求解!好的加分!“如图所示在光滑的光滑导轨与水平面成上有一平板小车M正以速度v向右运动……

CM和m在水平方向上动量守恒,m滑到B端最高点时,M和m速度均为零,根据能量守恒,可知m能到达小车上的B点,故A错误m从A到C的过程中M向左做加速运动,m从C到B的过程中M向左做减速运动,最后减速到零,故B错误C正确由于运动过程中,只是重力势能和动能的相互转化,所以M与m组成的系统机械能守恒,水平方向上不受外力,所以水平方向动量守恒,故D错误故选C
请选择年级高一高二高三请输入相应的习题集名称(选填):
科目:高中物理
来源:不详
题型:计算题
(20分) 对于两物体碰撞前后速度在同一直线上,且无机械能损失的碰撞过程,可简化为如下模型:两物体位于光滑水平面上,仅限于沿一直线运动,当它们之间距离大于某一定值d时,相互作用力为零,当它们之间的距离小于d时,存在大小恒为F的斥力设物体A的质量m1="1.0kg," 开始静止在直线上某点,物体B的质量m2=3.0kg,以速度V0从远处沿直线向A运动,如图所示,若d="0.10m," F="0.60N," V0=0.20m/s,求:相互作用过程中A、B 的加速度大小从开始相互作用到A、B间距离最小时,系统(物体组)动能减少量A、B间的最小距离
科目:高中物理
来源:不详
题型:问答题
(1)下列说法中正确的是(&&&&)A.光电效应是原子核吸收光子向外释放电子的现象B.一群处于n=3能级激发态的氢原子,自发跃迁时能发出3种不同频率的光C.放射性元素发生一次β衰变,原子序数增加1D.汤姆生通过α粒子散射实验建立了原子的核式结构模型(2)如图所示,滑块A质量为2m,滑块B质量为m,滑块C的质量为0.5m,开始时,A、B分别以v1,v2的速度沿光滑水平轨道向固定在右侧的挡板运动,现将C无初速度的放在B上,并与B粘合不再分开,此时A与B相距较近,B与挡板相距足够远。若B与挡板碰撞后以原速率返弹,A与B碰撞后粘合在一起,为使B能与挡板碰撞两次,v1、v2应满足什么关系?
科目:高中物理
来源:不详
题型:单选题
质量为m的小球A在光滑的水平面上以速度v与静止在光滑水平面上的质量为2m的小球B发生正碰,碰撞后,A球的动能变为原来的1/9,那么碰撞后B球的速度夫小可能是A.B.C.D.
科目:高中物理
来源:不详
题型:计算题
质量为M的小车左端放有质量为m的铁块且M&m,以共同速度v沿光滑水平面向竖直墙运动,车与墙碰撞的时间极短,不计动能损失。铁块与小车之间的动摩擦因数μ,车长为L,铁块不会到达车的右端,最终相对静止。①求小车与铁块的最终速度;②求整个过程中摩擦生热是多少?
科目:高中物理
来源:不详
题型:单选题
如图所示,在光滑的水平面上有两辆小车,中间夹一根压缩了的轻质弹簧,两手分别按住小车使它们静止,对两车及弹簧组成的系统,下列说法中正确的是( &&&)A.只要两手同时放开后,系统的总动量始终为零B.先放开左手,后放开右手,动量不守恒C.先放开左手,后放开右手,总动量向右D.无论怎样放开两手,系统的总动能一定不为零
科目:高中物理
来源:不详
题型:计算题
如图所示,光滑水平地面上停着一辆平板车,其质量为2m,长为L,车右端(A点)有一块静止的质量为m的小金属块.金属块与车间有摩擦,以中点C为界, AC段与CB段动摩擦因数不同。现给车施加一个向右的水平恒力,使车向右运动,同时金属块在车上开始滑动,当金属块滑到中点C时,即撤去这个力。已知撤去力的瞬间,金属块的速度为v0,车的速度为2v0,最后金属块恰停在车的左端(B点)。求:(1)F的大小为多少?&&&&&&(2)AC段与CB段动摩擦因数与的比值。
科目:高中物理
来源:不详
题型:计算题
如图10所示,三块木板A、B、C的质量均为,长度均为L。A、B置于水平地面上,它们的间距s=2m。C置于B板的上端并对齐。A、B、C之间及A、B与地面之间的动摩擦因数均为μ=0.2,最大静摩擦力可以认为等于滑动摩擦力。开始时,三个物体处于静止状态。现给A施加一个水平向右,大小为的恒力F,假定木板A、B碰撞时间极短且碰撞后粘连在一起,最终C没有脱离A板,g取l0m/s2。求:(1)碰撞后的瞬间A、B、C的速度各是多少?(2)最终A、B、C的速度又是多少?(3)要使C完全离开B并不脱离木板A,每块木板的长度应满足什么条件?[
科目:高中物理
来源:不详
题型:计算题
如图所示,AOB是光滑水平轨道,BC是半径为R的1/4光滑圆弧轨道,两轨道恰好相切,质量为M的小木块静止在O点,一质量为m(m = M/9)的子弹以某一初速度水平向右射入小木块内不穿出,木块恰好滑到圆弧的最高点C处(子弹、小木块均可看成质点)问:(1)子弹射入木块之前的速度? (2)若每当小木块在O点时,立即有相同的子弹以相同的速度射入小木块,并留在其中,当第6颗子弹射入小木块后,小木块沿圆弧上升的高度是多大?(3)当第n颗子弹射入小木块后,小木块沿圆弧能上升的最大高度为时,则n值是多少?当前位置:
>>>如图所示,在光滑的水平面上停着一辆小车,小车平台的上表面是粗..
如图所示,在光滑的水平面上停着一辆小车,小车平台的上表面是粗糙的.它靠在光滑的水平桌面旁并与桌面等高.现在有一个质量为m=2kg的物体C以速度v0=10m/s沿水平桌面向右运动,滑过小车平台后从A点离开,恰能落在小车前端的B点.已知小车总质量为M=5kg,O点在A点的正下方,OA=0.8m,OB=1.2m,物体与小车摩擦系数u=0.2,g取10m/s2.求:(1)物体刚离开平台时,小车获得的速度大小.(2)物体在小车平台上运动的过程中,小车对地发生多大的位移.
题型:问答题难度:中档来源:广东二模
(1)设物体C刚离开小车平台时,速度为v1.此时小车速度为v2,C从A点落到B点的时间为t,由动量守恒定律,得mv0=mv1+Mv2…①C从A点落到B点做平抛运动,由平抛运动规律,有OA=12gt2…②OB=v1t-v2t…③由①②③解得:v1=5m/s(2)设C滑上平台到离开平台所需时间为t',在平台上,物体C和小车的加速度分别为a1=μmgm=2m/s2(方向:水平向左)a2=μmgM=0.8m/s2(方向:水平向右)则t′=v0-v1a1=2.5s故小车对地位移为:s=12a2t′2=12×0.8×2.52m=2.5m答:(1)物体刚离开平台时,小车获得的速度大小为5m/s.(2)物体在小车平台上运动的过程中,小车对地发生多大的位移为2.5m.
马上分享给同学
据魔方格专家权威分析,试题“如图所示,在光滑的水平面上停着一辆小车,小车平台的上表面是粗..”主要考查你对&&平抛运动,牛顿第二定律,动量守恒定律&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
平抛运动牛顿第二定律动量守恒定律
平抛运动的定义:
将物体以一定的初速度沿水平方向抛出,不考虑空气阻力,物体只在重力作用下所做的运动,叫做平抛运动。平抛运动的特性:
以抛出点为坐标原点,水平初速度V0,竖直向下的方向为y轴正方向,建立如图所示的坐标系,在该坐标系下,对任一时刻t:①位移分位移(水平方向),(竖直方向);合位移,(φ为合位移与x轴夹角)。②速度分速度(水平方向),Vy=gt(竖直方向);合速度,(θ为合速度V与x轴夹角)。③平抛运动时间:(取决于竖直下落的高度)。④水平射程:(取决于竖直下落的高度和初速度)。类平抛运动:
&(1)定义当物体所受的合外力恒定且与初速度垂直时,物体做类平抛运动。&(2)类平抛运动的分解方法& ①常规分解法:将类平抛运动分解为沿初速度方向的匀速直线运动和垂直于初速度方向(即沿合力的方向)的匀加速直线运动,两分运动彼此独立,互不影响,且与合运动具有等时性。& ②特殊分解法:对于有些问题,可以过抛出点建立适当的直角坐标系,将加速度分解为,,初速度分解为,然后分别在x、y方向上列方程求解。(3)类平抛运动问题的求解思路根据物体受力特点和运动特点判断该问题属于类平抛运动问题——求出物体运动的加速度——根据具体问题选择用常规分解法还是特殊分解法求解。 (4)类抛体运动当物体在巨力作用下运动时,若物体的初速度不为零且与外力不在一条直线上,物体所做的运动就是类抛体运动。在类抛体运动中可采用正交分解法处理问题,基本思路为:&①建立直角坐标系,将外力、初速度沿这两个方向分解。 &②求出这两个方向上的加速度、初速度。&③确定这两个方向上的分运动性质,选择合适的方程求解。内容:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同,表达式F=kma。在国际单位制中,k=1,上式简化为F合=ma。牛顿这个单位就是根据牛顿第二定律定义的:使质量是1kg的物体产生1m/s2加速度的力,叫做1N(kg·m/s2=N)。对牛顿第二定律的理解:①模型性牛顿第二定律的研究对象只能是质点模型或可看成质点模型的物体。②因果性力是产生加速度的原因,质量是物体惯性大小的量度,物体的加速度是力这一外因和质量这一内因共同作用的结果。③矢量性合外力的方向决定了加速度的方向,合外力方向变,加速度方向变,加速度方向与合外力方向一致。其实牛顿第二定律的表达形式就是矢量式。④瞬时性加速度与合外力是瞬时对应关系,它们同生、同灭、同变化。⑤同一性(同体性)中各物理量均指同一个研究对象。因此应用牛顿第二定律解题时,首先要处理好的问题是研究对象的选择与确定。⑥相对性在中,a是相对于惯性系的而不是相对于非惯性系的,即a是相对于没有加速度参照系的。⑦独立性F合产生的加速度a是物体的总加速度,根据矢量的合成与分解,则有物体在x方向的加速度ax;物体在y方向的合外力产生y方向的加速度ay。牛顿第二定律分量式为:。⑧局限性(适用范围)牛顿第二定律只能解决物体的低速运动问题,不能解决物体的高速运动问题,只适用于宏观物体,不适用与微观粒子。牛顿第二定律的应用: 1.应用牛顿第二定律解题的步骤: (1)明确研究对象。可以以某一个质点作为研究对象,也可以以几个质点组成的质点组作为研究对象。设每个质点的质量为mi,对应的加速度为ai,则有:F合=对这个结论可以这样理解:先分别以质点组中的每个质点为研究对象用牛顿第二定律:,将以上各式等号左、右分别相加,其中左边所有力中,凡属于系统内力的,总是成对出现并且大小相等方向相反,其矢量和必为零,所以最后得到的是该质点组所受的所有外力之和,即合外力F。。 (2)对研究对象进行受力分析,同时还应该分析研究对象的运动情况(包括速度、加速度),并把速度、加速度的方向在受力图旁边表示出来。 (3)若研究对象在不共线的两个力作用下做加速运动,一般用平行四边形定则(或三角形定则)解题;若研究对象在不共线的三个或三个以上的力作用下做加速运动,一般用正交分解法解题(注意灵活选取坐标轴的方向,既可以分解力,也可以分解加速度)。 (4)当研究对象在研究过程的小同阶段受力情况有变化时,那就必须分阶段进行受力分析,分阶段列方程求解。2.两种分析动力学问题的方法: (1)合成法分析动力学问题若物体只受两个力作用而产生加速度时,根据牛顿第二定律可知,利用平行四边形定则求出的两个力的合力方向就是加速度方向。特别是两个力互相垂直或相等时,应用力的合成法比较简单。 (2)正交分解法分析动力学问题当物体受到两个以上的力作用而产生加速度时,常用正交分解法解题。通常是分解力,但在有些情况下分解加速度更简单。 ①分解力:一般将物体受到的各个力沿加速度方向和垂直于加速度方向分解,则:(沿加速度方向),(垂直于加速度方向)。 ②分解加速度:当物体受到的力相互垂直时,沿这两个相互垂直的方向分解加速度,再应用牛顿第二定律列方程求解,有时更简单。具体问题中要分解力还是分解加速度需要具体分析,要以尽量减少被分解的量,尽量不分解待求的量为原则。3.应用牛顿第二定律解决的两类问题: (1)已知物体的受力情况,求解物体的运动情况解这类题目,一般是应用牛顿运动定律求出物体的加速度,再根据物体的初始条件,应用运动学公式,求出物体运动的情况,即求出物体在任意时刻的位置、速度及运动轨迹。流程图如下: (2)已知物体的运动情况,求解物体的受力情况解这类题目,一般是应用运动学公式求出物体的加速度,再应用牛顿第二定律求出物体所受的合外力,进而求出物体所受的其他外力。流程图如下:可以看出,在这两类基本问题中,应用到牛顿第二定律和运动学公式,而它们中间联系的纽带是加速度,所以求解这两类问题必须先求解物体的加速度。知识扩展:1.惯性系与非惯性系:牛顿运动定律成立的参考系,称为惯性参考系,简称惯性系。牛顿运动定律不成立的参考系,称为非惯性系。 2.关于a、△v、v与F的关系 (1)a与F有必然的瞬时的关系F为0,则a为0; F不为0,则a不为0,且大小为a=F/m。F改变,则a 立即改变,a和F之间是瞬时的对应关系,同时存在,同时消失.同时改变。 (2)△v(速度的改变量)与F有必然的但不是瞬时的联系 F为0,则△v为0;F不,0,并不能说明△v就一定不为0,因为,F不为0,而t=0,则△v=0,物体受合外力作用要有一段时间的积累,才能使速度改变。 (3)v(瞬时速度)与F无必然的联系 F为0时,物体可做匀速直线运动,v不为0;F不为0时,v可以为0,例如竖直上抛到达最高点时。动量守恒定律:1、内容:一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变。 2、表达式:m1v1+m2v2=m1v1'+m2v2'。 3、动量守恒定律成立的条件: ①系统不受外力或系统所受外力的合力为零; ②系统所受的外力的合力虽不为零,但系统外力比内力小得多,如碰撞问题中的摩擦力,爆炸过程中的重力等外力比起相互作用的内力来小得多,可以忽略不计; ③系统所受外力的合力虽不为零,但在某个方向上的分量为零,则在该方向上系统的总动量的分量保持不变。 4、动量守恒的速度具有“四性”:①矢量性;②瞬时性;③相对性;④普适性。 动量守恒定律与机械能守恒定律的比较:
系统动量守恒的判断方法:
方法一:南动量守恒的条件判断动量守恒的步骤如下: (1)明确系统由哪几部分组成。 (2)对系统中各物体进行受力分析,分清哪些是内力,哪些是外力。 (3)看所有外力的合力是否为零,或内力是否远大于外力,从而判断系统的动量是否守恒。方法二:南系统动量变化情况判断动量守恒方法如下: (1)明确初始状态系统的总动量是多少。 (2)对系统内的物体进行受力分析、运动分析,确定每一个物体的动量变化情况。 (3)确定系统动量变化情况,进而判定系统的动量是否守恒。
发现相似题
与“如图所示,在光滑的水平面上停着一辆小车,小车平台的上表面是粗..”考查相似的试题有:
172529369845162359165516378892210312当前位置:
>>>如图所示,在光滑的水平面上,有两个质量都是M的小车A和B,两车之..
如图所示,在光滑的水平面上,有两个质量都是M的小车A和B,两车之间用轻质弹簧相连,它们以共同的速度v0向右运动。另有一质量为m=的粘性物体,从高处自由落下,正好落在A车上,并与之粘合在一起。求这以后的运动过程中,弹簧获得的最大弹性势能Ep. &
题型:问答题难度:偏易来源:不详
对下落的物体和A车有:Mv0&=(M+m)v1&&①对整个系统有:2Mv0=(2M+m)v2&&&&&&&&&②&&③解①②③式得
马上分享给同学
据魔方格专家权威分析,试题“如图所示,在光滑的水平面上,有两个质量都是M的小车A和B,两车之..”主要考查你对&&原子核的组成&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
原子核的组成
原子核的结构:
卢瑟福的核式结构模型:
发现相似题
与“如图所示,在光滑的水平面上,有两个质量都是M的小车A和B,两车之..”考查相似的试题有:
366615369612369723370958109439348534知识点梳理
是高中物理的一个重要定理,也是高考中的一个热点。因此对于每一个高中生来说,在物理的学习中,都必须能灵活地运用动能定理。下面谈谈关于动能定理的应用。动能定理的内容是:外力对物体所做功的代数和等于物体动能的增量。其数学表达式为:应用动能定理时必须注意以下几点:(1)应用动能定理解题时,在分析过程的基础上,无须深究物体运动状态过程中变化的细节,只须考虑整个过程中各个力做的总功及物体的初动能和末动能。(2)动能定理的研究对象是单个物体,作用在物体上的外力包括所有的力,因此必须对物体进行受力分析。(3)动能定理中的位移和速度必须是相对于同一个参照系,一般以地面为参照系。(4)求总功可分为下述两种情况:①若各恒力同时作用一段位移,可先求出物体所受的合外力,再求总功;也可用总功等于各力所做功的代数和的方法求。②若各力不同时对物体做功,总功应为各阶段各力做功的代数和。动能定理是功能基本关系之一,凡是涉及力所引起的位移而不涉及的问题,应用动能定理分析讨论,常比简捷。应用动能定理的解题步骤:A. 选取研究对象,明确并分析运动过程。B. 分析受力及各力做功的情况,有哪些力?有哪些力做功?在哪段位移过程中做功?正功还是负功?做了多少功。最后求出各个力做功的代数和。C. 明确过程始末状态的动能。D. 列方程,必要时注意分析题目的隐含条件,补充方程进行求解。
如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变,这就是。适用条件1.区分内力和外力:碰撞时两个物体之间一定有相互,由于这两个物体是属于同一个系统的,它们之间的力叫做内力;系统以外的物体施加的,叫做外力。2.在总动量一定的情况下,每个物体的动量可以发生很大变化。例如:静止的两辆小车用细线相连,中间有一个压缩的弹簧。烧断细线后,由于弹力的作用,两辆小车分别向左右运动,它们都获得了动量,但动量的矢量和为零。  
做功的过程就是的过程,做了多少功,就有多少能量发生转化。做功是能量转化的量度。通过做功的多少,就可以定量的研究能量及其转化了。
整理教师:&&
举一反三(巩固练习,成绩显著提升,去)
根据问他()知识点分析,
试题“质量为2m的平板小车在光滑水平面上以速度{v}_{0}^{&...”,相似的试题还有:
如图所示在光滑的水平面上有一平板小车M正以速度v向右运动.现将一质量为m的木块无初速度放上小车,由于木块和小车间的摩擦力作用,小车的速度将发生变化.为使小车保持原来的运动速度不变,必须及时对小车施加一向右的水平恒力F.当F作用一段时间后把它撤去时,木块恰能随小车一起以速度v共同向右运动.设木块和小车间的动摩擦因素为μ,求在上述过程中,水平恒力F对小车做多少功?
如图所示,木块质量,它以速度水平地滑上一辆静止的平板小车,已知小车质量,木块与小车间的动摩擦因数为,木块没有滑离小车,地面光滑,g取10,求:①木块相对小车静止时小车的速度的大小;②从木块滑上小车到木块相对于小车刚静止时,小车移动的距离.
如图所示,质量为0.4kg的木块以2m/s的速度水平地滑上静止在光滑水平地面上的平板小车,车的质量为1.6kg,木块与小车之间的摩擦系数为0.2(g取10m/s2).设小车足够长,求:(1)木块和小车相对静止时小车的速度大小.(2)从木块滑上小车到它们处于相对静止所经历的时间.(3)从木块滑上小车到它们处于相对静止木块在小车上滑行的距离.

我要回帖

更多关于 在光滑绝缘水平面上 的文章

 

随机推荐