怎么计算ad820的lm358放大倍数计算?

2013年全国大学生电子设计竞赛论文14
上亿文档资料,等你来发现
2013年全国大学生电子设计竞赛论文14
2013年全国大学生电子设计竞赛;射频宽带放大器(D题);日;摘要;随着信息化时代的到来,对于高频宽带放大器的要求越;关键词:高频宽带放大器、单片机、STC89C52;Abstract;Withthearrivaloftheinfor;Keywords:Highbandwidtham;目录;1系统方案...................;1
2013年全国大学生电子设计竞赛 射频宽带放大器(D题) 日 I 摘
要随着信息化时代的到来,对于高频宽带放大器的要求越来越高。本设计采用STC89c52为控制核心,两片可控增益放大器VCA822为主放大器,后级AD8009为构成了放大主电路,实现了宽带可控增益的射频放大器。VCA822对前级输入信号进行程控放大,后级AD8009射随输出以达到功率要求,并且进行了阻抗变换。单片机和按键,显示模块实现数控增益,人机界面好。为降低纹波干扰,提高信噪比,设计了高精度低纹波线性电源给放大电路和单片机供电。整个系统稳定性强,干扰能力强。本系统制作简单,经测试能达到题目要求。关键词:高频宽带放大器、单片机、STC89C52、OP820、AD8009、VCA822 AbstractWith the arrival of the information age, the high-frequency broadband amplifiers have become increasingly demanding. This design uses STC89c52 as the control center, two controllable gain amplifier VCA822 main amplifier, after the class AD8009 as constituting an enlarged main circuit to achieve a controllable gain broadband RF amplifiers. VCA822 on pre-programmed input signal amplification, after AD8009 emitter follower output stage to achieve the power requirements, and conducted a impedance transformation. SCM and buttons, the display module digitally controlled gain, man-machine interface. To reduce the ripple interference and improve signal to noise ratio, the design of high precision and low ripple linear power supply to the amplifier circuit and the microcontroller. The entire system stability, interference ability. This system making simple, have been tested to meet the subject requirements.Keywords:
High bandwidth amplifier, microcontroller, STC89C52, AD8009, VCA822
录 1系统方案 ........................................................................................................................................ 11.1 可控增益方案的论证与选择 ............................................................................................ 11.2 电源系统的论证与选择 .................................................................................................... 11.3 控制系统的论证与选择 .................................................................................................... 12系统理论分析与计算 .................................................................................................................... 22.1
可控增益放大倍数的分析 .............................................................................................. 22.1.1 VCA822 ................................................................................................................... 22.2
固定增益放大倍数的计算 .............................................................................................. 22.2.1 AD8009 .................................................................................................................... 23电路与程序设计 ............................................................................................................................ 33.1电路的设计 ......................................................................................................................... 33.1.1系统总体框图 .......................................................................................................... 33.1.2 前级放大子系统框图与电路原理图 ..................................................................... 43.1.3 可控增益子系统框图与电路原理图 ..................................................................... 53.1.4后级放大子系统框图与电路原理图 ...................................................................... 53.1.5控制系统框图与电路原理图 .................................................................................. 63.1.6电源 .......................................................................................................................... 73.2程序的设计 ......................................................................................................................... 73.2.1程序功能描述与设计思路 ...................................................................................... 73.2.2程序流程图 .............................................................................................................. 84测试方案与测试结果 .................................................................................................................... 84.1测试方案 ............................................................................................................................. 84.2 测试条件与仪器 ................................................................................................................ 84.3 测试结果及分析 ................................................................................................................ 94.3.1测试结果(数据) ....................................................................................................... 94.3.2测试分析与结论 ...................................................................................................... 95总结心得 ........................................................................................................................................ 96参考文献 ........................................................................................................................................ 9附录1:电路原理图 ...................................................................................................................... 10附录2:源程序 .............................................................................................................................. 12
射频宽带放大器(D题)【本科组】1系统方案本系统主要由可控增益模块、电源模块、单片机模块组成,下面分别论证这几个模块的选择。1.1可控增益部分的论证与选择方案一:由晶体管和运算放大器实现,为了满足增益大于60db要求,可以采用多级放大电路实现。此方案需要大量采用分立元件,系统设计复杂,调试困难,尤其是增益的定量调节很难。此外,犹豫采用分立元件以及多级放大,稳定性差,容易自激震荡。 方案二:使用多级运算放大器+电位器实现。选择高带宽高增益的运算放大器如AD8009,AD820等级联使用,再通过电位器手动调节其增益,实现可控增益。方案优点在于可选器件较多,带宽,放大倍数容易满足,缺点是无法实现程控,而且由于电位器引入的噪声非常容易自激,稳定性较差。方案三:采用前后级固定增益,中间两级程控增益的方式。前级对小信号做初步处理放大,并进行阻抗变换,中间两级用工作带宽大于130M的程控放大器VCA822进行放大或者衰减,后级再用一级固定做增益,最后再接一级射随放大,实现阻抗变换,提高了带载能力。此方案中,每一级的增益都不大,保证了工作带宽,系统稳定性好,但是程控增益不好调节。综合以上三种方案,选择方案三。1.2 电源模块的论证与选择方案:为了满足小信号放大,使输出波形不失真,该电源对纹波要求较高,并且为了给放大器供正负电压,我们采用LM317和LM337芯片降压到正负12伏,然后通过LT1117系列降压到正负5伏,此方案能很好的满足我们对电源低纹波的要求。跟其它常用稳压电源的不同显而易见,优势正是在此,所以我们选择此方案。1.3 控制系统的论证与选择方案:本题只需要提供一个控制信号给程控放大器,对运算要求不高,我们使用了成熟的stc89c52 这款单片机,来提供控制和显示。
2系统理论分析与计算2.1
可控增益放大的分析2.1.1 VCA822增益放大计算
用VCA822做的增益放大器,我们采用它的典型电路,根据它的计算公式来控制增益,以下为它的相关资料。 2.2 固定放大增益分析2.2.1为了符合题目要求的宽带,我们采用AD8009来做固定增益模块。根据它的标准电路来搭建符合我们要求的电路,使它放大相应的倍数。包含各类专业文献、高等教育、专业论文、外语学习资料、行业资料、文学作品欣赏、幼儿教育、小学教育、中学教育、各类资格考试、2013年全国大学生电子设计竞赛论文14等内容。 
 2013年全国大学生电子设计竞赛论文模板_电子/电路_工程科技_专业资料。模板文件此处贴密封纸,然后掀起并折向报告背面,最后用胶水在后面粘 牢。 2013 年全国大学生电...  2013年全国大学生电子设计竞赛论文_营销/活动策划_计划/解决方案_应用文书。2013 年全国大学生电子设计竞赛 简易照明线路探测仪设计报告(K 题) 【高职组】 【摘要...  2013年全国大学生电子设计大赛论文_营销/活动策划_计划/解决方案_应用文书。2013 年全国大学生电子设计大赛 2013 年全国大学生电子设计大赛论文 【高职高专组】 简易...  2013年全国大学生电子设计竞赛A题论文_学科竞赛_高中教育_教育专区 暂无评价|0人阅读|0次下载|举报文档 2013年全国大学生电子设计竞赛A题论文_学科竞赛_高中教育_...  2013 年全国大学生电子设计竞赛 射频宽带放大器(D 题) 【本科组】 2013 年 9 月 7 日 摘要: 本设计利用可变增益放大器 AD8367 来提高增益和控制 AGC 范围,...  重要-2013年全国大学生电子设计竞赛论文要求_营销/活动策划_计划/解决方案_应用文书。技术总结报告要求封面:格式见下图 摘要:简述本题目的概况,完成的任务,达到的技术...  2013 年全国大学生电子设计竞赛 XXXXXXXXXXXXX(X 题) 【XX 组】 2013 年 9 月 6 日 摘 要 10.竞赛作品上交及包装密封要求 日晚20:00竞赛结束...  2013 年全国大学生电子设计竞赛 红外光通信装置(F 题) 2013 年 9 月 7 日 摘 要 本设计利用已学电路知识,将电路分成红外发射模块、红外接收模块、环境 温度...  2013年全国大学生电子设计竞赛论文模板_解决方案_计划/解决方案_应用文书。此处贴密封纸,然后掀起并折向报告背面,最后用胶水在后面粘 牢。 2013 年全国大学生电子设...有哪位大神能帮我看看这个OP07的两级放大 到底是怎么工作的?放大倍数怎么计算啊 ?_百度知道
有哪位大神能帮我看看这个OP07的两级放大 到底是怎么工作的?放大倍数怎么计算啊 ?
hiphotos://e.com/zhidao/wh%3D450%2C600/sign=6be8fcff1e4c510fae91ea1eb90f7d5bea41cb451f./zhidao/wh%3D600%2C800/sign=52a57c64fbba72dbcf7d5bea41cb451f.baidu.baidu.jpg" target="_blank" title="点击查看大图" class="ikqb_img_alink"><img class="ikqb_img" src="/zhidao/pic/item/4b90f7d5bea41cb451f.hiphotos.jpg" esrc="http<a href="http://e://e
提问者采纳
这个就是所谓的仪表用差动放大电路,百度下,会找到讲解的
提问者评价
来自团队:
其他类似问题
为您推荐:
op07的相关知识
等待您来回答
下载知道APP
随时随地咨询
出门在外也不愁AD820 制造商:Analog Devices 功能描述:
晶体管资料
1Single-Supply, Rail-to-Rail, Low Power FET-Input Op AmpADAnalog Devices
2Single Supply, Rail to Rail Low Power FET-Input Op AmpADAnalog Devices
3SILICON DUAL DIFFERNTIAL AMPLIFIER TRANSISTORSETC1List of Unclassifed Manufacturers
4Single-Supply, Rail-to-Rail, Low Power FET-Input Op AmpADAnalog Devices
5High Common-Mode Voltage, Single-Supply Difference AmplifierADAnalog Devices
6High Common-Mode Voltage, Single Supply Difference AmplifierADAnalog Devices
7High Common-Mode Voltage, Single-Supply Difference AmplifierADAnalog Devices
8High Common-Mode Voltage, Single Supply Difference AmplifierADAnalog Devices
9High Common-Mode Voltage, Single Supply Difference AmplifierADAnalog Devices
10High Common-Mode Voltage, Single-Supply Difference AmplifierADAnalog Devices
11High Common-Mode Voltage, Single-Supply Difference AmplifierADAnalog Devices
12High Common-Mode Voltage, Single-Supply Difference AmplifierADAnalog Devices
13High Common-Mode Voltage, Single-Supply Difference AmplifierADAnalog Devices
14High Common-Mode Voltage, Single-Supply Difference AmplifierADAnalog Devices
15High Common-Mode Voltage, Single-Supply Difference AmplifierADAnalog Devices
16Dual-Channel Audio Difference AmplifierADAnalog Devices
17Precision, Dual-Channel Difference AmplifierADAnalog Devices
18High Common-Mode Voltage, Single-Supply Difference AmplifierADAnalog Devices
19High Common-Mode Voltage, Single-Supply Difference AmplifierADAnalog Devices
20High Common-Mode Voltage, Single-Supply Difference AmplifierADAnalog Devices
21High Common-Mode Voltage, Single-Supply Difference AmplifierADAnalog Devices
22High Common-Mode Voltage, Single-Supply Difference AmplifierADAnalog Devices
23High Common-Mode Voltage, Single-Supply Difference AmplifierADAnalog Devices
24High Common-Mode Voltage, Single-Supply Difference AmplifierADAnalog Devices
25High Common-Mode Voltage, Single-Supply Difference AmplifierADAnalog Devices
26High Common-Mode Voltage, Single-Supply Difference AmplifierADAnalog Devices
27High Common-Mode Voltage, Single-Supply Difference AmplifierADAnalog Devices
28High Common-Mode Voltage, Single-Supply Difference AmplifierADAnalog Devices
29High Common-Mode Voltage, Single-Supply Difference AmplifierADAnalog Devices
30High Common-Mode Voltage, Single-Supply Difference AmplifierADAnalog Devices
31High Common-Mode Voltage, Single-Supply Difference AmplifierADAnalog Devices
32High Common-Mode Voltage, Single-Supply Difference AmplifierADAnalog Devices
33High Common-Mode Voltage, Single-Supply Difference AmplifierADAnalog Devices
34Precision, Dual-Channel Difference AmplifierADAnalog Devices
35Dual-Channel Audio Difference AmplifierADAnalog Devices
36High Common-Mode Voltage, Single-Supply Difference AmplifierADAnalog Devices
37High Common-Mode Voltage, Single-Supply Difference AmplifierADAnalog Devices
38High Common-Mode Voltage, Single-Supply Difference AmplifierADAnalog Devices
39High Common-Mode Voltage, Single-Supply Difference AmplifierADAnalog Devices
40High Common-Mode Voltage, Single-Supply Difference AmplifierADAnalog Devices
41High Common-Mode Voltage, Single-Supply Difference AmplifierADAnalog Devices
42High Common-Mode Voltage, Single-Supply Difference AmplifierADAnalog Devices
43High Common-Mode Voltage, Single-Supply Difference AmplifierADAnalog Devices
44Single-Supply 42 V System Difference AmplifierADAnalog Devices
45Dual-Channel Audio Difference AmplifierADAnalog Devices
46Precision, Dual-Channel Difference AmplifierADAnalog Devices
47Single-Supply 42 V System Difference AmplifierADAnalog Devices
48Single-Supply 42 V System Difference AmplifierADAnalog Devices
49Single-Supply 42 V System Difference AmplifierADAnalog Devices
50Single-Supply 42 V System Difference AmplifierADAnalog Devices
51Single-Supply 42 V System Difference AmplifierADAnalog Devices
52Precision, Dual-Channel Difference AmplifierADAnalog Devices
53Dual-Channel Audio Difference AmplifierADAnalog Devices
54Single-Supply, 42 V System Difference AmplifierADAnalog Devices
55Single-Supply, 42 V System Difference AmplifierADAnalog Devices
56Single-Supply 42 V System Difference AmplifierADAnalog Devices
57Single-Supply, 42 V System Difference AmplifierADAnalog Devices
58Single-Supply 42 V System Difference AmplifierADAnalog Devices
59Single-Supply 42 V System Difference AmplifierADAnalog Devices
60Single-Supply 42 V System Difference AmplifierADAnalog Devices
61Single-Supply, 42 V System Difference AmplifierADAnalog Devices
62Single-Supply, 42 V System Difference AmplifierADAnalog Devices
63Single-Supply, 42 V System Difference AmplifierADAnalog Devices
64Zero-Drift, High Voltage, Bidirectional Difference AmplifierADAnalog Devices
65Zero-Drift, High Voltage, Bidirectional Difference AmplifierADAnalog Devices
66Zero-Drift, High Voltage, Bidirectional Difference AmplifierADAnalog Devices
67Zero-Drift, High Voltage, Bidirectional Difference AmplifierADAnalog Devices
68High Voltage, Precision Difference AmplifierADAnalog Devices
69High Voltage, Precision Difference AmplifierADAnalog Devices
70High Voltage, Precision Difference AmplifierADAnalog Devices
71High Voltage, Precision Difference AmplifierADAnalog Devices
72Single-Supply, Rail-to-Rail, Low Power FET-Input Op AmpADAnalog Devices
73Single Supply, Rail to Rail Low Power FET-Input Op AmpADAnalog Devices
74Single Supply, Rail to Rail Low Power FET-Input Op AmpADAnalog Devices
75Single-Supply, Rail-to-Rail, Low Power FET-Input Op AmpADAnalog Devices
76Single-Supply, Rail-to-Rail, Low Power FET-Input Op AmpADAnalog Devices
77Single Supply, Rail to Rail Low Power FET-Input Op AmpADAnalog Devices
78Single Supply, Rail to Rail Low Power FET-Input Op AmpADAnalog Devices
79Single-Supply, Rail-to-Rail, Low Power FET-Input Op AmpADAnalog Devices
80Single-Supply, Rail-to-Rail, Low Power FET-Input Op AmpADAnalog Devices
81Single-Supply, Rail-to-Rail, Low Power FET-Input Op AmpADAnalog Devices
82Single-Supply, Rail-to-Rail, Low Power FET-Input Op AmpADAnalog Devices
83Single-Supply, Rail-to-Rail, Low Power FET-Input Op AmpADAnalog Devices
84Single Supply, Rail to Rail Low Power FET-Input Op AmpADAnalog Devices
85Single Supply, Rail to Rail Low Power FET-Input Op AmpADAnalog Devices
86Single-Supply, Rail-to-Rail, Low Power FET-Input Op AmpADAnalog Devices
87Single-Supply, Rail-to-Rail, Low Power FET-Input Op AmpADAnalog Devices
88Single-Supply, Rail-to-Rail, Low Power FET-Input Op AmpADAnalog Devices
89Single-Supply, Rail-to-Rail, Low Power FET-Input Op AmpADAnalog Devices
90Single-Supply, Rail-to-Rail, Low Power FET-Input Op AmpADAnalog Devices
91Single-Supply, Rail-to-Rail, Low Power FET-Input Op AmpADAnalog DevicesAD820A (AD [运算放大器选型指南]) PDF技术资料下载
AD820A 供应信息 IC Datasheet 数据表 (11/58 页)
按型号查询:
运算放大器选型指南
[Operational Amplifiers Selection Guide]
&&AD820APDF文件:
鼠标右键选目标另存为
不需安装PDF阅读软件
需安装PDF阅读软件
描述:&&运算放大器选型指南[Operational Amplifiers Selection Guide]文件大小:&&6724 KPDF页数:
&&58 页联系供应商:&& 品牌Logo:
&&&&AD [ ANALOG DEVICES ]
超低失真,超低噪声运算放大器该(单通道)和(双)是非常低噪音,低失真运算放大器,非常适合用作前置放大器。 1.1内华达州/ √Hz的低噪声和-120 dB的(或更好) ,在音频带宽低谐波失真给予必要的音频前置放大器的装置的动态范围宽,医疗和仪器仪表应用。 14 V / μs到10MHz的增益带宽的出色的压摆率使它们非常适合于医疗应用。低失真和快速建立时间使它们非常适用于高分辨率数据转换器的缓冲。特点o低噪声: 1.1内华达州/ √Hz的在1 kHzo低失真: -120 dB的THD @ 1千赫兹o带宽:10兆赫??Supply电流4.8毫安/放大器的典型o低失调电压: 10uV典型o CMRR :120分贝应用o专业音频前置放大器o ATE /精度测试人员o成像系统o医学/生理学测量o精密数据转换0.1110100频率(Hz)1k电压噪声密度(NV / HZ)100AD85995V VSY15V101电压噪声密度与频率。双通道,低功耗,低噪声,精密放大器该是一款双通道,精密,轨到轨输出运算放大器,只有350的低电源电流uA最高温度和电源电压。它还提供超低失调,漂移和电压噪声与极低的输入偏置电流在整个工作温度范围内。这是非常适合的应用场合大误差源是不能容许的。特点? =非常低失调电压: 125uA最大??Supply电流: 215μA /放大器典型\u003c\u003c输入偏置电流: 200 pA的最大o低输入失调电压漂移: 1.2μV/°C最大? =非常低电压噪声: 11内华达州/ √Hz的应用o便携式精密仪器o激光二极管控制回路? ¤Medical仪器仪表o应变计放大器■热电偶放大器器R92.87kR1023.2kC5680nFC65.6 FVINR12.67kR26.49kC18.2 FR31kC21.8 FU1 = AD8622C41.8 F+VSYR52.87kR66.04kC38.2 FR71k1/2U1–VSYV1+VSY1/2U1–VSYR8V2R49.09kA节B节9.09kU2 = ADA4062-2C810 F+VSYR114.75kR1229.4kC7180nFU2–VSY1/2V3+VSYU2–VSY1/2VOUTC节D节电路笔记CN - 0127 , 8极点有源低通滤波器优化的精密,低噪声,以及高增益参考电路,18|运算放大器选择指南

我要回帖

更多关于 运放放大倍数计算 的文章

 

随机推荐