自适应循环航空发动机热循环

航空发动机原理精编_图文_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
航空发动机原理精编
上传于||暂无简介
阅读已结束,如果下载本文需要使用0下载券
想免费下载更多文档?
下载文档到电脑,查找使用更方便
还剩24页未读,继续阅读
你可能喜欢活塞发动机_百度百科
活塞发动机
活塞发动机是发动机的一种,采用传统四行程往复式活塞引擎,引擎转两周,各汽缸才完成一次进气、压缩、点火与排气过程引擎。至于转子引擎,转子每转一周便有三次进气、压缩、点火与排气。
活塞发动机结构特点
转子跟转子引擎输出轴的齿轮比例为三比一,故此转子引擎只需转一周,各转子便有一次进气、压缩、点火与排气过程,相当于往复式引擎运转两周,因此具有小排气量就能成就高动力输出的优点(但相对的,同样排气量之下转子引擎也较往复引擎的油耗高出许多)。另外,由于转子引擎的轴向运转特性,它不需要精密的曲轴平衡就可以达到非常高的运转转速。
活塞发动机工作原理
最常用的是利用汽油或者柴油燃料产生压力的。通常都不止一个活塞,每个都在气缸内,燃料-空气混合物被注入其内,然后被点燃。 热气膨胀,推动活塞向后运动。活塞的这种直线运动通过连杆和曲轴转换成圆周运动。这种发动机经常被通称为内燃机,尽管内燃机并不必须包括活塞。现在的利用并不是很多,水蒸气是另一种叫做蒸气式发动机的往复式发动机的能源。这种情况下是利用非常高的蒸气压力来驱动活塞。蒸气能的大部分利用中,活塞发动机已经被更为高效的涡轮机所取代,由于要求有更高的力矩活塞已经更多的运用到领域中。
活塞发动机主要组成
主要由气缸、活塞、连杆、曲轴、气门机构、螺旋桨减速器、机匣等组成。  气缸是混合气(汽油和空气)进行的地方。气缸内容纳活塞作往复运动。气缸头上装有点燃混合气的电火花塞(俗称电嘴),以及进、排气门。发动机工作时气缸温度很高,所以气缸外壁上有许多散热片,用以扩大散热面积。气缸在发动机壳体(机匣)上的排列形式多为星形或V形。常见的星形发动机有5个、7个、9个、14个、18个或24个气缸不等。在单缸容积相同的情况下,气缸数目越多发动机功率越大。活塞承受燃气压力在气缸内作往复运动,并通过连杆将这种运动转变成曲轴的旋转运动。连杆用来连接活塞和曲轴。 曲轴是发动机输出功率的部件。曲轴转动时,通过减速器带动螺旋桨转动而产生拉力。除此而外,曲轴还要带动一些附件(如各种油泵、发电机等)。气门机构用来控制进气门、排气门定时打开和关闭。  工作原理
活塞顶部在曲轴旋转中心最远的位置叫上死点、最近的位置叫下死点、从上死点到下死点的距离叫活塞冲程。活塞式航空发动机大多是四冲程发动机,即一个气缸完成一个工作循环,活塞在气缸内要经过四个冲程,依次是进气冲程、压缩冲程、膨胀冲程和排气冲程。  发动机开始工作时,首先进入“”,气缸头上的进气门打开,排气门关闭,活塞从上死点向下滑动到下死点为止,气缸内的容积逐渐增大,气压降低——低于外面的大气压。于是新鲜的汽油和空气的混合气体,通过打开的进气门被吸入气缸内。混合气体中汽油和空气的比例,一般是 1比 15即燃烧一公斤的汽油需要15公斤的空气。进气冲程完毕后,开始了第二冲程,即“压缩冲程”。这时靠惯性作用继续旋转,把活塞由下死点向上推动。这时进气门也同排气门一样严密关闭。气缸内容积逐渐减少,混合气体受到活塞的强烈压缩。当活塞运动到上死点时,混合气体被压缩在上死点和气缸头之间的小空间内。这个小空间叫作“燃烧室”。这时混合气体的压强加到十个大气压。温度也增加到摄氏400度左右。压缩是为了更好地利用汽油燃烧时产生的热量,使限制在燃烧室这个小小空间里的混合气体的压强大大提高,以便增加它燃烧后的做功能力。  当活塞处于下死点时,气缸内的容积最大,在上死点时容积最小(后者也是燃烧室的容积)。混合气体被压缩的程度,可以用这两个容积的比值来衡量。这个比值叫“压缩比”。的压缩比大约是5到8,压缩比越大,气体被压缩得越厉害,发动机产生的功率也就越大。  压缩冲程之后是“工作冲程”,也是第三个冲程。在压缩冲程快结束,活塞接近上死点时,气缸头上的火花塞通过高压电产生了电火花,将混合气体点燃,燃烧时间很短,大约0.015秒;但是速度很快,大约达到每秒30米。气体猛烈膨胀,压强急剧增高,可达60到75个大气压,燃烧气体的温度到摄氏度。燃烧时,局部温度可能达到三、四千度,燃气加到活塞上的冲击力可达15吨。活塞在燃气的强大压力作用下,向下死点迅速运动,推动连杆也门下跑,连杆便带动曲轴转起来了。  这个冲程是使发动机能够工作而获得动力的唯一冲程。其余三个冲程都是为这个冲程作准备的。  第四个冲程是“排气冲程”。工作冲程结束后,由于惯性,曲轴继续旋转,使活塞由下死点向上运动。这时进气门仍旧关闭,而排气门大开,燃烧后的废气便通过排气门向外排出。 当活塞到达上死点时,绝大部分的废气已被排出。然后排气门关闭,进气门打开,活塞又由上死点下行,开始了新的一次循环。  从进气冲程吸入新鲜混合气体起,到排气冲程排出废气止,汽油的热能通过燃烧转化为推动活塞运动的机械能,带动螺旋桨旋转而作功,这一总的过程叫做一个“循环”。这是一 种周而复始的运动。由于其中包含着热能到机械能的转化,所以又叫做“”。活塞航空发动机要完成四冲程工作,除了上述气缸、活塞、联杆、曲轴等构件外,还需要一些其他必要的装置和构件。
活塞发动机优缺点
转子引擎的转子每旋转一圈就作功一次,与一般的四冲程发动机每旋转两圈才作功一次相比,具有高马力容积比(引擎容积较小就能输出较多动力)的优点。另外,由于转子的轴向运转特性,它不需要精密的曲轴平衡就能达到较高的运转转速。整个发动机只有两个转动部件,与一般的具有进、排气活门等二十多个活动部件相比结构大大简化,故障的可能性也大大减小。除了以上的优点外,转子引擎的优点亦包括体积较小、重量轻、低重心等。  相对地,由于转子引擎的三个燃烧室并非完全隔离,因此在引擎使用一段时间之后容易因为油封材料磨损而造成漏气问题,大幅增加油耗与污染。其独特的机械结构也造成这类引擎较难维修。  虽然转子引擎具有以小排气量、利用高转速而产生高输出的特性,但由于运转特性与往复式引擎的不同,世界各国在制订与引擎排气量相关的税则时,皆是以转子引擎的实际排气量乘以二来作为与往复式引擎之间的比较基准。举例来说,日本马自达(Mazda)旗下搭载了转子引擎的RX-8跑车,其实际排气量虽然只有1308立方厘米,但在日本国内却是以2616立方厘米的排气量来作为税级计算的基准。   发动机除主要部件外,还须有若干辅助系统与之配合才能工作。主要有进气系统(为了改善高空性能,在进气系统内常装有增压器,其功用是增大进气压力)、、(主要包括高电压磁电机、输电线、火花塞)、(一般为电动起动机)、散热系统和等。

我要回帖

更多关于 循环式热泵 的文章

 

随机推荐