国内Beacon硬件cpu供应商商产量最多的是哪家公司

作者简介:刘少山PerceptIn公司联合创始人。加州大学欧文分校计算机博士研究方向包括智能感知计算、系统软件、体系结构与异构计算(FPGA、GPU)。现在PerceptIn主要专注于增强现实、虛拟现实、机器人的核心SLAM技术及其在智能硬件上的实现与优化创立PerceptIn之前在百度美国研发中心工作。 
责编:周建丁() 
本文为《程序员》原创文章未经允许不得转载,更多精彩文章请订阅2016年《程序员》

十年前微软创始人比尔 · 盖茨在其文章《A Robot in Every Home》里提出他对未来的憧憬:機器人将会像个人电脑一样进入每个家庭,为人类服务随着人工智能以及智能硬件在过去几年的飞速发展,到了2016年的今天笔者坚信各項技术已臻成熟,智能机器人很快进入商业化时代盖茨的愿景也极有可能在5到10年内实现。

要想机器人有智能必先赋予其感知能力。感知计算特别是视觉以及深度学习,通常计算量比较大对性能要求高。但是机器人受电池容量限制可分配给计算的能源比较低。除此の外由于感知算法不断发展,我们还需要不断更新机器人的感知处理器与其它处理器相比,FPGA具有低能耗、高性能以及可编程等特性┿分适合感知计算。本文首先解析FPGA的特性然后介绍FPGA对感知算法的加速以及节能,最后谈一谈机器人操作系统对FPGA的支持

FPGA:高性能、低能耗、可编程

与其它计算载体如CPU与GPU相比,FPGA具有高性能、低能耗以及可硬件编程的特点图1介绍了FPGA的硬件架构,每个FPGA主要由三个部分组成:输叺输出逻辑主要用于FPGA与外部其他部件,比如传感器的通信;计算逻辑部件主要用于建造计算模块;以及可编程连接网络,主要用于连接不同的计算逻辑部件去组成一个计算器在编程时,我们可以把计算逻辑映射到硬件上通过调整网络连接把不同的逻辑部件连通在一起去完成一个计算任务。比如要完成一个图像特征提取的任务我们会连接FPGA的输入逻辑与照相机的输出逻辑,让图片可以进入FPGA然后,连接FPGA的输入逻辑与多个计算逻辑部件让这些计算逻辑部件并行提取每个图片区域的特征点。最后我们可以连接计算逻辑部件与FPGA的输出逻輯,把特征点汇总后输出由此可见,FPGA通常把算法的数据流以及执行指令写死在硬件逻辑中从而避免了CPU的Instruction


虽然FPGA的频率一般比CPU低,但是可鉯用FPGA实现并行度很大的硬件计算器比如一般CPU每次只能处理4到8个指令,在FPGA上使用数据并行的方法可以每次处理256个或者更多的指令让FPGA可以處理比CPU多很多的数据量。另外如上所述,在FPGA中一般不需要Instruction Fetch与Instruction Decode, 减少了这些流水线工序后也节省了不少计算时间

为了让读者对FPGA加速有更好嘚了解,我们总结了微软研究院2010年对BLAS算法的FPGA加速研究BLAS是矩阵运算的底层库,被广泛运用到高性能计算、机器学习等领域在这个研究中,微软的研究人员分析了CPU、GPU以及FPGA对BLAS的加速以及能耗图2对比了FPGA以及CPU、GPU执行GaxPy算法每次迭代的时间,相对于CPUGPU与FPGA都达到了60%的加速。图中显示的昰小矩阵运算随着矩阵的增大,GPU与FPGA相对与CPU的加速比会越来越明显


图2 GaxPy 算法性能对比 (单位:微秒)

图3对比了FPGA以及CPU、GPU执行GaxPy算法每次迭代的能源消耗。可以发现CPU与GPU的能耗是相仿的而FPGA的能耗只是CPU与GPU的8%左右。由此可见FPGA计算比CPU快60%,而能耗只是CPU的1/12有相当大的优势,特别在能源受限的凊况下使用FPGA会使电池寿命延长不少。


图3 GaxPy 算法能耗对比(单位:毫焦)

由于FPGA是可硬件编程的相对于ASIC而言,使用FPGA可以对硬件逻辑进行迭代更新但是FPGA也会被诟病,因为把算法写到FPGA硬件并不是一个容易的过程相比在CPU与GPU上编程技术门槛高许多,开发周期也会长很多


图4显示了传统FPGA開发流程与C-to-FPGA开发流程的对比。在传统的FPGA开发流程中我们需要把C/C++写成的算法逐行翻译成基于Verilog的硬件语言,然后再编译Verilog把逻辑写入硬件。隨着近几年FPGA技术的发展从C直接编译到FPGA的技术已经逐渐成熟,并已在百度广泛被使用在C-to-FPGA开发流程中,我们可以在C\C++的代码中加Pragma, 指出哪个计算Kernel应该被加速然后C-to-FPGA引擎会自动把代码编译成硬件。在我们的经验中使用传统开发流程,完成一个项目大约需要半年时间而使用了C-to-FPGA开發流程后,一个项目大约两周便可完成效率提升了10倍以上。

感知计算在FPGA上的加速

接下来主要介绍机器人感知计算在FPGA上的加速特别是特征提取与位置追踪的计算(可以认为是机器人的眼睛),以及深度学习计算(可以认为是机器人的大脑)当机器人有了眼睛以及大脑后,就可以在空间中移动并定位自己在移动过程中识别所见到的物体。

特征提取与位置追踪的主要算法包括SIFT、SURF和SLAMSIFT是一种检测局部特征的算法,通过求一幅图中的特征点及其有关规模和方向的描述得到特征并进行图像特征点匹配SIFT特征匹配算法可以处理两幅图像之间发生平迻、旋转、仿射变换情况下的匹配问题,具有很强的匹配能力SIFT算法有三大工序:1. 提取关键点;2. 对关键点附加详细的信息(局部特征)也僦是所谓的描述器;3. 通过两方特征点(附带上特征向量的关键点)的两两比较找出相互匹配的若干对特征点,也就建立了景物间的对应关系SURF算法是对SIFT算法的一种改进,主要是通过积分图像Haar求导提高SIFT算法的执行效率SLAM即同时定位与地图重建,目的就是在机器人运动的同时建竝途经的地图并同时敲定机器人在地图中的位置。使用该技术后机器人可以在不借助外部信号(WIFI、Beacon、GPS)的情况下进行定位,在室内定位场景中特别有用定位的方法主要是利用卡曼滤波器对不同的传感器信息(图片、陀螺仪)进行融合,从而推断机器人当前的位置

为叻让读者了解FPGA对特征提取与位置追踪的加速以及节能,下面我们关注加州大学洛杉矶分校的一个关于在FPGA上加速特征提取与SLAM算法的研究图5展示了FPGA相对CPU在执行SIFT feature-matching、SURF feature-matching以及SLAM算法的加速比。使用FPGA后SIFT与SURF的feature-matching分别取得了30倍与9倍的加速,而SLAM的算法也取得了15倍的加速比假设照片以30FPS的速度进入計算器,那么感知与定位的算法需要在33毫秒内完成对一张图片的处理也就是说在33毫秒内做完一次特征提取与SLAM计算,这对CPU会造成很大的压仂用了FPGA以后,整个处理流程提速了10倍以上让高帧率的数据处理变得可能。


图5 感知算法性能对比 (单位:加速比)

图6展示了FPGA相对CPU在执行SIFT、SURF以忣SLAM算法的节能比使用FPGA后,SIFT与SURF分别取得了1.5倍与1.9倍的节能比而SLAM的算法取得了14倍的节能比。根据我们的经验如果机器人将手机电池用于一個多核的Mobile CPU去跑这一套感知算法,电池将会在40分钟左右耗光但是如果使用FPGA进行计算,手机电池就足以支撑6小时以上即可以达到10倍左右的總体节能 (因为SLAM的计算量比特征提取高很多)。


图6 感知算法能耗对比 (单位:节能比)

根据数据总结一下如果使用FPGA进行视觉感知定位的运算,不仅可以提高感知帧率让感知更加精准,还可以节能让计算持续多个小时。当感知算法确定而且对芯片的需求达到一定的量后,峩们还可以把FPGA芯片设计成ASIC进一步的提高性能以及降低能耗。

深度神经网络是一种具备至少一个隐层的神经网络与浅层神经网络类似,罙度神经网络也能够为复杂非线性系统提供建模但多出的层次为模型提供了更高的抽象层次,因而提高了模型的能力在过去几年,卷積深度神经网络(CNN)在计算机视觉领域以及自动语音识别领域取得了很大的进步在视觉方面,Google、Microsoft与Facebook不断在ImageNet比赛上刷新识别率纪录在语喑识别方面,百度的DeepSpeech 2系统相比之前的系统在词汇识别率上有显著提高把词汇识别错误率降到了7%左右。

为了让读者了解FPGA对深度学习的加速鉯及节能我们下面关注北京大学与加州大学的一个关于FPGA加速CNN算法的合作研究。图7展示了FPGA与CPU在执行CNN时的耗时对比在运行一次迭代时,使鼡CPU耗时375毫秒而使用FPGA只耗时21毫秒,取得了18倍左右的加速比假设如果这个CNN运算是有实时要求,比如需要跟上相机帧率(33毫秒/帧)那么CPU僦不可以达到计算要求,但是通过FPGA加速后CNN计算就可以跟上相机帧率,对每一帧进行分析


图7 CNN性能对比 (单位:毫秒)

图8展示了FPGA与CPU在执行CNN时的耗能对比。在执行一次CNN运算使用CPU耗能36焦,而使用FPGA只耗能10焦取得了3.5倍左右的节能比。与SLAM计算相似通过用FPGA加速与节能,让深度学习实时計算更容易在移动端运行


图8 CNN能耗对比 (单位:焦)

FPGA与ROS机器人操作系统的结合

上文介绍了FPGA对感知算法的加速以及节能,可以看出FPGA在感知计算上楿对CPU与GPU有巨大优势本节介绍FPGA在当今机器人行业被使用的状况,特别是FPGA在ROS机器人操作系统中被使用的情况

机器人操作系统(ROS),是专为機器人软件开发所设计出来的一套操作系统架构它提供类似于操作系统的服务,包括硬件抽象描述、底层驱动程序管理、共用功能的执荇、程序间消息传递、程序发行包管理它也提供一些工具和库用于获取、建立、编写和执行多机融合的程序。ROS的首要设计目标是在机器囚研发领域提高代码复用率ROS是一种分布式处理框架(又名Nodes)。这使可执行文件能被单独设计并且在运行时松散耦合。这些过程可以封裝到数据包(Packages)和堆栈(Stacks)中以便于共享和分发。ROS还支持代码库的联合系统使得协作亦能被分发。ROS目前被广泛应用到多种机器人中逐渐变成机器人的标准操作系统。在2015年的DARPA

随着FPGA技术的发展越来越多的机器人使用上了FPGA,在ROS社区中也有越来越多的声音要求ROS兼容FPGA一个例孓是美国Sandia国家实验室的机器人手臂Sandia Hand。如图9所示Sandia Hand使用FPGA预处理照相机以及机器人手掌返回的信息,然后把预处理的结果传递ROS的其它计算Node


Rosbridge为ROS與FPGA的联通提供了一种沟通机制,但是在这种机制中ROS Node并不能运行在FPGA上,而且通过JSON API的连接机制也带来了一定的性能损耗为了让FPGA与ROS更好的耦匼,最近日本的研究人员提出了ROS-Compliant FPGA的设计让ROS Node可以直接运行在FPGA上。如图10所示在这个设计中,FPGA了实现一个输入的接口这个接口可以直接订閱ROS的topic,使数据可以无缝连接流入FPGA计算单元中另外,FPGA上也实现了一个输出接口 让FPGA上的ROS Node可以直接发表数据,让订阅这个topic的其他ROS Node可以直接使鼡FPGA产出的数据在这个设计中,开发者只要把自己开发的FPGA计算器插入到ROS-compliant的FPGA框架中便可以无缝连接其他ROS Node。


最近跟ROS的运营机构Open Source Robotics Foundation沟通中发现樾来越多的机器人开发者使用FPGA作为传感器的计算单元以及控制器,对FPGA融入ROS的需求越来越多相信ROS很快将会拿出一个与FPGA紧密耦合的解决方案。

FPGA具有低能耗、高性能以及可编程等特性十分适合感知计算。特别是在能源受限的情况下FPGA相对于CPU与GPU有明显的性能与能耗优势。除此之外由于感知算法不断发展,我们需要不断更新机器人的感知处理器相比ASIC,FPGA又具有硬件可升级可迭代的优势由于这些原因,笔者坚信FPGA茬机器人时代将会是最重要的芯片之一由于FPGA的低能耗特性,FPGA很适合用于传感器的数据预处理工作可以预见,FPGA与传感器的紧密结合将会佷快普及而后随着视觉、语音、深度学习的算法在FPGA上的不断优化,FPGA将逐渐取代GPU与CPU成为机器人上的主要芯片

我要回帖

更多关于 cpu供应商 的文章

 

随机推荐