从事铀提取工作的伤害出来后能一直用?

求辟谣,瓷器能提炼铀么? | 谣言粉碎机小组 | 果壳网 科技有意思
1290089人加入此小组
对,就是铀,最近有人传言某国大量收购中国瓷器,为的是在里面提炼铀制造核武器。听上去很是可笑,但鄙人抱着以事实说话的态度查了一下,发现了这个:“铀在1789年由马丁·海因里希·克拉普罗特(Martin Heinrich Klaproth)发现。铀化合物早期用于瓷器的着色,在核裂变现象被发现后用作为核燃料。”请问物理大帝,有可能从瓷器中提炼出铀来么?如果有,大概比例是多少?
+ 加入我的果篮
古生物学博士生,科学松鼠会成员
用铀上色的情况是存在的。 这是掺有铀的玻璃。这是使用铀化合物做釉彩的瓷器。但是……你得收购那些用到铀的瓷器啊。中国目测是没人使用这种技术的。还不如去美国收购。
古生物学博士生,科学松鼠会成员
再说,铀矿石的国际贸易又不管制。日本还有核电站呢。
(C)2017果壳网&&&&京ICP证100430号&&&&京网文[-239号&&&&新出发京零字东150005号&&&&
违法和不良信息举报邮箱:&&&&举报电话:再处理铀_百度百科
清除历史记录关闭
声明:百科词条人人可编辑,词条创建和修改均免费,绝不存在官方及代理商付费代编,请勿上当受骗。
再处理铀是指从再处理过程中回收的,铀在再处理过程中回收的材料中占很大一部分。、和均有回收再处理铀的商业企业。
再处理铀简介
再处理铀是指从再处理过程中回收的,铀在再处理过程中回收的材料中占很大一部分。、和均有回收再处理铀的商业企业。
拥有的国家中(参见拥有核武器的国家列表)在生产时,亦回收再处理铀。商业运行的的乏燃料除包覆材料之外,通常只含有占总重量4%的钚、和。在过去几十年,因为和前,以及当时美国、西欧等经济发展和电力需求下降等原因,曾使世界天然铀价格低廉,最低时不到10美元/磅。加之再处理铀中可裂变材料的比例较低,再处理铀的使用并不常见。
再处理铀乏燃料
乏燃料又称辐照核燃料,是经受过辐射照射、使用过的,通常是由的产生。核燃料在堆内经中子轰击发生核反应,经一定时间从堆内卸出。它含有大量未用完的可增殖材料238U或232Th,未烧完的和新生成的易裂变材料239Pu、235U或233U以及核燃料在辐照过程中产生的镎、镅、锔等超铀元素,另外还有裂变元素90Sr、137Cs、99Tc等。这种燃料的铀含量降低,无法继续维持,所以叫乏燃料。乏核燃料中包含有大量的,因此具有,如果不加以妥善处理,会严重影响环境与接触它们的人的健康。
核燃料在反应堆中使用时,由于易裂变核素的消耗、裂变产物及重核素的生成,引起燃料反应性的变化,最终使反应堆不再能维持临界,因此核燃料使用到一定程度必须更换。由于乏核燃料中包含有大量的,因此具有很强的放射性,因此必须妥善处理。乏燃料的处理主要包括:储存、运输、后处理、深地质处置等过程。图1为核燃料循环图,给出了核燃料从铀矿开采到乏燃料最终处理所需经历的所有过程。
上图包括了乏燃料的贮存、后处理和最终处置等过程,图中的百分数表示U-235的含量。
乏核燃料中的96%的质量是剩余的未反应的铀,大多数是铀-238,一小部分是铀-235。通常情况下,铀-235的质量分数小于0.83%,铀-236的质量分数大约是0.4%。
铀-236是一种很棘手的长寿命放射性废物。
再处理铀包含有铀-236,这种同位素在自然界中不存在,它可以用作乏核燃料的标志特征。
如果将钍燃料用于反应堆中,产生的乏核燃料将会包含铀的同位素铀-233,其半衰期为159,200年。它将会对乏核燃料因衰变而产生的长期放射性产生影响。和混合氧化物核燃料相比,由于存在有未衰变完全的铀-233,一百万年之内的钍乏燃料的放射性将会比较高。
再处理铀核燃料
核燃料再处理技术原指用化学分离和纯化的方法从经过辐照的核燃料中分离可裂变的钚同位素。但现代核燃料再处理已不仅仅着重于回收钚,还可以分离其它有用的元素,比如铀、甚至贵金属。 再处理技术有多重目的,其重要性随着时代变化而起伏。起初,核燃料再处理的唯一目的是分离可以用于制造原子弹的钚。随着核电站的普及,乏燃料越来越多,于是钚被作为核燃料用于热中子堆。含有钚的混合氧化物核燃料能够产生更多的电力,同时还能够消耗一部分钚。占乏燃料绝大部分的再处理铀可以用于快中子增殖反应堆。理论上,快中子堆还可以燃烧锕系元素。但是在铀价低廉的时代,快中子堆商业化面临很多困难。 核燃料再处理可以减少高放射性废物的体积,但却不能减低其放射性和衰变热。因此,核燃料再处理无法消除陆地埋藏核废料的必要性。政治上,核燃料再处理一直受到争议。有人声称该技术能够促进核扩散,以至于增加核恐怖主义的风险。核燃料再处理厂造成的污染问题也是很多人反对此技术的一大动因。比如,大量自然界不存在放射性锝在核燃料再处理中进入环境。截至1986年,人类核反应堆一共排放了1600公斤锝,主要是在乏燃料再处理过程中排放的;大部分进入海洋。到2005年,最主要的排放源是英国谢拉斐尔德再处理厂。据估计,1995年到1999年,该厂一共向爱尔兰海排放了900公斤锝。2000年后,法律规定该厂每年只能排放140公斤锝。该厂的排放导致某些海产品含有微量的锝。
核燃料再处理的主要目的是:
(1)回收剩余的易裂变核素铀-235和新生成的钚-239及可转换核素铀-233或钍-232。
(2)需要时可提取有用的裂变产物。如锶-90、铯-137和超铀元素如镎、镅和锔。
(2)去除长寿命的放射性核素和中子吸收截面大的裂变产物,以便对只含短寿命核素的放射性废物进行处理和安全处置。
再处理工艺
辐照过的乏燃料再处理的工艺方法可分为水法和干法两大类。所谓水法,就是把乏燃料溶解于酸中,再用沉淀、溶剂萃取、离子交换或吸附等方法使铀、钚与裂变产物互相分离,因各道工序均为水相操作。故称为水法。所谓干法即高温冶金法或氟化挥发法等均不需在水相中操作。无论水法还是干法,所处理的原始物质都是固体,产品均为铀和钚的氧化物。目前,水法已在工业上得到广泛应用,主要采取溶剂萃取法,而高温冶金法或氟化挥发法处于研究开发阶段。溶剂萃取法能有效地去除裂变产物,适用于处理包括天然铀、低加浓铀、高加浓铀、高温气冷堆元件及快堆元件等。
辐照过的燃料(乏燃料)中含有大量放射性物质,随着放置时间的延续,经自然衰变而使放射性活度和释热率降低。乏燃料的冷却一般在乏燃料储存水池中进行。动力堆乏燃料的冷却时间一般不少于3~5年。乏燃料经冷却降低放射性可以缓解乏燃料后处理工艺上的技术难度。
(a)水法后处理
早期的水法后处理厂是采用沉淀法。目前世界各国的后处理厂均采用溶剂萃取工艺,鉴于该工艺技术成熟且已积累了丰富的经验。在今后相当长的时间内,该工艺仍会得到广泛应用。
水法后处理工艺过程主要包括:首端处理、化学分离和铀、钚尾端处理。
1)首端处理。首端处理包括机械处理和化学处理两部分。
2)机械处理。首端机械处理将乏燃料组件切割成小短段,使铀从包壳中裸露出来以便化学溶解燃料芯体。乏燃料用硝酸在沸腾或非沸腾温度下浸取,溶解包壳中的二氧化铀。溶解所得的硝酸铀酰溶液禽有不溶残渣,需经过澄清过滤除去,过滤所得的澄清液经调节钚、镎价态后送去化学分离过程处理。
3)化学分离。化学分离过程是使铀、钚与放射性裂变产物分离以及铀、钚之间的分离纯化。目前世界各国后处理厂化学分离工艺都是采用purex溶剂萃取流程,以30%磷酸三丁酯(TBP)为萃取剂,以正十二烷或加氢煤油为稀释剂,进行液-液萃取,一般经过三个溶剂萃取循环,即共去污分离循环,铀线二、三循环,钚线二、三循环的标准流程,也有采用两个萃取循环的流程。
4)铀、环尾端处理。铀、环尾端处理是将硝酸铀酰和硝酸钚溶液制成氧化物产晶,硝酸铀酰采用流化床脱硝制成二氧化铀。硝酸钚经草酸沉淀、煅烧制成二氧化钚。
(b)干法后处理
干法后处理是在非水条件下进行核燃料后处理的工艺过程。干法后处理分挥发法和高温法两大类:
1)挥发法,挥发法可以分为氟化物挥发法和氯化物挥发法。
2)高温法,高温法又可分为物理法和化学法。物理法包括分级蒸馏法、分级结晶法和熔融金属萃取法;化学法包括熔融金属萃取法、熔融盐萃取法、熔融盐电解法和熔融精炼法。
在后处理过程中,乏燃料中各主要成分的分离纯化和回收,必须达到一定的要求。产品回收率是后处理厂的一项重要的经济指标和技术指标,一般水法流程对铀、钚的回收率分别可达99.8%和99.5%以上。产品放射性是后处理厂的一项主要质量指标,应对乏燃料的特性,产品用途,元件再加工技术以及经济、安全等方面进行综合考虑后提出。
再处理技术
乏燃料后处理技术,就是把已经使用过的铀废料(乏燃料),以化学方法将和从裂变产物中分离出来,称为乏燃料再溶解和后处理技术。回收的铀和钚可在核电厂混合氧化物燃料中再循环使用,以生产更多,从而使铀资源得到更充分利用并减少浓缩需求。后处理也通过减少的体积和去除钚有助于废物的最终处置。
乏燃料后处理技术,是高放射性条件下的高技术,世界上核电站的核燃料处理与保存本身就是一个十分困难的事情,有了这一技术,其意义是不仅能充分利用核燃料的功能,提高核燃料利用能力,为人类造福,更重要的是减小了体积,降低了放射性,为保存核废物创造了条件,对环境也是一个大贡献。
日,中国第一座动力堆乏燃料后处理中间试验工厂——中核四〇四中试工程热调试取得成功。热调试的成功,实现了闭式循环的目标,有力地推动了核燃料产业及核电的快速发展,为中国先进后处理工程技术的开发提供了重要的研究实验平台,标志着中国已掌握了。
再处理铀历史
第二次世界大战时美国建立了第一批核反应堆,其目的是制造可用于核武器的钚。因此,当时乏燃料再处理的唯一目的就是把钚从未燃烧的铀和其它裂变产物中分离出来并纯化。1943年,有人提出了几种可以从乏燃料中小规模分离钚的方法。随后两年中,美国橡树岭国家实验室开发并验证了一种叫做“磷酸铋过程”的方法,并用这种方法首次分离得到了克级量的钚。1944年下半年,磷酸铋过程在汉福德区开始大规模应用。此方法在战时相当成功,但其最大的缺点是无法回收铀。
1949年,橡树岭国家实验室成功的开发出了第一种溶剂萃取方法来回收乏燃料中的铀和钚,称为“钚铀萃取法”(PUREX)。这种方法一直沿用至今。美国在南卡罗来纳州萨瓦那河区(SavannahRiverSite)建立了大规模的PUREX工厂,在纽约州西谷村(WestValley)也兴建了一座较小的PUREX工厂。后者于1972年因无法达到新标准而被关闭。  法国的AREVANC公司(原名COGEMA)的拉海格再处理厂(LaHaguesite)拥有处理50%全球民用轻水堆乏燃料的能力。其它主要再处理工厂还包括英国谢拉斐尔德再处理厂、俄罗斯的玛雅克再处理厂(MayakChemicalCombine)、日本的东海核燃料厂以及印度的塔拉普尔再处理厂(Tarapurplant)。  印度在1970年代初掌握了核燃料再处理技术,并于1974年进行了钚装药的核武器实验。这引发了美国对再处理技术可能引发核扩散的担心。1976年10月,美国总统福特颁布行政令,无限期中止美国的商业再处理过程及从乏燃料中回收钚。日,美国总统卡特宣布禁止对商业反应堆的乏燃料进行再处理。其动机依然是担心核扩散,并希望其它国家以美国为榜样。至此,祇有那些在再处理基础设施上投资巨大的国家继续其再处理运作。1981年,里根总统终结了前任的禁令,但却没有给重启商业再处理过程提供补贴。结果美国仍然没有核燃料再处理能力。  1999年3月,美国能源部与三家公司(DukeEnergy、ArevaNC和Stone&Webster)组成的联盟签订协议,开始设计和兴建一家混合氧化物核燃料制造工厂。该厂选址于南卡罗来纳州萨瓦那河区,于2005年10月动工。但是,该项目遇到重重困难。首先工程严重超支,到2011年成本已经达到50亿美元;工程进度缓慢,主体建筑到2011年仅完成一半;最大的问题是该项目没有一个客户。唯一一个可能的客户是田纳西河谷管理局(TennesseeValleyAuthority)。但在福岛第一核电站事故后,田纳西河谷管理局转为观望,表示要继续观察福岛混合氧化物核燃料的表现,因此要延迟其决策。
再处理铀分离技术
有机溶剂水相萃取
钚铀萃取法(PUREX,代表PlutoniumandUraniumRecoverybyEXtraction)是目前事实上的标准再处理方法。钚铀萃取法是将乏燃料研碎后用强酸溶解,然后用有机溶剂(比如磷酸三丁酯,TBP)萃取,最后用离子交换方法分离。此方法经多年研究和使用后已非常成熟,广泛用于世界各地的核燃料再处理厂。商业核电站乏燃料经钚铀萃取法提取的钚通常含有很多钚-240,一般认为不适合用于制造核弹。可以添加燃料的反应堆产出的乏燃料却可以用于生产武器级钚。因此可以用于钚铀萃取法的化学品受到许多国家和国际原子能机构的严密监视。
钚铀萃取法的变种
钚铀萃取法的变种之一是铀萃取法(UREX,代表UraniumRecoverybyEXtraction)。因为贫化铀(铀-238)占乏燃料的绝大部分而且放射性很低,把它分离出来之后可以大大减少高放射性废物的体积,同时提取出的再处理铀是可增殖材料,可以作为燃料用于快中子堆。铀萃取法中不会产生钚,而会回收大约99.9%的铀和95%以上的锝。在萃取过程中,为了防止钚被萃取,需要加入掩蔽剂,比如乙酰羟胺(acetohydroxamicacid)。乙酰羟胺同钚形成的络合物无法被磷酸三丁酯萃取而留在水相中。同样留在水相中的还有镎。铀萃取法不会产生可能被用于核武器的武器级钚,因此在核扩散上威胁较小。
超铀元素萃取法
在磷酸三丁酯基础上加入另一种萃取剂正辛基-苯基-N,N-二异丁基氨甲酰基甲基氧化膦(octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphineoxide,CMPO,CASNo.),钚铀萃取法就变成了超铀元素萃取法(TRUEX,代表TRansUranicEXtraction)。此过程由美国阿贡国家实验室发明,目的在于分离乏燃料中的超铀元素,特别是镅和锔。这些元素都是α辐射源。在乏燃料储存中,来自钚和次锕系元素的放射性和热量将在三百年到两万年间居主导地位。裂变产物中其它核素的半衰期要么短于三百年,要么长于两万年。因此除去这些超铀元素可以在中期内给废料储存带来一定方便。
二酰胺萃取法
二酰胺萃取法(DIAMEX,代表DIAMideEXtraction)和超铀元素萃取法目的相同,但是用不同的萃取剂马龙酸二酰胺(malondiamide)。二酰胺萃取法是由法国原子能委员会率先开发的。其优点在于萃取过程中产生的有机废物不含磷,只含有碳、氢、氧和氮。这些有机废物最终一般会被烧掉。在燃烧时,马龙酸二酰胺废物不会产生导致酸雨的废气,也不会造成磷污染。这个方法现在已经臻于成熟,可以用于大规模再处理工厂。
电化学方法
日本研究者曾报道使用电化学方法回收钚和铀。以碳酸铵溶液作为电解液,将乏燃料溶解。过滤后通过离子交换分离钚和铀,再以氨水沉淀,获得钚和铀的氧化物。
焦化处理法
焦化处理是许多高温再处理方法的总称。这些方法也使用溶剂。但与水相萃取不同,本法的溶剂一般是熔盐,比如氯化锂-氯化钾混合盐或者氟化锂-氯化钙混合物;也可以是熔融金属,诸如镉、铋和镁。工艺中一般会用到电解精炼、蒸馏以及溶剂萃取步骤。焦化处理方法目前应用不多。美国阿贡国家实验室等研究机构一直在开展这方面的研究。
卢希庭.原子核物理:原子能出版社,2000.10
朱继洲.压水堆核电厂的运行(第二版):原子能出版社,2008.8
本词条认证专家为
江苏师范大学
清除历史记录关闭提炼一公斤浓缩铀235要耗多少电??要用多少离心机???为什么五八年大庆油田都要停下会战去大炼钢铁??有问题要去回答啊!!!!
楼主正文显示宽度
跟帖显示为
本帖只代表的个人观点,不代表人民网观点。 如将本文用于其他媒体出版, 请与联系。举报
微信扫一扫分享本帖到朋友圈
微信扫一扫分享本帖到朋友圈
图文编辑模式
10:09:36&)
15490字(6668/41)
( 21:57:30)
( 17:39:25)
59字(41/0)
( 17:35:58)
53字(47/0)
( 20:10:41)
66字(75/0)
( 17:16:26)
31字(129/0)
( 16:33:31)
119字(89/0)
( 16:26:57)
108字(106/0)
( 16:18:13)
104字(259/0)
( 13:15:21)
37字(44/0)
( 11:53:31)
65字(49/0)
( 11:25:08)
63字(2230/6)
( 12:20:06)
54字(82/1)
( 12:35:05)
47字(45/3)
( 14:01:37)
52字(73/0)
( 13:26:14)
101字(114/0)
( 12:37:37)
33字(376/1)
( 14:31:07)
38字(62/0)
( 11:44:05)
66字(56/1)
( 11:47:05)
57字(136/1)
( 11:49:34)
18字(38/0)
( 11:39:52)
52字(129/0)
( 11:32:54)
56字(96/1)
( 12:45:58)
18字(41/0)
( 11:32:25)
42字(47/1)
( 11:35:43)
49字(204/2)
( 14:32:34)
106字(200/1)
( 14:51:50)
70字(50/0)
( 11:51:19)
64字(97/1)
( 12:33:05)
14字(56/0)
( 11:30:10)
56字(60/1)
( 19:42:08)
104字(83/0)
( 11:18:49)
20字(39/0)
( 10:59:48)
( 10:51:57)
171字(97/1)
( 11:01:51)
35字(88/2)
( 11:09:21)
24字(25/0)
( 11:07:02)
15字(40/0)
( 10:43:16)
( 10:59:28)
45字(61/1)
( 11:23:36)
51字(53/0)
( 10:35:40)
14字(60/0)
请登录后继续操作....
强国社区-人民网把海水中铀提取出来可供全世界用万年?_网易科技
把海水中铀提取出来可供全世界用万年?
用微信扫码二维码
分享至好友和朋友圈
(原标题:海中取铀,万年核能?)
可以从海水中吸收铀的纤维。研究人员让这种纤维和荧光假单胞菌(Pseudomonas fluorescens)接触,并使用先进光子源(Advanced Photon Source)对其进行三维X射线微断层摄影,确定该纤维的结构并没有受到荧光假单胞菌的破坏。图片来源:美国能源部西北太平洋国家实验室海洋中蕴藏这超过40亿吨铀。如果我们能从海水中把它们提取出来为核电厂发电的话,足够全世界用上一万年。在这个领域的最新重大进展发表在美国化学学会(American Chemical Society,ACS)旗下期刊《工业与工程化学研究》(Industrial & Engineering Chemistry Research)上。半个世纪以来,全世界的研究人员都在尝试从海洋里提取铀,但是成功者寥寥。上世纪90年代,日本原子能研究开发机构(Japan Atomic Energy Agency,JAEA)的科学家首先研发出一种能够吸收铀的材料,当它被浸没在海水中时能够在表面吸附并固定铀。2011年,美国能源部(DOE)启动了一个跨学科的项目,项目团队来自美国各大国家实验室,大学和研究机构,目的是解决从海水中以低成本的方式提取铀的根本性难点。5年内,这个团队发明了一种新型吸附剂,它让海水提铀的成本下降了3到4倍。为了记录下包括这个进展在内的重大成果,《工业与工程化学研究》的特刊以“海水提铀”为题,囊括了于2015年春季在丹佛召开的ACS会议上国际科研人员报告的研究进展。主要成果来自于受 DOE 核能办公室开展的能燃料资源计划(Fuel Resources Program)资助的科研人员。他们与中国科学院以及 JAEA 达成了协议,协调了中国和日本的国际科研力量。DOE 的能燃料资源计划为海水提铀在经济层面上的可行性打下了技术基础。它为美国国家实验室,大学以及研究机构提供支持,这些机构专注于新一代吸附剂的研发和测试工作。这些吸附剂将具有更高的吸附容量,更快的结合速率,而在海水中循环使用时的降解速度却更小。“如果想让核能成为可持续能源,就必须要有价格经济且供应充沛的核燃料,”DOE计划的技术及推广负责人Phillip Britt表示,“这期特刊主打国际研究者做出的重大成果,他们让海洋为人类提供了一个安全的能源远景。”来自DOE的两个实验室-田纳西州的橡树岭国家实验室(ORNL)和华盛顿州的西北太平洋国家实验室(PNNL)的科学家发表的论文数量超出特刊30篇论文的一半。ORNL 的主要贡献是合成铀吸附剂并对其性质进行了分析。PNNL 的论文主要关注对国家实验室以及其他大学合成的吸附剂在海洋中的测试。“合成能够更好地在海水中吸附铀的材料需要多学科和多机构的团队,包括化学家,计算机科学家,化学工程师,海洋科学家以及经济学家的合作,”ORNL海水提铀项目技术主管 Sheng Dai 表示,“计算研究可以让我们更好地了解选择性地与铀结合的化学基。”热力学研究可以让我们更好地了解铀以及它在海水中的相关化学形态的化学性质。动力学研究可以发现控制海水铀吸附速率的因素。在实验室中理解吸附剂的性质是研发更经济的吸附剂,并让它们尽可能多吸附铀的关键。最后,科研团队研发出了一种包含名为胺肟(amidoxime)的具有铀吸附能力的化学族的聚乙烯纤维束。目前,研究人员在实验室中用海水对该材料进行测试。这些纤维束在海水中会自然展开,而无需花费财力物力将大量海水泵入纤维束中。几周后,就可以回收吸附着铀氧化物的纤维,并用酸处理法来释放纤维中的铀酰离子,让吸附剂纤维可以被重复利用。将铀进行进一步的处理并浓缩后就能够生产出为核电站供能的材料。PNNL 的研究者测试了 ORNL 和其他实验室研发的吸附剂,其中包括了一些参与核能大学计划(Nuclear Energy University Program)的大学。在严格控制的温度和流量的条件下,他们分别用过滤的和未经过滤的华盛顿州史魁恩湾的海水进行测试。PNNL 沿海科学部的代理部长 Gary Gill 对三个海洋试验场进行协调,分别是位于史魁恩的PNNL海洋科学实验室(Marine Sciences Laboratory),位于马萨诸塞州的伍兹霍尔海洋研究所(Woods Hole Oceanographic Institution)以及位于佛罗里达州的迈阿密大学(University of Miami)。
“理解吸附剂在自然海水条件下的工作情况是可靠地评估铀吸附剂材料的关键,”Gill表示,“除了海洋测试以外,我们还评估了吸附剂吸收铀以及其他元素的情况,它的吸附持久性,以及海洋生物的集结对吸附容量的影响。我们发现大多数吸附材料并没有毒性。PNNL 还做了一些实验,用酸溶液和碳酸氢盐溶液优化铀的释放和吸附剂材料的再利用。”PNNL 的海洋测试发现,ORNL 研发的吸附剂材料的吸附容量为,暴露在天然海水环境下49天后,每千克吸附剂能够吸收5.2克铀。这是特刊中的明星。海水提铀计划依然在不断地取得进展,收获具有更高的铀吸附容量的吸附剂。最近的测试结果发现,暴露在天然海水环境下56天后,某种吸附剂的吸附容量已经超过了6克铀/每千克吸附剂,这比特刊中的最佳结果还高15%。来源:美国能源部/橡树岭国家实验室翻译:徐寒易审校:马宏
本文来源:《科学美国人》中文版《环球科学》
责任编辑:王凤枝_NT2541
用微信扫码二维码
分享至好友和朋友圈
加载更多新闻
热门产品:   
:        
:         
热门影院:
阅读下一篇
用微信扫描二维码
分享至好友和朋友圈

我要回帖

更多关于 铀235裂变释放的能量 的文章

 

随机推荐