测量队用GPS给的坐标数据X方向c语言判断整数位数部分是8位数Y方向c语言判断整数位数部分是7位数,现在要怎么办才能在全站仪上使用呢

第七章 GPS测量数据处理_图文_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
评价文档:
第七章 GPS测量数据处理
上传于||文档简介
&&全​球​定​位​系​统​课​件
大小:365.00KB
登录百度文库,专享文档复制特权,财富值每天免费拿!
你可能喜欢坐标转换常识
坐标转换常识
GIS中的坐标系定义由基准面和地图投影两组参数确定,而基准面的定义则由特定椭球体及其对应的转换参数确定。
基准面是利用特定椭球体对特定地区地球表面的逼近,因此每个国家或地区均有各自的基准面。基准面是在椭球体基础上建立的,椭球体可以对应多个基准面,而基准面只能对应一个椭球体。
椭球体的几何定义:
O是椭球中心,NS为旋转轴,a为长半轴,b为短半轴。
子午圈:包含旋转轴的平面与椭球面相截所得的椭圆。
纬圈:垂直于旋转轴的平面与椭球面相截所得的圆,也叫平行圈。
赤道:通过椭球中心的平行圈。
基本几何参数:
椭圆的扁率&&&
椭圆的第一偏心率&&&
椭圆的第二偏心率&&&
其中a、b称为长度元素;扁率α反映了椭球体的扁平程度。偏心率e和e’是子午椭圆的焦点离开中心的距离与椭圆半径之比,它们也反映椭球体的扁平程度,偏心率愈大,椭球愈扁。
套用不同的椭球体,同一个地点会测量到不同的经纬度。下面是几种常见的椭球体及参数列表。
几种常见的椭球体参数值
克拉索夫斯基椭球体
1975年国际椭球体
WGS-84椭球体
6 378 245.000 000
000 0(m)
6 378 140.000 000
000 0(m)
6 378 137.000 000
000 0(m)
6 356 863.018 773
047 3(m)
6 356 755.288 157
528 7(m)
6 356 752.314
6 399 698.901 782
711 0(m)
6 399 596.651 988
010 5(m)
6 399 593.625
1/298.257
1/298.257 223
0.006 693 421 622
0.006 694 384 999
0.006 694 379 901
0.006 738 525 414
0.006 739 501 819
0.006 739 496 742
2、地图投影
地球是一个球体,球面上的位置,是以经纬度来表示,我们把它称为“球面坐标系統”或“地理坐标系統”。在球面上计算角度距离十分麻烦,而且地图是印刷在平面纸张上,要将球面上的物体画到紙上,就必须展平,这种将球面转化为平面的过程,称为“投影”。
经由投影的过程,把球面坐标换算为平面直角坐标,便于印刷与计算角度与距离。由于球面無法百分之百展为平面而不变形,所以除了地球仪外,所有地图都有某些程度的变形,有些可保持面积不变,有些可保持方位不变,视其用途而定。
目前国际间普遍采用的一种投影,是即横轴墨卡托投影(Transverse
Projection),又称为高斯-克吕格投影(Gauss-Kruger
Projection),在小范围内保持形状不变,对于各种应用较为方便。我们可以想象成将一个圆柱体橫躺,套在地球外面,再将地表投影到这个圆柱上,然后将圆柱体展开成平面。圆柱与地球沿南北经线方向相切,我们将这条切线称为“中央经线”。
在中央经线上,投影面与地球完全密合,因此图形没有变形;由中央经线往東西两侧延伸,地表图形会被逐渐放大,变形也会越来越严重。
为了保持投影精度在可接受范围内,每次只能取中央经线两侧附近地区来用,因此必须切割为许多投影带。就像将地球沿南北子午线方向,如切西瓜一般,切割为若干带状,再展成平面。目前世界各国军用地图所采用之&UTM&坐标系統&(Universal
Transverse Mecator Projection
System),即为横轴投影的一种。是将地球沿子午线方向,每隔&6&度切割为一带,全球共切割为&60&个投影带。
地图投影几何分类主要包括:
&&&&结合变形性质和几何投影,投影分类包括:
3、GIS中地图投影的定义
我国的基本比例尺地形图(1:5千,1:1万,1:2.5万,1:5万,1:10万,1:25万,1:50万,1:100万)中,大于等于50万的均采用高斯-克吕格投影(Gauss-Kruger);小于50万的地形图采用正轴等角割园锥投影,又叫兰勃特投影(Lambert
Conic);海上小于50万的地形图多用正轴等角园柱投影,又叫墨卡托投影(Mercator),我国的GIS系统中应该采用与我国基本比例尺地形图系列一致的地图投影系统。
相应高斯-克吕格投影、兰勃特投影、墨卡托投影需要定义的坐标系参数序列如下:
高斯-克吕格:投影代号(Type),基准面(Datum),单位(Unit),&中央经度(OriginLongitude),原点纬度(OriginLatitude),&比例系数(ScaleFactor),&东伪偏移(FalseEasting),北纬偏移(FalseNorthing)
兰勃特:投影代号(Type),基准面(Datum),单位(Unit),中央经度(OriginLongitude),原点纬度(OriginLatitude),&标准纬度1(StandardParallelOne),标准纬度2(StandardParallelTwo),&东伪偏移(FalseEasting),北纬偏移(FalseNorthing)
墨卡托:投影代号(Type),基准面(Datum),单位(Unit),&原点经度(OriginLongitude),原点纬度(OriginLatitude),&标准纬度(StandardParallelOne)
在城市GIS系统中均采用6度或3度分带的高斯-克吕格投影,因为一般城建坐标采用的是6度或3度分带的高斯-克吕格投影坐标。高斯-克吕格投影以6度或3度分带,每一个分带构成一个独立的平面直角坐标网,投影带中央经线投影后的直线为X轴(纵轴,纬度方向),赤道投影后为Y轴(横轴,经度方向),为了防止经度方向的坐标出现负值,规定每带的中央经线西移500公里,即东伪偏移值为500公里,由于高斯-克吕格投影每一个投影带的坐标都是对本带坐标原点的相对值,所以各带的坐标完全相同,因此规定在横轴坐标前加上带号,如(55933)其中21即为带号,同样所定义的东伪偏移值也需要加上带号,如21带的东伪偏移值为米。
假如你的工作区位于21带,即经度在120度至126度范围,该带的中央经度为123度,采用Pulkovo
1942基准面,那么定义6度分带的高斯-克吕格投影坐标系参数为:(8,3,0,1,)。
4、大地坐标系
有了椭球体以及地图投影,坐标系就能确定下来了。北京54和西安80是我们使用最多的坐标系。我们通常称谓的北京54坐标系、西安80坐标系实际上使用的是我国的两个大地基准面北京54基准面和西安80基准面。我国参照前苏联从1953年起采用克拉索夫斯基(Krassovsky)椭球体建立了我国的北京54坐标系,1978年采用国际大地测量协会推荐的1975地球椭球体建立了我国新的大地坐标系——西安80坐标系,目前大地测量基本上仍以北京54坐标系作为参照,北京54与西安80坐标之间的转换可查阅国家测绘局公布的对照表。&WGS-84坐标系采用WGS1984基准面及WGS84椭球体,它是一地心坐标系,即以地心作为椭球体中心,目前GPS测量数据多以WGS1984为基准。
北京54坐标系
北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以格拉索夫斯基椭球为基础,经局部平差后产生的坐标系,与苏联1942年建立的以普尔科夫天文台为原点的大地坐标系统相联系,相应的椭球为克拉索夫斯基椭球。到20世纪80年代初,我国已基本完成了天文大地测量,经计算表明,54坐标系统普遍低于我国的大地水准面,平均误差为29米左右。
西安80坐标系
西安80是为了进行全国天文大地网整体平差而建立的。根据椭球定位的基本原理,在建立西安80坐标系时有以下先决条件:
(1)大地原点在我国中部,具体地点是陕西省径阳县永乐镇;
(2)西安80坐标系是参心坐标系,椭球短轴Z轴平行于地球质心指向地极原点方向,大地起始子午面平行于格林尼治平均天文台子午面;X轴在大地起始子午面内与&Z轴垂直指向经度&0方向;Y轴与&Z、X轴成右手坐标系;
(3)椭球参数采用IUG
1975年大会推荐的参数,因而可得西安80椭球两个最常用的几何参数为:
长轴:(m);
扁率:1:298.257
  椭球定位时按我国范围内高程异常值平方和最小为原则求解参数。
    (4)多点定位;
    (5)大地高程以1956年青岛验潮站求出的黄海平均水面为基准。
WGS-84坐标系
WGS-84(World Geodetic
System,1984年)是美国国防部研制确定的大地坐标系,其坐标系的几何定义是:原点在地球质心,z轴指向&BIH
1984.0定义的协议地球极(CTP)方向,X轴指向&BIH
1984.0&的零子午面和&CTP赤道的交点。Y轴与&Z、X轴构成右手坐标系(如图所示)。
WGs-84椭球及有关常数:
对应于&WGS-8大地坐标系有一个WGS-84椭球,其常数采用&IUGG第&17届大会大地测量常数的推荐值。
WGS-84椭球的几何常数:
长半轴:&6378137±
扁率:1 / 298.
地球引力常数(含大气层)GM=3986005
正常化二阶带谐系数C2.0=&-484.
地球自转角速度&w=&-11
主要几何和物理常数
短半径&b=&2&m
扁率&f=1/298.
第一偏心率平方&e2=&0.13
第二偏心率平方&e’2&=0.227
橢球正常重力位&U0=&7m2s-2
赤道正常重力&r0=&9.ms-2
5、三度带六度带高斯投影
选择投影的目的在于使所选投影的性质、特点适合于地图的用途,同时考虑地图在图廓范围内变形较小而且变形分布均匀。海域使用的地图多采用保角投影,因其能保持方位角度的正确。
我国的基本比例尺地形图(1:5千,1:1万,1:2.5万,1:5万,1:10万,1:25万,1:50万,1:100万)中,大于等于50万的均采用高斯-克吕格投影(Gauss-Kruger),这是一个等角横切椭圆柱投影,又叫横轴墨卡托投影(Transverse
Mercator);小于50万的地形图采用等角正轴割园锥投影,又叫兰勃特投影(Lambert Conformal
Conic);海上小于50万的地形图多用等角正轴圆柱投影,又叫墨卡托投影(Mercator)。一般应该采用与我国基本比例尺地形图系列一致的地图投影系统。
地图坐标系由大地基准面和地图投影确定,大地基准面是利用特定椭球体对特定地区地球表面的逼近,因此每个国家或地区均有各自的大地基准面,我们通常称谓的北京54坐标系、西安80坐标系实际上指的是我国的两个大地基准面。我国参照前苏联从1953年起采用克拉索夫斯基(Krassovsky)椭球体建立了我国的北京54坐标系,1978年采用国际大地测量协会推荐的IAG
75地球椭球体建立了我国新的大地坐标系--西安80坐标系,目前GPS定位所得出的结果都属于WGS84坐标系统,WGS84基准面采用WGS84椭球体,它是一地心坐标系,即以地心作为椭球体中心的坐标系。因此相对同一地理位置,不同的大地基准面,它们的经纬度坐标是有差异的。
采用的3个椭球体参数如下(源自“全球定位系统测量规范 GB/T ”):
Krassovsky
椭球体与大地基准面之间的关系是一对多的关系,也就是基准面是在椭球体基础上建立的,但椭球体不能代表基准面,同样的椭球体能定义不同的基准面,如前苏联的Pulkovo
1942、非洲索马里的Afgooye基准面都采用了Krassovsky椭球体,但它们的大地基准面显然是不同的。在目前的GIS商用软件中,大地基准面都通过当地基准面向WGS84的转换7参数来定义,即三个平移参数ΔX、ΔY、ΔZ表示两坐标原点的平移值;三个旋转参数εx、εy、εz表示当地坐标系旋转至与地心坐标系平行时,分别绕Xt、Yt、Zt的旋转角;最后是比例校正因子,用于调整椭球大小。北京54、西安80相对WGS84的转换参数至今没有公开,实际工作中可利用工作区内已知的北京54或西安80坐标控制点进行与WGS84坐标值的转换,在只有一个已知控制点的情况下(往往如此),用已知点的北京54与WGS84坐标之差作为平移参数,当工作区范围不大时,如青岛市,精度也足够了。
以(32°,121°)的高斯-克吕格投影结果为例,北京54及WGS84基准面,两者投影结果在南北方向差距约63米(见下表),对于几十或几百万的地图来说,这一误差无足轻重,但在工程地图中还是应该加以考虑的。&&&&
输入坐标(度)
北京54 高斯投影(米)
高斯投影(米)
纬度值(X)
经度值(Y)
高斯-克吕格投影
(1)高斯-克吕格投影性质
高斯-克吕格(Gauss-Kruger)投影简称“高斯投影”,又名"等角横切椭圆柱投影”,地球椭球面和平面间正形投影的一种。德国数学家、物理学家、天文学家高斯(Carl
FriedrichGauss,1777一 1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(Johannes
Kruger,)于
1912年对投影公式加以补充,故名。该投影按照投影带中央子午线投影为直线且长度不变和赤道投影为直线的条件,确定函数的形式,从而得到高斯一克吕格投影公式。投影后,除中央子午线和赤道为直线外,其他子午线均为对称于中央子午线的曲线。设想用一个椭圆柱横切于椭球面上投影带的中央子午线,按上述投影条件,将中央子午线两侧一定经差范围内的椭球面正形投影于椭圆柱面。将椭圆柱面沿过南北极的母线剪开展平,即为高斯投影平面。取中央子午线与赤道交点的投影为原点,中央子午线的投影为纵坐标x轴,赤道的投影为横坐标y轴,构成高斯克吕格平面直角坐标系。
高斯-克吕格投影在长度和面积上变形很小,中央经线无变形,自中央经线向投影带边缘,变形逐渐增加,变形最大之处在投影带内赤道的两端。由于其投影精度高,变形小,而且计算简便(各投影带坐标一致,只要算出一个带的数据,其他各带都能应用),因此在大比例尺地形图中应用,可以满足军事上各种需要,能在图上进行精确的量测计算。
(2)高斯-克吕格投影分带
按一定经差将地球椭球面划分成若干投影带,这是高斯投影中限制长度变形的最有效方法。分带时既要控制长度变形使其不大于测图误差,又要使带数不致过多以减少换带计算工作,据此原则将地球椭球面沿子午线划分成经差相等的瓜瓣形地带,以便分带投影。通常按经差6度或3度分为六度带或三度带。六度带自0度子午线起每隔经差6度自西向东分带,带号依次编为第
1、2…60带。三度带是在六度带的基础上分成的,它的中央子午线与六度带的中央子午线和分带子午线重合,即自
1.5度子午线起每隔经差3度自西向东分带,带号依次编为三度带第 1、2…120带。我国的经度范围西起
73°东至135°,可分成六度带十一个,各带中央经线依次为75°、81°、87°、……、117°、123°、129°、135°,或三度带二十二个。六度带可用于中小比例尺(如
1:250000)测图,三度带可用于大比例尺(如 1:10000)测图,城建坐标多采用三度带的高斯投影。
(3)高斯-克吕格投影坐标
高斯- 克吕格投影是按分带方法各自进行投影,故各带坐标成独立系统。以中央经线投影为纵轴(x),
赤道投影为横轴(y),两轴交点即为各带的坐标原点。纵坐标以赤道为零起算,赤道以北为正,以南为负。我国位于北半球,纵坐标均为正值。横坐标如以中央经线为零起算,中央经线以东为正,以西为负,横坐标出现负值,使用不便,故规定将坐标纵轴西移500公里当作起始轴,凡是带内的横坐标值均加
500公里。由于高斯-克吕格投影每一个投影带的坐标都是对本带坐标原点的相对值,所以各带的坐标完全相同,为了区别某一坐标系统属于哪一带,在横轴坐标前加上带号,如(655933m),其中21即为带号。&&&&
(4)高斯-克吕格投影与UTM投影
某些国外的软件如ARC/INFO或国外仪器的配套软件如多波束的数据处理软件等,往往不支持高斯-克吕格投影,但支持UTM投影,因此常有把UTM投影坐标当作高斯-克吕格投影坐标提交的现象。
UTM投影全称为“通用横轴墨卡托投影”,是等角横轴割圆柱投影(高斯-克吕格为等角横轴切圆柱投影),圆柱割地球于南纬80度、北纬84度两条等高圈,该投影将地球划分为60个投影带,每带经差为6度,已被许多国家作为地形图的数学基础。UTM投影与高斯投影的主要区别在南北格网线的比例系数上,高斯-克吕格投影的中央经线投影后保持长度不变,即比例系数为1,而UTM投影的比例系数为0.9996。UTM投影沿每一条南北格网线比例系数为常数,在东西方向则为变数,中心格网线的比例系数为0.9996,在南北纵行最宽部分的边缘上距离中心点大约
363公里,比例系数为 1.00158。
高斯-克吕格投影与UTM投影可近似采用 Xutm=0.9996 * X高斯,Yutm=0.9996 *
Y高斯进行坐标转换。以下举例说明(基准面为WGS84):
输入坐标(度)
高斯投影(米)
UTM投影(米)
Xutm=0.9996 * X高斯, Yutm=0.9996 *
纬度值(X)
*0.9996 ≈
经度值(Y)
注:坐标点(32,121)位于高斯投影的21带,高斯投影Y值中前两位“21”为带号;坐标点(32,121)位于UTM投影的51带,上表中UTM投影的Y值没加带号。因坐标纵轴西移了500000米,转换时必须将Y值减去500000乘上比例因子后再加500000。
单点转换步骤如下:&&&&
(1)选择是高斯正转换还是反转换,缺省为经纬度转换到高斯投影坐标,投影坐标单位为米。
(2)选择大地基准面,缺省北京54,如果是GPS定位数据别忘了切换为WGS84。
(3)选择分带,3度或6度, 缺省为6度。
(4)输入中央经度,20带(114°E~120°E)中央经度为117度,21带(120°E~126°E)中央经度为123度。
如正向投影,选择经纬度输入数据格式,有三个选项,缺省为十进制度格式。具体输入方式如下例:
原始纬度值
原始经度值
输入纬度值
输入经度值
35.445901°
122.997344°
122.997344
35°26.7541&
122°59.8406&
35°26&45.245&P
122°59&50.438&P
(6)正投影按选定格式在“输入”栏输入经纬度值,反投影输入以米为单位的X、Y坐标值。
(7)单击“单点转换”按钮。
(8)在“输出”栏查看计算结果。&&&&&&&&&&
批量转换步骤如下:&&&&
(1)准备好需要转换的输入数据文件,要求是文本文件,分两列,第一列纬度值或纵向坐标值,第二列经度值或横向坐标值,两列之间用空格分开。正向投影时,纬度值及经度值格式可以有三种选择,缺省当作十进制度处理;反向投影时,纵向及横向坐标值必须以米为单位。
下例为度分秒格式(WGS84)的6°带正投影输入数据文件 testdata.txt
(2)选择是高斯正转换还是反转换,缺省为经纬度转换到高斯投影坐标,投影坐标单位为米。
(3)选择大地基准面,缺省北京54,如果是GPS定位数据别忘了切换为WGS84。
(4)选择分带,3度或6度, 缺省为6度。
(5)输入中央经度,20带(114°E~120°E)中央经度为117度,21带(120°E~126°E)中央经度为123度。
(6)如正向投影,选择输入数据文件中的经纬度输入数据格式,有三个选项,缺省为十进制度格式。
(7)单击“批量转换”按钮。弹出打开文件对话框,输入你的数据文件名。
(8)输入转换结果文件名,单击“保存”后,程序开始进行计算。
(9)打开输出文件查看计算结果,结果分五列,第一序号,第二列输入纬度值或纵向坐标值,第三列输入经度值或横向坐标值,第四列转换后纬度值或纵向坐标值,第五列转换后经度值或横向坐标值。&&&&
下例为度分秒格式(WGS84)的6°带正投影转换结果数据文件
result.txt&&
3708205&&&&&&
转换软件请联系淘宝店铺:
非常便宜的一个店铺!可以进行交流!
已投稿到:
以上网友发言只代表其个人观点,不代表新浪网的观点或立场。GPS坐标转换方法的精度对比分析_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
GPS坐标转换方法的精度对比分析
上传于||暂无简介
阅读已结束,如果下载本文需要使用
想免费下载本文?
你可能喜欢用gps如何定方向_百度知道
用gps如何定方向
用gps何定向
提问者采纳
GPS 文全称全球卫星定位系统简单说靠组卫星发送电磁波至GPS接收机GPS接收机根据刻卫星电文数据计算自坐标(x1y1z1)再刻继续获坐标(x2y2z2)……断记录坐标根据数计算亮点确定条直线析运向
其他类似问题
为您推荐:
其他1条回答
手GPS发送信号卫星卫星根据所位置确定经纬度
gps的相关知识
等待您来回答
下载知道APP
随时随地咨询
出门在外也不愁

我要回帖

更多关于 求一个正整数的位数 的文章

 

随机推荐