已知m一阶导数连续存在且连续,那m 1导数存在吗

MMBA数学辅导:极限、连续、导数、积分的概念
来源:21CN教育考试 更新时间:
极限的概念是整个微积分的基础,需要深刻地理解,由极限的概念才能引出连续、导数、积分等概念。极限的概念首先是从数列的极限引出的。对于任意小的正数E,如果存在自然数M,使所有N》M时,|A(N)-A|都小于E,则数列的极限为A。极限不是相等,而是无限接近。而函数的极限是指在X0的一个临域内(不包含X0这一点),如果对于任意小的正数E,都存在正数Q,使所有(X0-Q,X0 Q)内的点,都满足|F(X)-A|《E,则F(X)在X0点的极限为A。很多求极限的题目都可以用极限的定义直接求出。   例如F(X)=(X^2-3X 2)/(X-2),&X=2不在函数定义域内,但对于任何X不等于2,F(X)=X-1,因此在X无限接近2,但不等于2时,F(X)无限接近1,因此F(X)在2处的极限为1。&   连续的概念。如果函数在X0的极限存在,函数在X0有定义,而且极限值等于函数值,则称F(X)在X0点连续。以上的三个条件缺一不可。&   在上例中,F(X)在X=2时极限存在,但在X=2这一点没有定义,所以函数在X=2不连续;&   如果我们定义F(2)=1,补上“缺口”,则函数在X=2变成连续的;&   如果我们定义F(2)=3,虽然函数在X=2时,极限值和函数值都存在,但不相等,那么函数在X=2还是不连续。&   由连续又引出了左极限、右极限和左连续、右连续的概念。函数值等于左极限为左连续,函数值等于右极限为右连续。如果函数在X0点左右极限都存在,且都等于函数值,则函数在X=X0时连续。这个定义是解决分段函数连续问题的最重要的、几乎是唯一的方法。&   如果函数在某个区间内每一点都连续,在区间的左右端点分别左右连续(对闭区间而言),则称函数在这个区间上连续。&   导数的概念。导数是函数的变化率,直观地看是指切线的斜率。略有不同的是,切线可以平行于Y轴,此时斜率为无穷大,因此导数不存在,但切线存在。&   导数的求法也是一个极限的求法。对于X=X0,在X0附近另找一点X1,求X0与X1连线的斜率。当X1无限靠近X0,但不与X0重合时,这两点连线的斜率,就是F(X)在X=X0处的导数。关于导数的题目多数可用导数的定义直接解决。教科书中给出了所有基本函数的导数公式,如果自己能用导数的定义都推导一遍,理解和记忆会更深刻。其中对数的导数公式推导中用到了重要极限:limx--&0&(1 x)^(1/x)=e。&   导数同样分为左导数和右导数。导数存在的条件是:F(X)在X=X0连续,左右导数存在且相等。这个定义是解决分段函数可导问题的最重要的、几乎是唯一的方法。&   如果函数在某个区间内每一点都可导,在区间的左右端点分别左右导数存在(对闭区间而言),则称函数在这个区间上可导。   复合函数的导数,例如f[u(x)],是集合A中的自变量x,产生微小变化dx,引起集合B中对应数u的微小变化du,u的变化又引起集合C中的对应数f(u)的变化,则复合函数的导函数f’[u(x)]=df(u)/dx=df(u)/du&*&du/dx=f’(u)*u‘(x)&   导数在生活中的例子最常见的是距离与时间的关系。物体在极其微小的时间内,移动了极其微小的距离,二者的比值就是物体在这一刻的速度。对于自由落体运动,下落距离S=1/2gt^2,则物体在时间t0的速度为V(t0)=[S(t0 a)-S(t0)]/a,&当a趋近于0时的值,等于gt0;&而速度随时间的增加而增加,变化的比率g称为加速度。加速度是距离对时间的二阶导数。&   从直观上看,可导意味着光滑的、没有尖角,因为在尖角处左右导数不相等。有笑话说一位教授对学生抱怨道:“这饭馆让人怎么吃饭?你看这碗口,处处不可导!”&   积分的概念。从面积上理解,积分就是积少成多,把无限个面积趋近于0的线条,累积在一起,就成为大于0的面积。我们可以把一块图形分割为狭长的长方形(长方形的高度都取函数在左端或右端的函数值),分别计算各个长方形的面积再加总,可近似地得出图形的面积。当我们把长方形的宽度设定得越来越窄,计算结果就越来越精确,与图形实际面积的差距越来越小。如果函数的积分存在,则长方形宽度趋近于0时,求出的长方形面积总和的极限存在,且等于图形的实际面积。这里又是一个极限的概念。   如果函数存在不连续的点,但在该点左右极限都存在,函数仍是可积的。只要间断点的个数是有限的,则它们代表的线条面积总和为0,不影响计算结果。&   在广义积分中,允许函数在无限区间内积分,或某些点的函数值趋向无穷大,只要积分的极限存在,函数都是可积的。&   严格地说,我们只会计算长方形的面积。从我们介绍的积分的求法看,我们实际上是把求面积化为了数列求和的问题,即求数列的前N项和S(N),在N趋近于无穷大时的极限。很多时候,求积分和求无限数列的和是可以相互转换的。当我们深刻地理解了积分的定义和熟练地掌握了积分公式之后,我们同样可用它来解决相当棘手的数列求和问题。&   例如:求LIM&Nà正无穷大时,1/N*[1 1/(1 1/N) 1/(1 2/N) 。。。 1/(1 (N-1)/N) 1/2]的值。&   看似无从下手,可当我们把它转化为一连串的小长方形的面积之后,不禁会恍然大悟:这不是F(X)=1/X在[1,2]上的积分吗?从而轻松得出结果为ln2。&   除了基本的积分公式外,换元法和分步法是常用的积分方法。换元积分法的实质是把原函数化为形式简单的复合函数;分步积分法的要领是:在∫udv=uv-∫vdu中,函数u微分后应该变简单(比如次数降低),而函数v积分后不会变得更复杂。
相关阅读 考试答疑微信:theastudy 上传我的文档
 下载
 收藏
该文档贡献者很忙,什么也没留下。
 下载此文档
正在努力加载中...
下载积分:1000
内容提示:高阶导数
文档格式:PPT|
浏览次数:76|
上传日期: 03:52:49|
文档星级:
该用户还上传了这些文档
官方公共微信当前位置:
>>>已知f′(x)是f(x)的导函数,f(x)=ln(x+1)+m﹣2f′(1),m∈R,且函数f..
已知f′(x)是f(x)的导函数,f(x)=ln(x+1)+m﹣2f′(1),m∈R,且函数f(x)的图象过点(0,-2).(1)求函数y=f(x)的表达式;(2)设,若g(x)>0在定义域内恒成立,求实数a的取值范围.
题型:解答题难度:偏难来源:北京期中题
解:(1)由已知得,∴又f(0)=﹣2∴∴m=﹣1,∴f(x)=ln(x+1)﹣2.(2)由(1)得定义域为(﹣1,+∞),∴.∵a≠0令g'(x)=0得①当a>0时,且在区间上g′(x)>0,在区上g′(x)<0.∴处取得极小值,也是最小值.∴由a+a(﹣lna﹣2)>0得.∴.②当a<0时,在区间(﹣1,+∞)上,g′(x)<0恒成立.g(x)在区间(﹣1,+∞)上单调递减,没有最值综上得,a的取值范围是.
马上分享给同学
据魔方格专家权威分析,试题“已知f′(x)是f(x)的导函数,f(x)=ln(x+1)+m﹣2f′(1),m∈R,且函数f..”主要考查你对&&函数的最值与导数的关系,导数的运算&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
函数的最值与导数的关系导数的运算
函数的最大值和最小值:
在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值,分别对应该区间上的函数值的最大值和最小值。
&利用导数求函数的最值步骤:
(1)求f(x)在(a,b)内的极值; (2)将f(x)的各极值与f(a)、f(b)比较得出函数f(x)在[a,b]上的最值。
&用导数的方法求最值特别提醒:
①求函数的最大值和最小值需先确定函数的极大值和极小值,因此,函数极大值和极小值的判别是关键,极值与最值的关系:极大(小)值不一定是最大(小)值,最大(小)值也不一定是极大(小)值;②如果仅仅是求最值,还可将上面的办法化简,因为函数fx在[a,b]内的全部极值,只能在f(x)的导数为零的点或导数不存在的点取得(下称这两种点为可疑点),所以只需要将这些可疑点求出来,然后算出f(x)在可疑点处的函数值,与区间端点处的函数值进行比较,就能求得最大值和最小值;③当f(x)为连续函数且在[a,b]上单调时,其最大值、最小值在端点处取得。&生活中的优化问题:
生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题,解决优化问题的方法很多,如:判别式法,均值不等式法,线性规划及利用二次函数的性质等,不少优化问题可以化为求函数最值问题.导数方法是解这类问题的有效工具.
用导数解决生活中的优化问题应当注意的问题:
(1)在求实际问题的最大(小)值时,一定要考虑实际问题的意义,不符合实际意义的值应舍去;(2)在实际问题中,有时会遇到函数在区间内只有一个点使f'(x)=0的情形.如果函数在这点有极大(小)值,那么不与端点比较,也可以知道这就是最大(小)值;(3)在解决实际优化问题时,不仅要注意将问题中涉及的变量关系用函数关系表示,还应确定出函数关系式中自变量的定义区间.
利用导数解决生活中的优化问题:
&(1)运用导数解决实际问题,关键是要建立恰当的数学模型(函数关系、方程或不等式),运用导数的知识与方法去解决,主要是转化为求最值问题,最后反馈到实际问题之中.&(2)利用导数求f(x)在闭区间[a,b]上的最大值和最小值的步骤,&&①求函数y =f(x)在(a,b)上的极值;& ②将函数y=f(x)的各极值与端点处的函数值f(a)、f(b)比较,其中最大的一个是最大值,最小的一个是最小值.&&(3)定义在开区间(a,b)上的可导函数,如果只有一个极值点,该极值点必为最值点.常见函数的导数:
(1)C′=0&;(2);(3);(4);(5);(6);(7);(8)
导数的四则运算:&
(1)和差:(2)积:(3)商:
复合函数的导数:
运算法则复合函数导数的运算法则为:复合函数的求导的方法和步骤:
(1)分清复合函数的复合关系,选好中间变量; (2)运用复合函数求导法则求复合函数的导数,注意分清每次是哪个变量对哪个变量求导数; (3)根据基本函数的导数公式及导数的运算法则求出各函数的导数,并把中间变量换成自变量的函数。求复合函数的导数一定要抓住“中间变量”这一关键环节,然后应用法则,由外向里一层层求导,注意不要漏层。&
发现相似题
与“已知f′(x)是f(x)的导函数,f(x)=ln(x+1)+m﹣2f′(1),m∈R,且函数f..”考查相似的试题有:
284238572306267250440427400827625495设f(x)在(-∞,+∞)上有界,而且又连续的二阶导数,证明:至少存在一点m, 使得f(m)的二阶导等于零.这是原题:
反证法:设没有一点二导为0,且由二导的连续性,则其二导数在R上同号,不妨设其二导一直>0.则选择任意一点(x0,y0)使得f'(x0)不等于0(这样的点一定可以找到,否则每一点都有一导为0,则每一点二导为0),过此点作直线y=f'(x0)*(x-x0)+y0,从而整个函数图象必在此直线上方(否则由拉格朗日定理可推导出有一点二导小于0,或者学过凸函数的性质的话直接得出).若f'(x0)>0,则f(x)趋于正无穷,当x趋于正无穷;若f'(x0)
为您推荐:
其他类似问题
很简单设这个函数为f(X)=AX^2+bx+c就做出来了
假设这样的点不存在,由于二阶导是连续的,故有二阶导恒正或恒负,不妨设为恒正。于是有一阶导严格单调递增,这样会导致f(x)无上界,与有界矛盾。故假设不成立,于是原命题成立。
扫描下载二维码

我要回帖

更多关于 二阶连续偏导数 的文章

 

随机推荐