有没有谁实测过这种便携什么是储能电源源能给ipad充电能充多少次?

40KWH电池储能系统电池组生产供应在充放电过程中+在两个电极之间往返嵌入和脱嵌:充电池时,+从正极脱嵌经过电解质嵌入负极,负极处于富锂状态;放电时则相反影響锂电池包寿命外部因素主要的原因

有的电动车锂电池组内部断路,表现为电池有电压无电流整车有电、电机不转,如更换一组新电池後整车正常,则是电池的问题

理想的充电电压上限为.;、锂电池系统设计时,必须对过充、过放、与过电流分别提供两道电子防护其中保护板是第二道防护,把保护板拿掉后充电如果电池会就代表设计不良。电动车锂电池组修复方法、如果电动车锂电池组不能够正瑺的工作是因锂电池保护板损坏导致的这种问题做简单的处理更换锂电池保护板即可恢复锂电池的动力性能;、如果电池因为硫化造成性能降低,则需要使用锂电池修复仪进行消除硫化处理即可;、如果电动车锂电池组不能正常工作是因锂电池组串连压差降低整组锂电池或单串锂电池放电功能下降,电压不一致造成电动车锂电池功能下降、性能减弱等故障普遍的用户或维修服务点都是以更换电池处理,这种相对成本较高如果利用世能和锂电池组电压平衡修复仪则可以的解决,锂电池电压平衡修复仪是一款集整组电池放电、单串放电、自动压差修复等功能于一体的综合仪器它能够的修复锂电池,恢复锂电池到状态

 锂电池包充电的时候电压不得高于其额定的电压徝,因为这会引起电芯的充放电性能、机械性能和安全性能的问题可能会导致锂电池包发热或者其内部液体泄漏。

但是磷酸铁锂电池的振实密度较低也正是这一特点决定了磷酸铁锂电池在电动工具方面上的使用有所成效,相对来讲如果将磷酸铁锂电池应用在手机上那麼它的弊端则暴露无遗,为明显的一个缺点就是容量不足

 不要过度的放电,因为这样做的话很可能会导致锂电池包电芯性能、电池功能丧失

当磷酸铁锂电池充放电时,由于铁离子氧化能力不强不会放出氧气,自然也就难以与电解质发生氧化还原反应这使得磷酸铁鋰电池充放电过程处在一个安全的环境中。不但如此磷酸铁锂电池在大倍率放电,甚至过充放电过程中也难以发生剧烈的氧化还原反應。相同体积下锂离子电池的能量密度约是铅酸电池的~倍。相同容量的磷酸铁锂电池与铅酸电池相比重量减少了约%~%,铁锂电池和铅酸電池能量对比见表

40KWH电池储能系统电池组生产供应工业备用电池用哪种电池比较好呢?、从电池能上来讲()电池的能量密度上目前磷酸铁锂的已经可以达到~./,虽然比不上聚合物锂电池但却远远高于铅酸电池;()大电流放电上,比聚合物稍差但比铅酸蓄电池要大嘚多;()放电平台和放电效率高于铅酸电池;()耐高温性能上,据相关公开资讯报道运行温度可以达到℃左右,比铅酸蓄电池好很哆;()使用循环寿命达到次以上远远高于铅酸蓄电池的次;()与铅酸蓄电池相比,同样用电需求下磷酸铁锂电池在体积和重量方媔要小很多;()铅酸蓄电池使用过程有钝化效应,磷酸铁锂电池没有;、从安全应用方面来讲磷酸铁锂晶体中的-键稳固难以分解,即便在高温或过充时也不会像钻酸锂一样结构崩塌发热或是形成强氧化性物质因此拥有良好的安全性。铝塑膜软包方形锂电池的优缺点优點:铝塑膜软包方形锂电池变形空间较大、重量轻、非活性部分所占比重小软包电池重量较同等容量的钢壳锂电轻%,较铝壳电池轻%;相哃尺寸规格相比容量更大软包电池较同等规格尺寸的钢壳电池容量高~%,较铝壳电池高~%;壳体强度低循环过程中对内部结构产生的機械应力小,对循环寿命有益;极耳位置充裕充放电过程中热量分布均匀。缺点:壳体强度低对成组技术依赖性强;与卷绕生产方式楿比,叠片的生产效率相对较低;太阳能路灯选择磷酸铁锂蓄电池有什么优势、安全性能提高蓄电池常会因为过充过放等情况而造成故障,影响它的使用性能还是小事伴随着这些故障的往往还潜藏着的,比如钴酸锂电池结构不够稳定在高温或者过充的情况下就很容易崩塌发热,或者形成强氧化物质影响到其安全性。

 室内的空气也不能含有腐蚀性气体在保障室内灰尘含量低的情况下也要保证空气鋶通顺畅。腐蚀性气体及灰尘会对锂电池包内部的工作线路产生影响长期处于这样的环境中会使得锂电池包处故障的次数增多,影响其內部元件的使用寿命

、充电性能不一样铅酸电池是均充方式,就是恒流恒压的充电;锂电池是先恒流再恒压充如果一开始就恒压会将激活锂电池管理板保护功能导致不充电,或者充电电流过大损坏电池寿命,电池用不了次

 锂电池包的工作环境温度也是比较需要注重嘚点。虽然锂电池的工作温度可以适宜从-20℃到60℃的不同温度环境不过一般情况下温度低于0℃后,锂电池的放电能力会相应降低其循环壽命也会受到一定的影响。所以对于锂电池包的工作环境温度也要有所注意

一般的方法是,定期对电池进行一次放电放电的方法是在岼坦路面正常负荷的条件下骑车到欠压保护。注意我们特别强调欠压保护。

 锂电池包额定输出功率是标志该产品能驱动多大功率负载嘚重要参数它随负载功率因数的变化而变化,如1kVA的锂电池包并不一定能驱动1kVA的负载为了延长锂电池包的使用寿命,UPS不宜长期处于满载狀态下运行

总结:短期内磷酸铁锂电池难以在通信行业得到大规模应用,新技术的应用总会存在一个问题发现和技术沉淀的过程相信隨着磷酸铁锂电池应用的不断开展,通锂电池后备电源系统将在通信行业中不断开拓一片天地并扮演重要角色

40KWH电池储能系统电池组生产供应无论如何,铅酸电池的转型之路向锂电池市场布局无疑是选择各企业要把握锂电池包市场发的发展契机,可以依托铅酸电池在低速車市场的固有基础专注于电动车的锂电池开发和推广。部分锂电池过充电欠充电影响电池的寿命,过充电会导致出现、做放电均衡鈈如做欠压保护好,做到任意一个单体锂电池发生欠压都进行断电保护防止出现过放电引起的。

在奥赛考纲中静电学知识点数目不算多,总数和高考考纲基本相同但在个别知识点上,奥赛的要求显然更加深化了:如非匀强电场中电势的计算、电容器的连接和静電能计算、电介质的极化等在处理物理问题的方法上,对无限分割和叠加原理提出了更高的要求

如果把静电场的问题分为两部分,那僦是电场本身的问题、和对场中带电体的研究高考考纲比较注重第二部分中带电粒子的运动问题,而奥赛考纲更注重第一部分和第二部汾中的静态问题也就是说,奥赛关注的是电场中更本质的内容关注的是纵向的深化和而非横向的综合。

条件:⑴点电荷⑵真空,⑶點电荷静止或相对静止事实上,条件⑴和⑵均不能视为对库仑定律的限制因为叠加原理可以将点电荷之间的静电力应用到一般带电体,非真空介质可以通过介电常数将k进行修正(如果介质分布是均匀和“充分宽广”的一般认为k′= k /εr)。只有条件⑶它才是静电学的基夲前提和出发点(但这一点又是常常被忽视和被不恰当地“综合应用”的)。

电场的概念;试探电荷(检验电荷);定义意味着一种适用於任何电场的对电场的检测手段;电场线是抽象而直观地描述电场有效工具(电场线的基本属性)

b、不同电场中场强的计算

决定电场强弱的因素有两个:场源(带电量和带电体的形状)和空间位置。这可以从不同电场的场强决定式看出——

结合点电荷的场强和叠加原理峩们可以求出任何电场的场强,如——

⑵均匀带电环垂直环面轴线上的某点P:E = ,其中r和R的意义见图7-1

如果球壳是有厚度的的(内径R1 、外徑R2),在壳体中(R1<r<R2):

E =  其中ρ为电荷体密度。这个式子的物理意义可以参照万有引力定律当中(条件部分)的“剥皮法则”理解〔即为图7-2中虚线以内部分的总电量…〕。

⑷无限长均匀带电直线(电荷线密度为λ):E = 

⑸无限大均匀带电平面(电荷面密度为σ):E = 2πkσ

1、電势:把一电荷从P点移到参考点P0时电场力所做的功W与该电荷电量q的比值即

参考点即电势为零的点,通常取无穷远或大地为参考点

和场強一样,电势是属于场本身的物理量W则为电荷的电势能。

以无穷远为参考点U = k

由于电势的是标量,所以电势的叠加服从代数加法很显嘫,有了点电荷电势的表达式和叠加原理我们可以求出任何电场的电势分布。

静电感应→静电平衡(狭义和广义)→静电屏蔽

1、静电平衡的特征可以总结为以下三层含义——

a、导体内部的合场强为零;表面的合场强不为零且一般各处不等表面的合场强方向总是垂直导体表面。

b、导体是等势体表面是等势面。

c、导体内部没有净电荷;孤立导体的净电荷在表面的分布情况取决于导体表面的曲率

导体壳(網罩)不接地时,可以实现外部对内部的屏蔽但不能实现内部对外部的屏蔽;导体壳(网罩)接地后,既可实现外部对内部的屏蔽也鈳实现内部对外部的屏蔽。

孤立导体电容器→一般电容器

b、决定式决定电容器电容的因素是:导体的形状和位置关系、绝缘介质的种类,所以不同电容器有不同的电容

用图7-3表征电容器的充电过程“搬运”电荷做功W就是图中阴影的面积,这也就是电容器的储能E 所以

电场嘚能量。电容器储存的能量究竟是属于电荷还是属于电场正确答案是后者,因此我们可以将电容器的能量用场强E表示。

认为电场能均勻分布在电场中则单位体积的电场储能 w = E2 。而且这以结论适用于非匀强电场。

a、电介质分为两类:无极分子和有极分子前者是指在没囿外电场时每个分子的正、负电荷“重心”彼此重合(如气态的H2 、O2 、N2和CO2),后者则反之(如气态的H2O 、SO2和液态的水硝基笨)

b、电介质的极化:当介质中存在外电场时无极分子会变为有极分子,有极分子会由原来的杂乱排列变成规则排列如图7-4所示。

2、束缚电荷、自由电荷、極化电荷与宏观过剩电荷

a、束缚电荷与自由电荷:在图7-4中电介质左右两端分别显现负电和正电,但这些电荷并不能自由移动因此称为束缚电荷,除了电介质导体中的原子核和内层电子也是束缚电荷;反之,能够自由移动的电荷称为自由电荷事实上,导体中存在束缚電荷与自由电荷绝缘体中也存在束缚电荷和自由电荷,只是它们的比例差异较大而已

b、极化电荷是更严格意义上的束缚电荷,就是指圖7-4中电介质两端显现的电荷而宏观过剩电荷是相对极化电荷来说的,它是指可以自由移动的净电荷宏观过剩电荷与极化电荷的重要区別是:前者能够用来冲放电,也能用仪表测量但后者却不能。

第二讲 重要模型与专题

【物理情形1】试证明:均匀带电球壳内部任意一点嘚场强均为零

【模型分析】这是一个叠加原理应用的基本事例。

如图7-5所示在球壳内取一点P ,以P为顶点做两个对顶的、顶角很小的锥体锥体与球面相交得到球面上的两个面元ΔS1和ΔS2 ,设球面的电荷面密度为σ,则这两个面元在P点激发的场强分别为

为了弄清ΔE1和ΔE2的大小關系引进锥体顶部的立体角ΔΩ ,显然

同理其它各个相对的面元ΔS3和ΔS4 、ΔS5和ΔS6  激发的合场强均为零。原命题得证

【模型变换】半径为R的均匀带电球面,电荷的面密度为σ,试求球心处的电场强度。

【解析】如图7-6所示在球面上的P处取一极小的面元ΔS ,它在球心O点噭发的场强大小为

无穷多个这样的面元激发的场强大小和ΔS激发的完全相同但方向各不相同,它们矢量合成的效果怎样呢这里我们要夶胆地预见——由于由于在x方向、y方向上的对称性,Σ = Σ = 0 最后的ΣE = ΣEz ,所以先求

【答案】E = kπσ 方向垂直边界线所在的平面。

〖学员思栲〗如果这个半球面在yoz平面的两边均匀带有异种电荷面密度仍为σ,那么,球心处的场强又是多少?

〖推荐解法〗将半球面看成4个球面,每个球面在x、y、z三个方向上分量均为 kπσ,能够对称抵消的将是y、z两个方向上的分量,因此ΣE = ΣEx …

〖答案〗大小为kπσ,方向沿x轴方向(由带正电的一方指向带负电的一方)。

【物理情形2】有一个均匀的带电球体球心在O点,半径为R 电荷体密度为ρ ,球体内有一个球形涳腔空腔球心在O′点,半径为R′= a ,如图7-7所示试求空腔中各点的场强。

【模型分析】这里涉及两个知识的应用:一是均匀带电球体的場强定式(它也是来自叠加原理这里具体用到的是球体内部的结论,即“剥皮法则”)二是填补法。

将球体和空腔看成完整的带正电嘚大球和带负电(电荷体密度相等)的小球的集合对于空腔中任意一点P ,设 =

E1和E2的矢量合成遵从平行四边形法则ΣE的方向如图。又由于矢量三角形PE1ΣE和空间位置三角形OP O′是相似的ΣE的大小和方向就不难确定了。

【答案】恒为kρπa 方向均沿O → O′,空腔里的电场是匀强电场

〖学员思考〗如果在模型2中的OO′连线上O′一侧距离O为b(b>R)的地方放一个电量为q的点电荷,它受到的电场力将为多大

〖解说〗上面解法的按部就班应用…

〖答〗πkρq〔?〕。

二、电势、电量与电场力的功

【物理情形1】如图7-8所示半径为R的圆环均匀带电,电荷线密度为λ,圆心在O点过圆心跟环面垂直的轴线上有P点, = r 以无穷远为参考点,试求P点的电势U

【模型分析】这是一个电势标量叠加的简单模型。先在圆环上取一个元段ΔL 它在P点形成的电势

环共有段,各段在P点形成的电势相同而且它们是标量叠加。

〖思考〗如果上题中知道的是環的总电量Q 则UP的结论为多少?如果这个总电量的分布不是均匀的结论会改变吗?

〖再思考〗将环换成半径为R的薄球壳总电量仍为Q ,試问:(1)当电量均匀分布时球心电势为多少?球内(包括表面)各点电势为多少(2)当电量不均匀分布时,球心电势为多少球内(包括表面)各点电势为多少?

〖解说〗(1)球心电势的求解从略;

球内任一点的求解参看图7-5

注意:一个完整球面的ΣΔΩ = 4π(单位:球面度sr)但作为对顶的锥角,ΣΔΩ只能是2π 所以——

(2)球心电势的求解和〖思考〗相同;

球内任一点的电势求解可以从(1)问的求解过程得到结论的反证。

〖答〗(1)球心、球内任一点的电势均为k ;(2)球心电势仍为k 但其它各点的电势将随电量的分布情况的不同而不同(内部不再是等势体,球面不再是等势面)

【相关应用】如图7-9所示,球形导体空腔内、外壁的半径分别为R1和R2 带有净电量+q ,现在其内部距球心为r的地方放一个电量为+Q的点电荷试求球心处的电势。

【解析】由于静电感应球壳的内、外壁形成两个带电球壳。球心电势是两個球壳形成电势、点电荷形成电势的合效果

根据静电感应的尝试,内壁的电荷量为-Q 外壁的电荷量为+Q+q ,虽然内壁的带电是不均匀的根据上面的结论,其在球心形成的电势仍可以应用定式所以…

〖反馈练习〗如图7-10所示,两个极薄的同心导体球壳A和B半径分别为RA和RB ,现讓A壳接地而在B壳的外部距球心d的地方放一个电量为+q的点电荷。试求:(1)A球壳的感应电荷量;(2)外球壳的电势

〖解说〗这是一个更為复杂的静电感应情形,B壳将形成图示的感应电荷分布(但没有净电量)A壳的情形未画出(有净电量),它们的感应电荷分布都是不均勻的

此外,我们还要用到一个重要的常识:接地导体(A壳)的电势为零但值得注意的是,这里的“为零”是一个合效果它是点电荷q 、A壳、B壳(带同样电荷时)单独存在时在A中形成的的电势的代数和,所以当我们以球心O点为对象,有

☆学员讨论:A壳的各处电势均为零我们的方程能不能针对A壳表面上的某点去列?(答:不能非均匀带电球壳的球心以外的点不能应用定式!)

基于刚才的讨论,求B的电勢时也只能求B的球心的电势(独立的B壳是等势体球心电势即为所求)——

【物理情形2】图7-11中,三根实线表示三根首尾相连的等长绝缘细棒每根棒上的电荷分布情况与绝缘棒都换成导体棒时完全相同。点A是Δabc的中心点B则与A相对bc棒对称,且已测得它们的电势分别为UA和UB 试問:若将ab棒取走,A、B两点的电势将变为多少

【模型分析】由于细棒上的电荷分布既不均匀、三根细棒也没有构成环形,故前面的定式不能直接应用若用元段分割→叠加,也具有相当的困难所以这里介绍另一种求电势的方法。

每根细棒的电荷分布虽然复杂但相对各自嘚中点必然是对称的,而且三根棒的总电量、分布情况彼此必然相同这就意味着:①三棒对A点的电势贡献都相同(可设为U1);②ab棒、ac棒對B点的电势贡献相同(可设为U2);③bc棒对A、B两点的贡献相同(为U1)。

取走ab后因三棒是绝缘体,电荷分布不变故电势贡献不变,所以

〖模型变换〗正四面体盒子由彼此绝缘的四块导体板构成各导体板带电且电势分别为U1 、U2 、U3和U4 ,则盒子中心点O的电势U等于多少

〖解说〗此處的四块板子虽然位置相对O点具有对称性,但电量各不相同因此对O点的电势贡献也不相同,所以应该想一点办法——

我们用“填补法”將电量不对称的情形加以改观:先将每一块导体板复制三块作成一个正四面体盒子,然后将这四个盒子位置重合地放置——构成一个有㈣层壁的新盒子在这个新盒子中,每个壁的电量将是完全相同的(为原来四块板的电量之和)、电势也完全相同(为U1 + U2 + U3 + U4)新盒子表面就構成了一个等势面、整个盒子也是一个等势体,故新盒子的中心电势为

最后回到原来的单层盒子中心电势必为 U =  U′

☆学员讨论:刚才的这種解题思想是否适用于“物理情形2”?(答:不行因为三角形各边上电势虽然相等,但中点的电势和边上的并不相等)

〖反馈练习〗電荷q均匀分布在半球面ACB上,球面半径为R CD为通过半球顶点C和球心O的轴线,如图7-12所示P、Q为CD轴线上相对O点对称的两点,已知P点的电势为UP 试求Q点的电势UQ 。

〖解说〗这又是一个填补法的应用将半球面补成完整球面,并令右边内、外层均匀地带上电量为q的电荷如图7-12所示。

从电量的角度看右半球面可以看作不存在,故这时P、Q的电势不会有任何改变

而换一个角度看,P、Q的电势可以看成是两者的叠加:①带电量為2q的完整球面;②带电量为-q的半球面

其中 U半球面显然和为填补时Q点的电势大小相等、符号相反,即 U半球面= -UQ 

以上的两个关系已经足以解题了

【物理情形3】如图7-13所示,A、B两点相距2L 圆弧是以B为圆心、L为半径的半圆。A处放有电量为q的电荷B处放有电量为-q的点电荷。试问:(1)将单位正电荷从O点沿移到D点电场力对它做了多少功?(2)将单位负电荷从D点沿AB的延长线移到无穷远处去电场力对它做多少功?

洅用功与电势的关系即可

【答案】(1);(2)。 

【相关应用】在不计重力空间有A、B两个带电小球,电量分别为q1和q2 质量分别为m1和m2 ,被凅定在相距L的两点试问:(1)若解除A球的固定,它能获得的最大动能是多少(2)若同时解除两球的固定,它们各自的获得的最大动能昰多少(3)未解除固定时,这个系统的静电势能是多少

【解说】第(1)问甚间;第(2)问在能量方面类比反冲装置的能量计算,另启鼡动量守恒关系;第(3)问是在前两问基础上得出的必然结论…(这里就回到了一个基本的观念斧正:势能是属于场和场中物体的系统洏非单纯属于场中物体——这在过去一直是被忽视的。在两个点电荷的环境中我们通常说“两个点电荷的势能”是多少。)

〖思考〗设彡个点电荷的电量分别为q1 、q2和q3 两两相距为r12 、r23和r31 ,则这个点电荷系统的静电势能是多少

〖反馈应用〗如图7-14所示,三个带同种电荷的相同金属小球每个球的质量均为m 、电量均为q ,用长度为L的三根绝缘轻绳连接着系统放在光滑、绝缘的水平面上。现将其中的一根绳子剪断三个球将开始运动起来,试求中间这个小球的最大速度

〖解〗设剪断的是1、3之间的绳子,动力学分析易知2球获得最大动能时,1、2之間的绳子与2、3之间的绳子刚好应该在一条直线上而且由动量守恒知,三球不可能有沿绳子方向的速度设2球的速度为v ,1球和3球的速度为v′则

解以上两式即可的v值。

三、电场中的导体和电介质

【物理情形】两块平行放置的很大的金属薄板A和B面积都是S ,间距为d(d远小于金屬板的线度)已知A板带净电量+Q1 ,B板带尽电量+Q2 且Q2<Q1 ,试求:(1)两板内外表面的电量分别是多少;(2)空间各处的场强;(3)两板间的電势差

【模型分析】由于静电感应,A、B两板的四个平面的电量将呈现一定规律的分布(金属板虽然很薄但内部合场强为零的结论还是存在的);这里应注意金属板“很大”的前提条件,它事实上是指物理无穷大因此,可以应用无限大平板的场强定式

为方便解题,做圖7-15忽略边缘效应,四个面的电荷分布应是均匀的设四个面的电荷面密度分别为σ1 、σ2 、σ3和σ4 ,显然

【答案】(1)A板外侧电量、A板内側电量B板内侧电量?、B板外侧电量;(2)A板外侧空间场强2πk,方向垂直A板向外A、B板之间空间场强2πk,方向由A垂直指向BB板外侧空间场強2πk,方向垂直B板向外;(3)A、B两板的电势差为2πkdA板电势高。

〖学员思考〗如果两板带等量异号的净电荷两板的外侧空间场强等于多尐?(答:为零)

〖学员讨论〗(原模型中)作为一个电容器,它的“电量”是多少(答:)如果在板间充满相对介电常数为εr的电介质,是否会影响四个面的电荷分布(答:不会)是否会影响三个空间的场强(答:只会影响Ⅱ空间的场强)?

〖学员讨论〗(原模型Φ)我们是否可以求出A、B两板之间的静电力〔答:可以;以A为对象,外侧受力·(方向相左),内侧受力·(方向向右),它们合成即可,结论为F = Q1Q2 排斥力。〕

【模型变换】如图7-16所示一平行板电容器,极板面积为S 其上半部为真空,而下半部充满相对介电常数为εr的均勻电介质当两极板分别带上+Q和?Q的电量后,试求:(1)板上自由电荷的分布;(2)两板之间的场强;(3)介质表面的极化电荷

【解说】电介质的充入虽然不能改变内表面的电量总数,但由于改变了场强故对电荷的分布情况肯定有影响。设真空部分电量为Q1 介质部分电量为Q2 ,显然有

两板分别为等势体将电容器看成上下两个电容器的并联,必有

场强可以根据E = 关系求解比较常规(上下部分的场强相等)。

上下部分的电量是不等的但场强居然相等,这怎么解释从公式的角度看,E = 2πkσ(单面平板),当k 、σ同时改变,可以保持E不变但這是一种结论所展示的表象。从内在的角度看k的改变正是由于极化电荷的出现所致,也就是说极化电荷的存在相当于在真空中形成了┅个新的电场,正是这个电场与自由电荷(在真空中)形成的电场叠加成为E2 所以

请注意:①这里的σ′和Q′是指极化电荷的面密度和总量;② E = 4πkσ的关系是由两个带电面叠加的合效果。

【答案】(1)真空部分的电量为Q ,介质部分的电量为Q ;(2)整个空间的场强均为 ;(3)Q 

〖思考应用〗一个带电量为Q的金属小球,周围充满相对介电常数为εr的均匀电介质试求与与导体表面接触的介质表面的极化电荷量。

【物理情形1】由许多个电容为C的电容器组成一个如图7-17所示的多级网络试问:(1)在最后一级的右边并联一个多大电容C′,可使整个网络嘚A、B两端电容也为C′(2)不接C′,但无限地增加网络的级数整个网络A、B两端的总电容是多少?

【模型分析】这是一个练习电容电路简囮基本事例

第(1)问中,未给出具体级数一般结论应适用特殊情形:令级数为1 ,于是

第(2)问中因为“无限”,所以“无限加一级後仍为无限”不难得出方程

【解说】对于既非串联也非并联的电路,需要用到一种“Δ→Y型变换”参见图7-19,根据三个端点之间的电容等效容易得出定式——

有了这样的定式后,我们便可以进行如图7-20所示的四步电路简化(为了方便电容不宜引进新的符号表达,而是直接将变换后的量值标示在图中)——

4.5V开关K1和K2接通前电容器均未带电,试求K1和K2接通后三个电容器的电压Uao 、Ubo和Uco各为多少

【解说】这是一个栲查电容器电路的基本习题,解题的关键是要抓与o相连的三块极板(俗称“孤岛”)的总电量为零

【伸展应用】如图7-22所示,由n个单元组荿的电容器网络每一个单元由三个电容器连接而成,其中有两个的电容为3C 另一个的电容为3C 。以a、b为网络的输入端a′、b′为输出端,紟在a、b间加一个恒定电压U 而在a′b′间接一个电容为C的电容器,试求:(1)从第k单元输入端算起后面所有电容器储存的总电能;(2)若紦第一单元输出端与后面断开,再除去电源并把它的输入端短路,则这个单元的三个电容器储存的总电能是多少

【解说】这是一个结匼网络计算和“孤岛现象”的典型事例。

所以从输入端算起,第k单元后的电压的经验公式为 Uk = 

再算能量储存就不难了

(2)断开前,可以算出第一单元的三个电容器、以及后面“系统”的电量分配如图7-23中的左图所示这时,C1的右板和C2的左板(或C2的下板和C3的右板)形成“孤岛”此后,电容器的相互充电过程(C3类比为“电源”)满足——

电量关系:Q1′= Q3

〖学员思考〗图7-23展示的过程中始末状态的电容器储能是否一样?(答:不一样;在相互充电的过程中导线消耗的焦耳热已不可忽略。)

我要回帖

更多关于 什么是储能电源 的文章

 

随机推荐