没有解决数学知识的经验性与演绎性的辩证关系。
康德以后,数学发展进入一个新时期,它的一个重要特点是公理化倾向。这一趋势使大多数数学家形成一种认识:数学是一门演绎的科学。这种观点的典型代表是数学基础学派中的逻辑主义和形式主义。前者把数学归结为逻辑,后者把数学看作是符号游戏。1931年表明了公理系统的局限性和数学演绎论的片面性。这就使得一些数学家开始怀疑“数学是一门演绎科学”的观点,提出,数学是一门有经验根据的科学,但它并不排斥演绎法。这引起一场来自数学家的有关数学本质的讨论。
为了避免数学演绎论与经验论的片面性,从分析数学理论的结构入手,提出数学是一门拟经验科学。他说:“作为总体上看,按方式重组数学也许是不可能的,至少最有意义的数学理论像自然科学理论一样,是拟经验的。”尽管拉卡托斯给封闭的欧几里得系统打开了第一个缺口,但是,拟经验论实际上是半经验论,并没有真正解决数学性质问题,因而数学家对它以及数学哲学史上有关数学本质的概括并不满意。1973年,数理逻辑学家A.罗宾逊说:“就应用辩证法来仔细分析数学或某一种数学理论(如微积分)而言,在我所读的从开始的这方面的著作中,还没有发现经得起认真批判的东西。”因此,当计算机在数学中的应用引起数学研究方式的变革时,特别是当计算机证明了四色定理和借助计算机进行大量试验而创立分形几何时,再次引起了数学家们对“什么是证明?”“什么是数学?”这类有关数学本质的争论。
数学本质的辩证性
正因为一些著名数学家不满意对数学本质的概括,他们开始从数学研究的体验来阐明数学的经验性与演绎性的相互关系。D.希尔伯特说:数学的源泉就在于思维与经验的反复出现的相互作用,冯·诺伊曼说:数学的本质存在着经验与抽象的二重性;R.库朗说:数学“进入抽象性的一般性的飞行,
必须从具体和特定的事物出发,并且又返回到具体和特定的事物中去”;而A.罗宾逊则寄希望于:“出现一种以辩证的研究方法为基础的、态度认真的数学的哲学”。
本节将根据数学知识的三种形态(经验知识、公理系统和形式系统)及其与实践的关系,具体说明数学的经验性与演绎性的辩证关系。
经验知识是有关数学模型及其解决方法的知识。数学家利用数学和自然科学的知识,从现实问题中提炼或抽象出数学问题(数学模型),然后求模型的数学解(求模型解),并返回实践中去解决现实问题。这一过程似乎是数学知识的简单应用,但事实并非如此。因为数学模型是主观对客观的反映,而人的认识并非一次完成,特别是遇到复杂的问题时,需要修正已有的数学模型及其求解的方法和理论,并经多次反复试验,才能解决现实问题。况且社会实践的发展,使得旧的方法和知识在解决新问题时显得繁琐,甚至无能为力,从而迫使数学家发明或创造新的方法、思想和原理,并在实践中得到反复检验,产生新的数学分支学科。这时的数学知识是在解决实践提出的数学问题中产生的,属于经验知识,具有经验的性质。
数学的经验性向演绎性转化
第一部分讲过,数学经验知识具有零散性和不严密性,有待于上升或转化为系统的理论知识;而数学对象的特殊性使得这种转化采取特殊的途径和方法——公理法,产生特有的理论形态——公理系统。所以,数学的经验性向演绎性的转化,具体表现为经验知识向作为理论形态的公理系统的转化。
是应用公理方法从某门数学经验知识中提炼出少数基本概念和公理作为推理的前提,然后根据逻辑规则演绎出属于该门知识的命题构成的一个演绎系统。它是数学知识的具体理论形态,是对数学经验知识的理论概括。就其内容来说,是经验的;但就其表现形式来说,是演绎的,具有演绎性质。因为数学成果(一般表现为定理)不能靠归纳或实验来证实,而必须通过演绎推理来证明,否则,数学家是不予承认的。
公理系统就其对经验知识的概括来说,是理性认识对感性认识的抽象反映。为了证实这种抽象反映的正确性,数学家采取两种解决办法。一是让理论回到实践,通过实际应用来检验、修改理论。的不严密性就是通过此种方法改进的。二是从理论上研究公理系统应该满足的性质:无矛盾性、完全性和公理的独立性。这就引导数学家对公理系统的进一步抽象,产生形式系统。
是形式化了的公理系统,是由形式语言、公理和推理规则组成的。它是应用形式化方法从不同的具体公理系统中抽象出共同的推理形式,构成一个形式系统;然后用有穷推理方法研究形式系统的性质。所以,形式系统是撇开公理系统的具体内容而作的进一步抽象,是数学知识的抽象理论形态。它采用的是形式推理的方法,表现其知识形态的演绎性。
数学的演绎性向经验性的转化
这除了前面说过的认识论原因外,对公理系统和形式系统的研究也证实了这种转化的必要性。哥德尔不完全性定理严格证明了公理系统的局限性:(1
)的相容性不可能在本系统内得到证明,必须求助于更强的形式公理系统才能证明。而相容性是对公理系统最基本的要求,那么在找到更强的形式公理系统之前,数学家只能像公理集合论那样,让公理系统回到实践中去,通过解决现实问题而获得实践的支持。(2
)如果包含初等算术的形式公理系统是无矛盾的,那么它一定是不完全的。这就是说,即使形式系统的无矛盾性解决了,它又与不完全性相排斥。“不完全性”是指,在该系统中存在一个真命题及其否定都不可证明(称为不可判定命题)。所以,“不完全性”说明,作为对数学经验知识的抽象的公理系统,不可能把属于该门数学的所有经验知识(命题)都包括无遗。对于“不可判定命题”的真假,只有诉诸实践检验。因此,这两种情况说明,要解决公理系统的无矛盾性和不可判定命题,必须让数学的理论知识返回到实践接受检验。
由此可见,数学的认识过程是:在解决现实问题的实践基础上获得数学的经验知识;然后上升为演绎性的理论知识(公理系统和形式系统);再返回到实践中,通过解决现实问题而证实自身的真理性,完善或发展新的数学知识。这是辩证唯物论的认识论在数学认识论上的具体表现,反映了数学本质上是数学知识的经验性与演绎性在实践基础上的辩证统一。
演算的方法
既然数学的本质是经验性与演绎性在实践基础上的辩证统一,那么能否对数学的本质进一步作出哲学概括呢?即用简洁的语言表达数学的本质,就像拉卡托斯说的“数学是拟经验的科学”那样。为此,本文提出,数学是一门演算的科学(其中“演”表示演绎,“算”表示计算或算法,“演算”表示演与算这对矛盾的对立统一)。在此,必须说明三点:何以如此概括?“演算”能否反映数学研究的特点以及能否反映数学本质的辩证性?
1.何以如此概括?
首先,从理论上讲,数学本质是数学观的一个重要问题,而数学观与是统一的,所以可以通过方法论来分析数学观。数学认识对象的特殊性决定了数学认识方法的特殊性。这种特殊性表现在,数学研究除了像自然科学那样仅仅采用观察、实验、归纳的方法外,还必须采用演绎法。因此,可以通过研究数学认识方法来反映数学认识的本质。
其次,从事实上看,数学知识的经验性表明数学是适应社会实践需要而产生的,是解决实际问题的经验积累。社会实践提出的数学问题都要求给出定量的回答,而要作出定量的回答就必须进行具体的计算,所以计算表征了数学经验知识的特点。而对于各种具体的计算方法及其一般概括的“算法”(包括公式、原理、法则),也都可以用“算”来概括、反映数学知识的经验性在方法论上的计算或算法特点。同时,数学知识的演绎性反映数学认识在方法论上的演绎特点,所以,可以用“演”来反映数学知识的演绎性。因此,我们可以用“演算”来反映数学本质的经验性与演绎性。
第三,为避免概括数学本质的片面性。自从数学分为应用数学与以后,许多数学家认为,数学来源于经验是很早以前的事,现在已经不是了,而是变成一门演绎科学了。而一般人也接受这种观点。但这样强调数学的演绎性特点,却忽视了数学具有经验性质的一面。为了避免这种片面性,这里特别通过数学方法论来概括和反映数学的本质。
2.“演算”反映了数学研究的特点
数学研究对象的特殊性产生了数学研究特有的问题:计算与证明。它们成为数学研究的两项主要工作。关于“证明”。数学对象的特殊性使得数学成果不能像自然科学成果那样通过实验来证实,而必须通过逻辑演绎来证明,否则数学家是不予承认的。所以,数学家如何把自己的成果表达成一系列的演绎推理(即证明)就成为重要工作。证明成为数学研究工作的重要特点。关于“计算”。数学本身就是起源于计算,即使数学发展到高度抽象理论的今天,也不能没有计算。数学家在证明一个定理之前,必须经过大量的具体计算,进行各种试验或实验,并加以分析、归纳,才能形成证明的思路和方法。只有在这时候,才能从逻辑上进行综合论证,表达为一系列的演绎推理过程,即证明。从应用数学来看,更是需要大量的计算,所以人们才发明各种计算机。在电子计算机广泛应用的今天,计算的规模更大了,以致在数学中出现数值实验。因此,计算成为数学研究的另一项重要工作。
既然“计算与证明”是数学研究的两项主要工作和特点,那么“数学是演算的科学”这一概括是否反映出这一特点?“证明”是从一定的前提(基本概念和公理)出发,按照逻辑规则所进行的一种演绎推理。而“演(绎)”正可以反映“证明”这一特点。而“算”显然更可以直接反映“计算”或“算法”及其特点。由此可见,“演算”反映了数学研究的计算和证明这两项基本工作及其特点。
3.“演”与“算”的对立统一反映数学性质的辩证性
首先,从数学发展的宏观来看。数学史告诉我们,数学起源于“算”,即起源于物体个数、田亩面积、物体长度等的计算。要计算就要有计算方法,当各种计算方法积累到一定数量的时候,数学家就进行分类,概括出适用于某类问题的计算公式、法则、原理,统称为算法。所以数学的童年时期叫做算术,它表现为一种经验知识。当欧几里得建立数学史上第一个公理系统时,才出现“演绎法”。此后,“演”与“算”便构成了数学发展中的一对基本矛盾,推动着数学的发展。这在西方数学思想史中表现最为突出。大致说来,在欧几里得以前,数学思想主要是算法;欧几里得所处的亚历山大里亚前期,数学主要思想已由算法转向演绎法;从亚历山大里亚后期到18世纪,数学主要思想再次由演绎法转向算法;19世纪到20世纪上半叶,数学主要思想又由算法转向演绎法;电子计算机的应用促进了计算数学的发展及其与之交叉的诸如、计算几何等边缘学科的产生以及的出现。这一切又使算法思想重新得到发展,成为与演绎法并驾齐驱的思想。可以预言,随着计算机作为数学研究工具地位的确立,算法思想将成为今后相当长一个时期数学的主要思想。算法思想与演绎思想在数学发展过程中的这种更迭替代,从一个侧面体现了“演”与“算”这对矛盾在一定条件下的相互转化。所以,有的数学史工作者从方法论的角度把数学的发展概括为算法倾向与演绎倾向螺旋式交替上升的过程。
其次,从数学研究的微观来看。“演”中有“算”,这充分表明了我们上面所分析的“证明”中包含着“计算”,包含着“算”向“演”转化。“算”中有“演”,这充分表现在算术和代数中。算术和代数表现为“算”,但是,算术和代数的“算”,并不是自由地计算,而是要遵循基本的四则运算及其规律,即计算要按照一定的计算规则,就像证明要遵守推理规则一样。所以“算”中包含着“演”,包含着“演”向“算”的转化。“演”与“算”的这种对立统一更充分地体现在计算机的数值计算和定理证明中。这种“算”与“演”的对立统一关系,从一个侧面反映了数学的经验性与演绎性的辩证关系,反映了数学性质的辩证性。
综上所述,既然“演算”概括了数学研究的特点,反映了数学的经验性与演绎性及其辩证关系,我们就有理由把它作为对数学本质的概括,说“数学是一门演算的科学”。
小学数学思想方法的梳理(一)
课程教材研究所 王永春
数学思想和数学方法既有区别又有密切联系。数学思想的理论和抽象程度要高一些,而数学方法的实践性更强一些。人们实现数学思想往往要靠一定的数学方法;而人们选择数学方法,又要以一定的数学思想为依据。因此,二者是有密切联系的。我们把二者合称为数学思想方法。数学思想方法是数学的灵魂,那么,要想学好数学、用好数学,就要深入到数学的“灵魂深处”。
数学课程标准在总体目标中明确提出:“学生能够获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法和必要的应用技能。”这一总体目标贯穿于小学和初中,这充分说明了数学思想方法的重要性。在小学数学阶段有意识地向学生渗透一些基本的数学思想方法可以加深学生对数学概念、公式、法则、定律的理解,提高学生解决问题的能力和思维能力,也是小学数学进行素质教育的真正内涵之所在。同时,也能为初中数学思想方法的学习打下较好的基础。在小学阶段,数学思想方法主要有符号化思想、化归思想、类比思想、归纳思想、分类思想、方程思想、集合思想、函数思想、一一对应思想、模型思想、数形结合思想、演绎推理思想、变换思想、统计与概率思想等等。
为了使广大小学数学教师在教学中能很好地渗透这些数学思想方法,笔者把这些思想方法比较系统地进行概括和梳理,明晰这些思想方法的概念,整理它们在小学数学各个知识点中的应用,以及了解每个思想方法的适当拓展。
一、符号化思想
1. 符号化思想的概念。
数学符号是数学的语言,数学世界是一个符号化的世界,数学作为人们进行表示、计算、推理和解决问题的工具,符号起到了非常重要的作用;因为数学有了符号,才使得数学具有简明、抽象、清晰、准确等特点,同时也促进了数学的普及和发展;国际通用的数学符号的使用,使数学成为国际化的语言。符号化思想是一般化的思想方法,具有普遍的意义。
2. 如何理解符号化思想。
数学课程标准比较重视培养学生的符号意识,并提出了几点要求。那么,在小学阶段,如何理解这一重要思想呢?下面结合案例做简要解析。
第一,能从具体情境中抽象出数量关系和变化规律,并用符号表示。这是一个从具体到抽象、从特殊到一般的探索和归纳的过程。如通过几组具体的两个数相加,交换加数的位置和不变,归纳出加法交换律,并用符号表示:a+b=b+a。再如在长方形上拼摆单位面积的小正方形,探索并归纳出长方形的面积公式,并用符号表示:S=ab。这是一个符号化的过程,同时也是一个模型化的过程。
第二,理解符号所代表的数量关系和变化规律。这是一个从一般到特殊、从理论到实践的过程。包括用关系式、表格和图象等表示情境中数量间的关系。如假设一个正方形的边长是a,那么4a就表示该正方形的周长,a2表示该正方形的面积。这同样是一个符号化的过程,同时也是一个解释和应用模型的过程。
第三,会进行符号间的转换。数量间的关系一旦确定,便可以用数学符号表示出来,但数学符号不是唯一的,可以丰富多彩。如一辆汽车的行驶时速为定值80千米,那么该辆汽车行驶的路程和时间成正比,它们之间的数量关系既可以用表格的形式表示,也可以用公式s=80t表示,还可以用图象表示。即这些符号是可以相互转换的。
第四,能选择适当的程序和方法解决用符号所表示的问题。这是指完成符号化后的下一步工作,就是进行数学的运算和推理。能够进行正确的运算和推理是非常重要的数学基本功,也是非常重要的数学能力。
3. 符号化思想的具体应用。
数学的发展虽然经历了几千年,但是数学符号的规范和统一却经历了比较慢长的过程。如我们现在通用的算术中的十进制计数符号数字0~9于公元8世纪在印度产生,经过了几百年才在全世界通用,从通用至今也不过几百年。代数在早期主要是以文字为主的演算,直到16、17世纪韦达、笛卡尔和莱布尼兹等数学家逐步引进和完善了代数的符号体系。
符号在小学数学中的应用如下表。
阿拉伯数字:0~9
中文数字:一~十
百分号:%
用数轴表示数
+、-、&、&、( ) ﹝﹞﹛﹜2(平方)3(立方)
数的大小关系
=、≈、&、&&/P&
≥、≤、≠
加法交换律:a+b=b+a
加法结合律:a+b+c=a+(b+c)
乘法交换律:ab=ba
乘法结合律:(ab)c=a(bc)
乘法分配律:a(b+c)=ab+ac
时间、速度和路程:s=vt
数量、单价和总价:a=np
正比例关系:y/x=k
反比例关系:xy=k
用表格表示数量间的关系
用图象表示数量间的关系
空间与图形
用字母表示计量单位
长度单位:km、m、dm、cm、mm
面积单位:km2、m2、dm2、cm2、mm2
质量单位:t、kg、g
用符号表示图形
用字母表示点:三角形ABC
用符号表示角:
∠1、∠2、∠3、∠4
&#9651;ABC
两线段平行:AB&#8741;CD
两线段垂直:AB&CD
用字母表示公式
三角形面积:S= ab
平行四边形面积:S=ah
梯形面积:S= (a+b)h
圆周长:C=2πr
圆面积:S=πr?
长方体体积:v=abc
正方体体积:v=a?
圆柱体积:v=sh
圆锥体积:v= sh
统计与概率
统计图和统计表
用统计图表描述和分析各种信息
用分数表示可能性的大小
4.符号化思想的教学。
符号化思想作为数学最基本的思想之一,数学课程标准把培养学生的符号意识作为必学的内容,并提出了具体要求,足以证明它的重要性。教师在日常教学中要给予足够的重视,并落实到课堂教学目标中。要创设合适的情境,引导学生在探索中归纳和理解数学模型,并进行解释和应用。学生只有理解和掌握了数学符号的内涵和思想,才有可能利用它们进行正确的运算、推理和解决问题。
数学符号是人们在研究现实世界的数量关系和空间形式的过程中产生的,它来源于生活,但并不是生活中真实的物质存在,而是一种抽象概括。如数字1,它可以表示现实生活中任何数量是一个的物体的个数,是一种高度的抽象概括,具有一定的抽象性。一个数学符号一旦产生并被广泛应用,它就具有明确的含义,就能够进行精确的数学运算和推理证明,因而它具有精确性。数学能够帮助人们完成大量的运算和推理证明,但如果没有简捷的思想和符号的参与,它的工作量及难度也是很大的,让人望而生畏。一旦简捷的符号参与了运算和推理证明,数学的简捷性就体现出来了。如欧洲人12世纪以前基本上用罗马数字进行计数和运算,由于这种计数法不是十进制的,大数的四则运算非常复杂,严重阻碍了数学的发展和普及。直到12世纪印度数字及十进制计数法传入欧洲,才使得算术有了较快发展和普及。数学符号的发展也经历了从各自独立到逐步规范、统一和国际化的过程,最明显的就是早期的数字符号从各自独立的埃及数字、巴比伦数字、中国数字、印度数字和罗马数字到统一的阿拉伯数字。数学符号经历了从发明到应用再到统一的逐步完善的过程,并促进了数学的发展;反之,数学的发展也促进了符号的发展。因而,数学和符号是相互促进发展的,而且这种发展可能是一个慢长的过程。因而,符号意识的培养也应贯穿于数学学习的整个过程中,并需要一定的训练才能达到比较熟练的程度。
小学数学思想方法的梳理(二)
课程教材研究所 王永春
二、化归思想
1. 化归思想的概念。
人们在面对数学问题,如果直接应用已有知识不能或不易解决该问题时,往往将需要解决的问题不断转化形式,把它归结为能够解决或比较容易解决的问题,最终使原问题得到解决,把这种思想方法称为化归(转化)思想。
从小学到中学,数学知识呈现一个由易到难、从简到繁的过程;然而,人们在学习数学、理解和掌握数学的过程中,却经常通过把陌生的知识转化为熟悉的知识、把繁难的知识转化为简单的知识,从而逐步学会解决各种复杂的数学问题。因此,化归既是一般化的数学思想方法,具有普遍的意义;同时,化归思想也是攻克各种复杂问题的法宝之一,具有重要的意义和作用。
2. 化归所遵循的原则。
化归思想的实质就是在已有的简单的、具体的、基本的知识的基础上,把未知化为已知、把复杂化为简单、把一般化为特殊、把抽象化为具体、把非常规化为常规,从而解决各种问题。因此,应用化归思想时要遵循以下几个基本原则:
(1)数学化原则,即把生活中的问题转化为数学问题,建立数学模型,从而应用数学知识找到解决问题的方法。数学来源于生活,应用于生活。学习数学的目的之一就是要利用数学知识解决生活中的各种问题,课程标准特别强调的目标之一就是培养实践能力。因此,数学化原则是一般化的普遍的原则之一。
(2)熟悉化原则,即把陌生的问题转化为熟悉的问题。人们学习数学的过程,就是一个不断面对新知识的过程;解决疑难问题的过程,也是一个面对陌生问题的过程。从某种程度上说,这种转化过程对学生来说既是一个探索的过程,又是一个创新的过程;与课程标准提倡培养学生的探索能力和创新精神是一致的。因此,学会把陌生的问题转化为熟悉的问题,是一个比较重要的原则。
(3)简单化原则,即把复杂的问题转化为简单的问题。对解决问题者而言,复杂的问题未必都不会解决,但解决的过程可能比较复杂。因此,把复杂的问题转化为简单的问题,寻求一些技巧和捷径,也不失为一种上策。
(4)直观化原则,即把抽象的问题转化为具体的问题。数学的特点之一便是它具有抽象性。有些抽象的问题,直接分析解决难度较大,需要把它转化为具体的问题,或者借助直观手段,比较容易分析解决。因而,直观化是中小学生经常应用的方法,也是重要的原则之一。
3. 化归思想的具体应用。
学生面对的各种数学问题,可以简单地分为两类:一类是直接应用已有知识便可顺利解答的问题;另一种是陌生的知识、或者不能直接应用已有知识解答的问题,需要综合地应用已有知识或创造性地解决的问题。如知道一个长方形的长和宽,求它的面积,只要知道长方形面积公式的人,都可以计算出来,这是第一类问题;如果不知道平行四边形的面积公式,通过割补平移变换把平行四边形转化为长方形,推导出它的面积公式,再计算面积,这是第二类问题。对于广大中小学生来说,他们在学习数学的过程中所遇到的很多问题都可以归为第二类问题,并且要不断地把第二类问题转化为第一类问题。解决问题的过程,从某种意义上来说就是不断地转化求解的过程,因此,化归思想应用非常广泛。
化归思想在小学数学中的应用如下表。
整数的意义:用实物操作和直观图帮助理解
小数的意义:用直观图帮助理解
分数的意义:用直观图帮助理解
负数的意义:用数轴等直观图帮助理解
四则运算的意义
乘法的意义:若干个相同加数相加的一种简便算法。
除法的意义:乘法的逆运算。
四则运算的法则
整数加减法:用实物操作和直观图帮助理解算法。
小数加减法:小数点对齐,然后按照整数的方法进行计算。
小数乘法:先按照整数乘法的方法进行计算,再点小数点。
小数除法:把除数转化为整数,基本按照整数除法的方法进行计算,需要注意被除数小数点与商的小数点对齐。
分数加减法:异分母分数加减法转化为同分母分数加减法。
分数除法:转化为分数乘法。
四则运算各部分间的关系
a + b = c, c -a = b
ab=c, a=c&b
利用运算定律进行简便计算
解方程:解方程的过程,实际就是不断把方程转化为未知数前边的系数是1的过程(x=a)。
解决问题的策略
化繁为简:植树问题、鸡兔同笼问题等。
化抽象为直观:用线段图、图表、图像等直观表示数量之间的关系、帮助推理。
化实际问题为数学问题:
化一般问题为特殊问题:
化未知问题为已知问题:
空间与图形
三角形内角和
通过操作把三个内角转化为平角
多边形的内角和
转化为三角形求内角和
正方形的面积:转化为长方形求面积
平行四边形面积:转化为长方形求面积
三角形的面积:转化为平行四边形求面积
梯形的面积:转化为平行四边形求面积
圆的面积:转化为长方形求面积
组合图形的面积:转化为求基本图形的面积
正方体的体积:转化为长方体求体积
圆柱的体积:转化为长方体求体积
圆锥体积:转化为圆柱求体积
统计与概率
统计图和统计表
运用不同的统计图表描述各种数据
运用不同的方式表示可能性的大小
4.解决问题中的化归策略。
(1)化抽象问题为直观问题。
数学的特点之一是它具有很强的抽象性,这是每个想学好数学的人必须面对的问题。从小学到初中,再到高中,数学问题的抽象性不断加强,学生的抽象思维能力在不断接受挑战。如果能把比较抽象的问题转化为操作或直观的问题,那么不但使得问题容易解决,经过不断的抽象→直观→抽象的训练,学生的抽象思维能力也会逐步提高。下面举例说明。
分析:此问题通过观察,可以发现一个规律:每一项都是它前一项的
。但是对于小学和初中的学生来说,还没有学习等比数列求和公式。如果把一条线段看作1, 先取它的一半表示 ,再取余下的一半的一半表示
,这样不断地取下去,最终相当于取了整条线段。因此,上式的结果等于1, 这样利用直观手段解决了高中生才能解决的问题。
(2)化繁为简的策略。
有些数学问题比较复杂,直接解答过程会比较繁琐,如果在结构和数量关系相似的情况下,从更加简单的问题入手,找到解决问题的方法或建立模型,并进行适当检验,如果能够证明这种方法或模型是正确的,那么该问题一般来说便得到解决。下面举例加以说明。
案例1:把186拆分成两个自然数的和,怎样拆分才能使拆分后的两个自然数的乘积最大?187呢?
分析:此题中的数比较大,如果用枚举法一个一个地猜测验证,比较繁琐。如果从比较小的数开始枚举,利用不完全归纳法,看看能否找到解决方法。如从10开始,10可以分成:1和9,
2和8, 3和7, 4和6, 5 和5。它们的积分别是:9, 16, 21, 24,
25。可以初步认为拆分成相等的两个数的乘积最大,如果不确定,还可以再举一个例子,如12可以分成:1和11, 2和10, 3和9,
4和8, 5和7, 6和6, 它们的积分别是:11, 20, 27, 32, 35, 36。由此可以推断:把186拆分成93和93,
93和93的乘积最大,乘积为8649。适当地加以检验,如92和94的乘积为的乘积为8640,
都比8649小。
因为187是奇数,无法拆分成相等的两个数,只能拆分成相差1的两个数,这时它们的乘积最大。不再举例验证。
案例2:你能快速口算85&85=,95&95=,105&105=吗?
分析:仔细观察可以看出,此类题有些共同特点,每个算式中的两个因数相等,并且个位数都是5。如果不知道个位数是5的相等的两个数的乘积的规律,直接快速口算是有难度的。那么,此类题有什么技巧呢?不妨从简单的数开始探索,如15&15=225,25&25=625,35&35=1225。通过这几个算式的因数与相应的积的特点,可以初步发现规律是:个位数是5的相等的两个数的乘积分为左右两部分:左边为因数中5以外的数字乘比它大1的数,右边为25(5乘5的积)。所以85&85==5=11025,实际验证也是如此。
很多学生面对一些数学问题,可能知道怎么解答,但是只要想起解答过程非常繁琐,就会产生退缩情绪,或者在繁琐的解答过程中出现失误,这是比较普遍的情况。因此,学会化繁为简的解题策略,对于提高解决繁难问题的能力大有帮助。
(3)化实际问题为特殊的数学问题。
数学来源于生活,应用于生活。与小学数学有关的生活中的实际问题,多数可以用常规的小学数学知识解决;但有些生活中的实际问题表面上看是一些常用的数量,似乎能用常规的数学模型解决问题。但真正深入分析数量关系时,可能由于条件不全面而无法建立模型。这时,就需要超越常规思维模式,从另外的角度进行分析,找到解决问题的方法。下面举例说明。
案例1:某旅行团队翻越一座山。上午9时上山,每小时行3千米,到达山顶时休息1小时。下山时,每小时行4千米,下午4时到达山底。全程共行了20千米。上山和下山的路程各是多少千米?
分析:由于只知道上山和下山的速度,不知道上山和下山的具体时间,因此无法直接求出上山和下山的路程,但是知道总路程。仔细观察可以发现:题中给出了两个未知数量的总和以及与这两个数量有关的一些特定的数量,如果用假设的方法,那么就类似于鸡兔同笼问题。假设都是上山,那么总路程是18(6&3)千米,比实际路程少算了2千米,所以下山时间是2﹝2&(4-3)﹞小时,上山时间是4小时。上山和下山的路程分别是12千米和8千米。
案例2:李阿姨买了2千克苹果和3千克香蕉用了11元,王阿姨买了同样价格的1千克苹果和2千克香蕉,用了6.5元。每千克苹果和香蕉各多少钱?
分析:此题初看是关于单价、总价和数量的问题,但是,由于题中没有告诉苹果和香蕉各自的总价是多少,无法直接计算各自的单价。认真观察,可以发现:题中分两次给出了不同数量的苹果和香蕉的总价,虽然题中有苹果和香蕉各自的单价这两个未知数,但这二者没有直接的关系,如果用方程解决,也超出了一元一次方程的范围。那么这样的问题在小学的知识范围内如何解决呢?利用二元一次方程组加减消元的思想,可以解决这类问题;具体来说就是把两组数量中的一个数量化成相等的关系,再相减,得到一个一元一次方程。不必列式推导,直接分析便可:1千克苹果和2千克香蕉6.5元,那么可得出2千克苹果和4千克香蕉13元;题中已知2千克苹果和3千克香蕉11元。用13减去11得2,所以香蕉的单价是每千克2元。再通过计算得苹果的单价是每千克2.5元。
(4)化未知问题为已知问题。
对于学生而言,学习的过程是一个不断面对新知识的过程,有些新知识通过某些载体直接呈现,如面积和面积单位,通过一些物体或图形直接引入概念;而有些新知识可以利用已有知识通过探索,把新知识转化为旧知识进行学习。如平行四边形面积公式的学习,通过割补平移,把平行四边形转化为长方形求面积。这种化未知为已知的策略,在数学学习中非常常见。下面举例说明。
案例:水果商店昨天销售的苹果比香蕉的2倍多30千克,这两种水果一共销售了180千克。销售香蕉多少千克?
分析:学生在学习列方程解决问题时学习了最基本的有关两个数量的一种模型:已知两个数量的倍数关系以及这两个数量的和或差,求这两个数量分别是多少。题中的苹果和香蕉的关系,不是简单的倍数关系;而是在倍数的基础上增加了一个条件,即苹果比香蕉的2倍还多30千克。假如把180减去30得150,那么题目可以转化为:如果水果商店昨天销售的苹果是香蕉的2倍,那么这两种水果一共销售了150千克。销售香蕉多少千克?这时就可以列方程解决了,设未知数时要注意设谁为x,题目求的是哪个量。
这个案例能给我们什么启示呢?教师在教学中要让学生学习什么?学生既要学习知识,又要学习方法。学生不仅要学会类型套类型的解题模式,更重要的是在理解和掌握最基本的数学模型的基础上,形成迁移类推或举一反三的能力。教师在上面最基本的模型基础上,可以引导学生深入思考以下几个问题:
1. 水果商店昨天销售的苹果比香蕉的2倍少30千克,这两种水果一共销售了180千克。销售苹果多少千克?
2. 水果商店昨天销售的香蕉比苹果的 多30千克,这两种水果一共销售了180千克。销售苹果多少千克?
3. 水果商店昨天销售的香蕉比苹果的 少30千克,这两种水果一共销售了120千克。销售苹果多少千克?
4. 水果商店昨天销售的苹果是香蕉的2倍,销售的梨是香蕉的3倍。这三种水果一共销售了180千克。销售香蕉多少千克?
5. 水果商店昨天销售的苹果是香蕉的2倍,销售的梨是苹果的2倍。这三种水果一共销售了210千克。销售香蕉多少千克?
从以上几个题目的步数来说,可能已经超越了教材基本的难度标准。但笔者近年来一直有一个理念:“高标准教学,标准化考试”教师们可以在课堂上大胆探索,这样的问题经过引导和启发,学生到底能否解决?学生是否能在数学思想方法和数学思维能力上得到更好的发展?是否贯彻了课程标准提倡的不同的人在数学上得到不同的发展的理念?
(5)化一般问题为特殊问题。
数学中的规律一般具有普遍性,但是对于小学生而言,普遍的规律往往比较抽象,较难理解和应用。如果举一些特殊的例子运用不完全归纳法加以猜测验证,也是可行的解决问题的策略。下面举例说明。
案例:任意一个大于4的自然数,拆成两个自然数之和,怎样拆分才能使这两个自然数的乘积最大?
分析:此问题如果运用一般的方法进行推理,可以设这个大于4的自然数为N。如果N为偶数,可设N=2K(K为任意大于2的自然数);那么N=K+K=(K-1)+(K+1)=(K-2)+(K+2)=…,
因为K2&K2-1&K2-4&…,
所以K&K&(K-1)&(K+1)&(K-2)&(K+2)&…,
所以把这个偶数拆分成两个相等的数的和,它们的积最大。
如果N为奇数,可设N=2K+1(K为任意大于1的自然数);那么N=K+(K+1)=(K-1)+(K+2)=(K-2)+(K+3)=…,
因为K2+K&K2+K-2&K2+K-6&…,
所以K&(K+1)&(K-1)&(K+2)&(K-2)&(K+3)&…,
所以把这个奇数拆分成两个相差1的数的和,它们的积最大。
仔细观察问题可以发现,题中的自然数只要大于4,
便存在一种普遍的规律;因此,取几个具体的特殊的数,也应该存在这样的规律。这时就可以把一般问题转化为特殊问题,仅举几个有代表性的比较小的数(只要大于4)进行枚举归纳,如10,11等,就可以解决问题,具体案例见前文。
化归思想作为最重要的数学思想之一,在学习数学和解决数学问题的过程中无所不在,对于学生而言,要学会善于运用化归的思想方法解决各种复杂的问题,最终达到在数学的世界里举重若轻的境界。
小学数学思想方法的梳理(三)
课程教材研究所 王永春
三、模型思想
1. 模型思想的概念。
数学模型是用数学语言概括地或近似地描述现实世界事物的特征、数量关系和空间形式的一种数学结构。从广义角度讲,数学的概念、定理、规律、法则、公式、性质、数量关系式、图表、程序等都是数学模型。数学的模型思想是一般化的思想方法,数学模型的主要表现形式是数学符号表达式和图表,因而它与符号化思想有很多相通之处,同样具有普遍的意义。不过,也有很多数学家对数学模型的理解似乎更注重数学的应用性,即把数学模型描述为特定的事物系统的数学关系结构。如通过数学在经济、物理、农业、生物、社会学等领域的应用,所构造的各种数学模型。为了把数学模型与数学知识或是符号思想明显地区分开来,本文主要从侠义的角度讨论数学模型,即重点分析小学数学的应用及数学模型的构建。
2. 模型思想的重要意义。
数学模型是运用数学的语言和工具,对现实世界的一些信息进行适当的简化,经过推理和运算,对相应的数据进行分析、预测、决策和控制,并且要经过实践的检验。如果检验的结果是正确的,便可以指导我们的实践。如上所述,数学模型在当今市场经济和信息化社会已经有比较广泛的应用;因而,模型思想在数学思想方法中有非常重要的地位,在数学教育领域也应该有它的一席之地。
如果说符号化思想更注重数学抽象和符号表达,那么模型思想更注重数学的应用,即通过数学结构化解决问题,尤其是现实中的各种问题;当然,把现实情境数学结构化的过程也是一个抽象的过程。现行的数学课程标准对符号化思想有明确的要求,如要求学生“能从具体情境中抽象出数量关系和变化规律,并用符号来表示”这实际上就包含了模型思想。但是,课程标准对第一、二学段并没有明确提出模型思想的要求,只是在第三学段的内容标准和教学建议中明确提出了模型思想,要求在教学中“注重使学生经历从实际问题中建立数学模型”,教学过程以“问题情境—建立模型—解释、应用与拓展”的模式展开。如果说小学数学教育工作者中有人关注了模型思想,多数人基本上只是套用第三学段对模型思想的要求进行研究,也很难做到要求的具体化和课堂教学的贯彻落实。
据了解,即将颁布的课程标准修改稿与现行的课程标准相比有了较大变化,在课程内容部分中明确提出了“初步形成模型思想”,并具体解释为“模型思想的建立是帮助学生体会和理解数学与外部世界联系的基本途径。建立和求解模型的过程包括:从现实生活或具体情境中抽象出数学问题,用数学符号建立方程、不等式、函数等表示数学问题中的数量关系和变化规律,求出结果、并讨论结果的意义。这些内容的学习有助于学生初步形成模型思想,提高学习数学的兴趣和应用意识”。并在教材编写建议中提出了“教材应当根据课程内容,设计运用数学知识解决问题的活动。这样的活动应体现‘问题情境─建立模型─求解验证’的过程,这个过程要有利于理解和掌握相关的知识技能,感悟数学思想、积累活动经验;要有利于提高发现和提出问题的能力、分析和解决问题的能力,增强应用意识和创新意识”。
这是否可以理解为:在小学阶段,从课程标准的角度正式提出了模型思想的基本理念和作用,并明确了模型思想的重要意义。这不仅表明了数学的应用价值,同时明确了建立模型是数学应用和解决问题的核心。
3. 模型思想的具体应用。
数学的发现和发展过程,也是一个应用的过程。从这个角度而言,伴随着数学知识的产生和发展,数学模型实际上也随后产生和发展了。如自然数系统1,2,3,…是描述离散数量的数学模型。2000多年前的古人用公式计算土地面积,用方程解决实际问题等,实际上都是用各种数学知识建立数学模型来解决问题的。就小学数学的应用来说,大多数是古老的初等数学的简单应用,也许在数学家的眼里,这根本就不是真正的数学模型;不过,小学数学的应用虽然简单,但仍然是现实生活和进一步学习所不可或缺的。
小学数学中的模型如下表。
自然数列:0,1,2,…
用数轴表示数
c-a =b, c-b=a
a&b=c(a≠0,b≠0)
c&a=b, c&b=a
加法交换律:a+b=b+a
加法结合律:a+b+c=a+(b+c)
乘法交换律:ab=ba
乘法结合律:(ab)c=a(bc)
乘法分配律:a(b+c)=ab+ac
时间、速度和路程:s=vt
数量、单价和总价:a=np
正比例关系:y/x=k
反比例关系:xy=k
用表格表示数量间的关系
用图象表示数量间的关系
空间与图形
用字母表示公式
三角形面积:S= ab
平行四边形面积:S=ah
梯形面积:S= (a+b)h
圆周长:C=2πr
圆面积:S=πr2
长方体体积:v=abc
正方体体积:v=a3
圆柱体积:v=sh
圆锥体积:v= sh
用图表表示空间和平面结构
统计与概率
统计图和统计表
用统计图表描述和分析各种信息
用分数表示可能性的大小
4.模型思想的教学。
从表格中可以看出:模型思想与符号化思想都是经过抽象后用符号和图表表达数量关系和空间形式,这是它们的共同之处;但是模型思想更加重视如何经过分析抽象建立模型,更加重视如何应用数学解决生活和科学研究中的各种问题。正是因为数学在各个领域的广泛应用,不但促进了科学和人类的进步,也使得人们对数学有了新的认识:数学不仅仅是数学家的乐园,它也不应是抽象和枯燥的代名词,它是全人类的朋友,也是广大中小学生的朋友。广大教师在教学中结合数学的应用和解决问题的教学,要注意贯彻课程标准的理念:一方面要注重渗透模型思想,另一方面要教会学生如何建立模型,并喜欢数学。
学生学习数学模型大概有两种情况:第一种是基本模型的学习,即学习教材中以例题为代表的新知识,这个学习过程可能是一个探索的过程,也可能是一个接受学习的理解过程;第二种是利用基本模型去解决各种问题,即利用学习的基本知识解决教材中丰富多彩的习题以及各种课外问题。
数学建模是一个比较复杂和富有挑战性的过程,这个过程大致有以下几个步骤:(1)
理解问题的实际背景,明确要解决什么问题,属于什么模型系统。(2) 把复杂的情境经过分析和简化,确定必要的数据。(3)
建立模型,可以是数量关系式,也可以是图表形式。(4) 解答问题。下面结合案例做简要解析。
第一,学习的过程可以经历类似于数学家建模的再创造过程。现实生活中已有的数学模型基本上是数学家和物理学家等科学家们把数学应用于各个科学领域经过艰辛的研究创造出来的,使得我们能够享受现有的成果。如阿基米德发现了杠杆定律:平衡的杠杆,物体到杠杆支点的距离之比,等于两个物体重量的反比,即F1:F2=L2:L1。根据课程标准的理念,学生的学习过程有时是一个探索的过程,也是一个再创造的过程;也就是说有些模型是可以由学生进行再创造的,可以把科学家发明的成果再创造一次。如在学习了反比例关系以后,可以利用简单的学具进行操作实验,探索杠杆定律。再如利用若干个相同的小正方体拼摆成一个长方体,探索长方体中含有小正方体的个数与长方体的长、宽、高的关系,进而归纳出长方体的体积公式,建立模型V=abc,这是一个模型化的过程,也是一个再创造的过程。
第二,对于大多数人来说,在现实生活和工作中利用数学解决各种问题,基本上都是根据对现实情境的分析,利用已有的数学知识构建模型。这样的模型是已经存在并且是科学的,并不是新发明的,由学生进行再创造也几乎是不可行的;换句话说,有些模型由于难度较大或不便于探索,不必让学生再创造。如两个变量成反比例关系,如果给出两个量数据变化的表格,学生通过观察和计算有可能发现这两个量的关系。但是如果让学生动手实践操作去发现规律,还是有一定难度的。再如物体运动的路程、时间和速度的关系为s=vt,利用这个基本模型可以解决各种有关匀速运动的简单的实际问题。但是由于这个模型比较抽象,操作难度较大,因而也不适合学生进行再创造。教师只需要通过现实模拟或者动画模拟,使学生能够理解模型的意义便可。
第三,应用已有的数学知识分析数量关系和空间形式,经过抽象建立模型,进而解决各种问题。学生学习了教材上的基础知识以后,利用已有知识解决新的更加复杂的各种问题,是一个富有挑战的过程,也可以是一个合作探究的过程。如小学生奥林匹克数学竞赛中有很多应用数学解决的问题,就是一个建立模型的过程;再如中学生和大学生组队参加数学建模大赛,就是一个团队合作探究的过程。
案例1:小明的家距离学校600米,每天上学从家步行10分钟到学校。今天早晨出门2分钟后发现忘记带学具了,立即回家去取。他如果想按原来的时间赶到学校,他从回家再到学校,步行的速度应是多少?(取东西的时间忽略不计)
解答过程如下:
  (1) 本题是日常生活中常见的行程问题,问题是要求小明步行的速度,是关于时间、速度和路程的问题。
这里需要明确所求的速度相对应的路程和时间是什么,因为取东西等时间忽略不计,因此剩余的时间就可以确定为步行的时间;路程是从家出来2分钟后开始算,再回家的路程加上从家到学校的路程的和;时间是10分钟减去2分钟,只有8分钟的时间了。
(3) 根据基本的关系式s=vt,可先求出s=600+(600&10)&2=720(米),
t=10-2=8(分钟)。列式为:720=8v。
(4)v=90,即小明步行的速度为90米/分钟。
从上面的解答过程来看,小学数学的情境还是比较容易理解的,模型系统也容易确定。如果说此题比教材中的一般习题有难度的话,就是路程和时间没有直接给出,拐了个弯。也就是说难点在于第二步中知道模型系统后相应的数量怎么准确地找出来,一定要注意题中对每一个量是怎样叙述的,有什么特殊的要求,在认真读题的基础上准确地找出来或计算出来。
:有一根20米长的绳子,要剪成2米和5米长两种规格的跳绳,每种跳绳各剪多少根?(要求绳子无剩余,并且每种规格的跳绳至少要有一根。)
分析:此题从表面上看,是小学数学整数乘除法的一般问题,但是由于题目中有特殊要求,无法直接列式解答。如果用方程,题目中涉及了两个未知数,属于二元一次方程,超出了小学数学的范围。那么,面对这样的问题如何解决呢?在小学数学中面对一些非常规的问题时,有时运用列表枚举或者猜测的方式是一种可行的策略,只不过会繁琐一些。
5米跳绳的根数
2米跳绳的根数
由上表可知符合要求的答案为:5米和2米的跳绳分别剪2根和5根。
此题如果用方程解决,可设5米和2米的跳绳分别剪x根和y根,可列方程:5x+2y=20。可仿照正比例关系y=kx图像的画法,在有方格纸的坐标系里,通过两点(0,10)和(4,0)画出一条直线,就是方程5x+2y=20的图像。再找出图像与方格的交叉点重合的点,就是方程的解。
案例3:一瓶矿泉水满瓶水为500毫升,小林喝了一些,剩余的水都在圆柱形的部分,高度是16厘米。如果把瓶盖拧紧,倒立过来,无水的部分高度是4厘米。小林喝了多少水?
分析:此题是求水的容积,有一个在建模过程中需要的假设,就是矿泉水瓶圆柱部分并不是一个严格的圆柱形状,要假设它是圆柱形状,这样才便于建立模型。由于不知道圆柱的底面积,所以无法用容积公式直接求解。这就需要换一个思路来想,根据容积公式v=sh,可知如果底面积一定,容积与圆柱的高成正比。这样就把求容积问题转化为比例的问题。由于矿泉水瓶最上面部分形状不规则,倒立过来以后喝的水就相当于圆柱形瓶子高度为4厘米的水。满瓶矿泉水就相当于这瓶水都装在圆柱形瓶子后,高度为20厘米的水。可设小林喝的水为v毫升,列式为:v:500=4:(16+4),v=100。
小学数学思想方法的梳理(四)
课程教材研究所 王永春
四、推理思想
1. 推理思想的概念。
推理是从一个或几个已有的判断得出另一个新判断的思维形式。推理所根据的判断叫前提,根据前提所得到的判断叫结论。推理分为两种形式:演绎推理和合情推理。演绎推理是根据一般性的真命题(或逻辑规则)推出特殊性命题的推理。演绎推理的特征是:当前提为真时,结论必然为真。演绎推理的常用形式有:三段论、选言推理、假言推理、关系推理等。合情推理是从已有的事实出发,凭借经验和直觉,通过归纳和类比等推测某些结果。合情推理的常用形式有:归纳推理和类比推理。当前提为真时,合情推理所得的结论可能为真也可能为假。
(1) 演绎推理。
三段论,有两个前提和一个结论的演绎推理,叫做三段论。三段论是演绎推理的一般模式,包括:大前提——已知的一般原理,小前提——所研究的特殊情况,结论——根据一般原理,对特殊情况做出的判断。例如:一切奇数都不能被2整除,(23+1)是奇数,所以(23+1)不能被2整除。
选言推理,分为相容选言推理和不相容选言推理。这里只介绍不相容选言推理:大前提是个不相容的选言判断,小前提肯定其中的一个选言支,结论则否定其它选言支;小前提否定除其中一个以外的选言支,结论则肯定剩下的那个选言支。例如:一个三角形,要么是锐角三角形,要么是直角三角形,要么是钝角三角形。这个三角形不是锐角三角形和直角三角形,所以,它是个钝角三角形。
假言推理,
假言推理的分类较为复杂,这里简单介绍一种充分条件假言推理:前提有一个充分条件假言判断,肯定前件就要肯定后件,否定后件就要否定前件。例如:如果一个数的末位是0,那么这个数能被5整除;这个数的末位是0,所以这个数能被5整除。这里的大前提是一个假言判断,所以这种推理尽管与三段论有相似的地方,但它不是三段论。
关系推理,是前提中至少有一个是关系命题的推理。下面简单举例说明几种常用的关系推理:(1)对称性关系推理,如1米=100厘米,所以100厘米=1米;(2)反对称性关系推理,a大于b,所以b不大于a
;(3)传递性关系推理,a&b,b&c,所以a&c。关系推理在数学学习中应用比较普遍,如在一年级学习数的大小比较时,把一些数按从小到大或从大到小的顺序排列,实际上都用到了关系推理。
(2) 合情推理。
归纳推理,是从特殊到一般的推理方法,即依据一类事物中部分对象的相同性质推出该类事物都具有这种性质的一般性结论的推理方法。归纳法分为完全归纳法和不完全归纳法。完全归纳法是根据某类事物中的每个事物或每个子类事物都具有某种性质,而推出该类事物具有这种性质的一般性结论的推理方法。完全归纳法考察了所有特殊对象,所得出的结论是可靠的。不完全归纳法是通过观察某类事物中部分对象发现某些相同的性质,推出该类事物具有这种性质的一般性结论的推理方法。依据该方法得到的结论可能为真也可能为假,需要进一步证明结论的可靠性。数学归纳法是一种特殊的数学推理方法,从表面上看并没有考察所有对象,但是根据自然数的性质,相当于考察了所有对象,因而数学归纳法实际上属于完全归纳推理。
类比推理,是从特殊到特殊的推理方法,即依据两类事物的相似性,用一类事物的性质去推测另一类事物也具有该性质的推理方法。依据该方法得到的结论可能为真也可能为假,需要进一步证明结论的可靠性。
2. 推理思想的重要意义。
我国数学教育几十年来的主要优势或者说成果就是重视培养学生的运算能力、推理能力和空间想象能力。传统的数学大纲比较强调逻辑推理而忽视了合情推理;而现行的课程标准又矫枉过正,过于强调合情推理,在逻辑推理能力方面有所淡化。近年来课程改革的实践证明,二者不可偏废。就学好数学或者培养人的智力而言,逻辑推理和合情推理都是不可或缺的。据了解,课程标准修改稿在这方面有比较合理的处理,明确了推理的范围及作用“推理能力的发展应贯穿在整个数学学习过程中。推理是数学的基本思维方式,也是人们在学习和生活中经常使用的思维方式。推理一般包括合情推理和演绎推理。……在解决问题的过程中,合情推理有助于探索解决问题的思路,发现结论;演绎推理用于证明结论的正确性”。
数学在当今市场经济和信息化社会有比较广泛的应用,人们在利用数学解决各种实际问题的过程中,虽然大量的计算和推理可以通过计算机来完成。但是就人的思维能力构成而言,推理能力仍然是至关重要的能力之一,因而培养推理能力仍然是数学教育的主要任务之一。
3. 推理思想的具体应用。
推理思想作为数学的一个重要的思想方法,无论在小学还是在中学都有着广泛的应用,尤其是合情推理作为数学发现的一种重要方法,在小学数学的探究学习和再创造学习中应用更为广泛。在小学数学中虽然没有初中类似于数学证明等严密规范的演绎推理,但是在很多结论的推导过程中间接地应用了演绎推理。如推导出平行四边形的面积公式之后,三角形的面积公式的推导过程是先把两个同样的三角形拼成一个平行四边形,再根据平行四边形的面积公式推出三角形的面积公式。这个过程实际上应用了演绎推理,如下:平行四边形的面积等于底乘高,两个同样的三角形的面积等于平行四边形的面积,所以两个同样的三角形的面积等于底乘高;因而一个三角形的面积就等于底乘高的积除以2。
小学数学中推理思想的应用如下表。
不完全归纳法
找数列和图形的规律
四则计算法则的总结
加法交换律:a+b=b+a
加法结合律:a+b+c=a+(b+c)
乘法交换律:ab=ba
乘法结合律:(ab)c=a(bc)
乘法分配律:a(b+c)=ab+ac
商不变的规律
分数的基本性质
长方形面积公式的推导
长方体体积公式的推导
圆柱体积公式的推导
圆锥体积公式的推导
完全归纳法
三角形内角和的推导
整数读写法
亿以内及亿以上的数的读写,与万以内数的读写相类比
整数的运算
四则计算的法则:多位数加减法与两位数加减法相类比,多位数乘多位数与多位数乘一位数相类比,除数是多位数的除法与除数是一位数的除法相类比
小数的运算
整数的运算法则、顺序和定律推广到小数
分数的运算
整数的运算顺序和运算定律推广到分数
除法、分数和比
除法商不变的规律、分数的基本性质和比的基本性质进行类比
与平行四边形面积公式的推导方法相类比,三角形、梯形面积公式的推导,也用转化的方法,把它们转化成平行四边形推导面积公式。
长度、面积、体积
线、面、体之间的类比:线段有长短,用长度单位来计量;平面图形有大小,用面积单位来计量;立体图形占的空间有大小,用体积单位来计量
数量关系相近的实际问题的类比,如分数实际问题与百分数实际问题的类比
不同素材的鸡兔同笼问题的类比
不同素材的抽屉原理问题的类比
多边形内角和的推导
正方形面积公式的推导
平行四边形面积公式的推导
三角形面积公式的推导
梯形面积公式的推导
圆面积公式的推导
正方体体积公式的推导
类似于人教版二年级上册数学广角中的“猜一猜”
根据概念、性质等进行判断的一些问题
大小比较、恒等变形、等量代换等等
4.推理思想的教学。
就演绎推理和合情推理的关系及教学建议,课程标准修改稿指出“推理贯穿于数学教学的始终,推理能力的形成和提高需要一个长期的、循序渐进的过程。义务教育阶段要注重学生思考的条理性,不要过分强调推理的形式。……教师在教学过程中,应该设计适当的学习活动,引导学生通过观察、尝试、估算、归纳、类比、画图等活动发现一些规律,猜测某些结论,发展合情推理能力;通过实例使学生逐步意识到,结论的正确性需要演绎推理的确认,可以根据学生的年龄特征提出不同程度的要求”。
根据以上课程标准关于推理思想的理念和要求,在小学数学教学中要注意把握以下几点。
第一,推理是重要的思想方法之一,是数学的基本思维方式,要贯穿于数学教学的始终。在小学数学中,除了运算是数学的基本方法外,推理也是常用的数学方法。无论是低年级的找规律、总结计算法则,还是高年级的面积、体积公式的推导,无不用到推理的思想方法。因而,广大教师要牢记推理思想从一年级就要开始渗透和应用,是一个长期的培养过程。
第二,合情推理和演绎推理二者不可偏废。合情推理多用于根据特殊的事实去发现和总结一般性的结论,演绎推理往往用于根据已有的一般性的结论去证明和推导新的结论。二者在数学中的作用都是很重要的。
第三,推理能力的培养与四大内容领域的教学要有机地结合。推理能力的发展与各领域知识的学习是一个有机的结合过程,因而在教学过程中要给学生提供各个领域的丰富的、有挑战性的观察、实验、猜想、验证等活动,去发现结论,培养推理能力。
第四,把握好推理思想教学的层次性和差异性。推理能力的培养要结合具体知识的学习,同时要考虑学生的认知水平和接受能力。综合现行课程标准及其修改稿关于
“数学思考”分阶段的目标要求,推理能力在小学阶段的要求可参考下表。
推理能力教学目标
初步学会选择有用信息进行简单的归纳和类比
在观察、实验、猜想、验证等活动中,发展合情推理能力,能进行有条理的思考,能比较清楚地表达自己的思考过程与结果
下面再结合案例谈谈几种在小学数学中应用较多的推理思想的教学。
(1)类比思想。无论是学习新知识,还是利用已有知识解决新问题,如果能够把新知识和新问题与已有的相类似的知识进行类比,进而找到解决问题的方法,这样就实现了知识和方法的正迁移。因此,要引导学生在学习数学的过程中善于利用类比思想,提高解决问题的能力。有些类比比较直接,如由整数的运算定律迁移到小数、分数的运算定律,问题解决中数量关系相近的问题的类比等。而有些类比比较隐蔽,需要在分析的基础上才能实现。如抽屉原理,变式练习有很多,难度较大,解决此类问题的关键就是通过类比找到抽屉。应用类比的思想方法,关键在于发现两类事物相似的性质,因此,观察与联想是类比的基础。另外,中学数学与小学数学可以类比的知识有很多,如果打好小学数学的知识基础和掌握类比思想,对于初中数学的学习会有较大益处。如在代数中,与整数的运算顺序和运算定律相类比,可以导出有理数和整式的运算顺序和运算定律;与分数的基本性质相类比,可以导出分式也具有类似的性质,并且可以推出它和分数一样能够进行化简和运算。
案例:计算并观察下面的算式,你能发现什么规律?
1+3=4=22
1+3+5=9=32
1+3+5+7=
1+3+5+7+…+99=
分析:此题是由从1开始的奇数组成的系列加法算式,每一组算式比前一组多一个后继的奇数。通过计算并观察每组算式的得数,1是一个奇数,等于1的平方;(1+3)是前2个奇数相加,等于2的平方;(1+3+5)是前3个奇数相加,等于3的平方;(1+3+5+7)是前4个奇数相加,通过与前面算式进行类比,猜想应该等于4的平方;(1+3+5+7)=16,42=16,猜想正确。那么最后的算式是前50个奇数相加,等于50的平方。因此,可以归纳出一般的规律:前n个奇数相加的和等于n的平方。
(2)归纳思想。不完全归纳法在小学数学的教学中应用比较广泛。小学数学中很多运算法则、公式、定律等的推导,都是在例举几个特殊例子的基础上得出的。如根据40+56=56+40,28+37=37+28,120+80=80+120等几个有限的例子,得出加法交换律。数学课程标准特别强调培养学生探索图形和数的排列规律,探索规律的过程就是一个应用不完全归纳法的过程。
案例:观察下面的一组算式,你能发现什么规律?
14+41=55, 34+43=77, 27+72=99, 46+64=110, 38+83=121
分析:通过观察算式,能够发现这样一些规律:所有的算式都是两位数加两位数,每个算式的两个加数中的一个加数的个位和十位数互换,变成另一个加数。再进一步观察,所有算式的得数有两位数也有三位数,它们有什么共同的规律呢?把它们分别分解质因数发现,每个数都是11的倍数。这样就可以大胆猜想并归纳结论:两个互换个位数和十位数的两位数相加,结果是11的倍数。再举例验证:57+75=132=11&12,69+96=165=11&15,初步验证猜想是正确的。那么如何进行严密的数学证明呢?可设任意一个两位数是ab(a和b是1~9的自然数),那么ab+ba=(10a+b)+(10b+a)=10a+b+10b+a=11a+11b=11(a+b),从而证明了结论的正确。
(3)三段论。在人们的传统观念中,小学几何是实验几何,很难在演绎推理证明方面有所渗透。同时,在初中阶段,培养学生的演绎推理能力是重要的教学目标之一;然而对于部分初中学生而言,这部分知识又是学习中的难点。那么,在小学高年级,能否进行演绎推理思想的渗透,从而使刚升入初中的学生有演绎推理的初步经验呢?下面的案例也许能说明问题。
案例:如下图,两条直线相交形成4个角,你能说明∠2=∠4吗?
分析:此题在初中要根据“同角的补角相等”来证明对顶角相等。那么,在小学阶段,如何根据已有知识进行简单的证明呢?我们已经知道平角等于180度,再根据等量代换等知识就可以证明。下面给

我要回帖

更多关于 勾股定理 方程思想 的文章

 

随机推荐