抗链o390.3 血沉43 超敏crp结果超高14.65

糖尿病肾病患者胱抑素C和超敏C反应蛋白检测结果分析--《国际检验医学杂志》2011年07期
糖尿病肾病患者胱抑素C和超敏C反应蛋白检测结果分析
【摘要】:目的探讨血清胱抑素C(CysC)和超敏C反应蛋白(hs-CRP)检测对早期诊断糖尿病肾病的临床意义。方法应用全自动生化分析仪,采用免疫比浊法对120例健康体检者、110例糖尿病患者进行CysC和hs-CRP浓度测定,同时用酶法检测血肌酐(Scr)和尿素(Urea)的浓度。结果单纯糖尿病组(SDM)和糖尿病肾病组(DN)的CysC和hs-CRP浓度显著高于健康对照组(P0.01)。SDM组Scr和Urea浓度与健康对照组差异无统计学意义(P0.05),DN组Scr和Urea浓度与健康对照组差异有统计学意义(P0.01)。结论 CysC和hs-CRP联合检测对糖尿病肾病的发生和病情的监测有重要临床价值。
【作者单位】:
【关键词】:
【分类号】:R587.2【正文快照】:
糖尿病是以高血糖为特征的慢性代谢疾病。由于胰岛素分泌、胰岛素的作用或两者同时存在缺陷,引起糖类、蛋白质、国际检验医学杂志2011年5月第32卷第7期Int J Lab Med,May 2011,Vol.32,No.7脂肪、水及电解质的代谢紊乱。糖尿病并发症很多,其中以糖尿病肾病最为常见,也是糖尿病
欢迎:、、)
支持CAJ、PDF文件格式,仅支持PDF格式
【二级参考文献】
中国期刊全文数据库
曹佳懿;[J];中国综合临床;2002年05期
李海霞;张春丽;徐国宾;王学晶;李淑葵;李志艳;张旭初;夏铁安;;[J];中华检验医学杂志;2006年11期
【相似文献】
中国期刊全文数据库
夏璐;;[J];中国药房;2011年28期
;[J];民间传奇故事(A卷);2011年07期
王振;;[J];糖尿病新世界;2011年09期
舒展;;[J];中国医学工程;2011年05期
邱慧琳;;[J];食品与健康;2000年02期
刘红梅;;[J];大家健康;2010年02期
王宇霞;;[J];中国民间疗法;2011年06期
良介;;[J];实用糖尿病杂志;2011年04期
李曦光;刘晓云;陈黎忠;徐转;;[J];吉林医学;2011年20期
刘长万;;[J];时珍国医国药;2011年07期
中国重要会议论文全文数据库
顾连方;;[A];第六届全国中西医结合肾脏病学术会议论文汇编[C];2000年
陈雪茹;;[A];中华医学会第十次全国内分泌学学术会议论文汇编[C];2011年
浦春;;[A];中华医学会第八次全国检验医学学术会议暨中华医学会检验分会成立30周年庆典大会资料汇编[C];2009年
于青;袁伟杰;姚建;徐琴君;;[A];2007年浙沪两地肾脏病学术年会资料汇编[C];2007年
杨敏;李艳波;朱晓鸥;;[A];中华医学会第十次全国内分泌学学术会议论文汇编[C];2011年
张慧;;[A];中华医学会第九次全国检验医学学术会议暨中国医院协会临床检验管理专业委员会第六届全国临床检验实验室管理学术会议论文汇编[C];2011年
曾翔俊;张宝海;张冬梅;张立克;杜凤和;;[A];中国病理生理学会第九届全国代表大会及学术会议论文摘要[C];2010年
潘时中;韩晓芳;杨立勇;陈晓军;林建银;;[A];中国老年学学会2006年老年学学术高峰论坛论文集[C];2006年
刘会苗;秦贵军;任高飞;余勤;董义光;;[A];中华医学会第十次全国内分泌学学术会议论文汇编[C];2011年
向朝峰;杨玉芝;冯坤;段滨红;江红;;[A];中华医学会第十次全国内分泌学学术会议论文汇编[C];2011年
中国重要报纸全文数据库
上海二医大内分泌科
宁光;[N];家庭医生报;2004年
向红丁博士;[N];人民政协报;2002年
四川大学华西医院肾脏内科主任
付平;[N];健康报;2008年
陕西省人民医院临床营养室 张英;[N];健康报;2009年
北京电力医院内分泌科
赵若楠;[N];健康时报;2009年
刘奕深;[N];潮州日报;2009年
江苏省南京市中大医院
陆青松;[N];健康时报;2009年
湘雅二医院
张红;[N];大众卫生报;2009年
武汉同济医院器官移植研究所教授
明长生;[N];健康报;2010年
李颖;[N];科技日报;2010年
中国博士学位论文全文数据库
张翥;[D];四川大学;2005年
肖晓燕;[D];山东大学;2010年
肖湘成;[D];中南大学;2007年
廖琳;[D];山东大学;2003年
牟忠卿;[D];山东大学;2005年
苏克亮;[D];四川大学;2005年
杨亦彬;[D];四川大学;2005年
金永东;[D];中南大学;2008年
孙亚东;[D];吉林大学;2006年
石艳;[D];吉林大学;2006年
中国硕士学位论文全文数据库
李丹阳;[D];浙江大学;2010年
王玉容;[D];泸州医学院;2010年
王译晨;[D];吉林大学;2011年
孔祥栋;[D];浙江大学;2010年
单湘湘;[D];苏州大学;2010年
蔡旭;[D];中南大学;2010年
张宏武;[D];新疆医科大学;2005年
辛爽清;[D];中国医科大学;2010年
李明阳;[D];中国医科大学;2010年
王晓蕾;[D];中国医科大学;2005年
&快捷付款方式
&订购知网充值卡
400-819-9993
《中国学术期刊(光盘版)》电子杂志社有限公司
同方知网数字出版技术股份有限公司
地址:北京清华大学 84-48信箱 知识超市公司
出版物经营许可证 新出发京批字第直0595号
订购热线:400-819-82499
服务热线:010--
在线咨询:
传真:010-
京公网安备75号Boehringer Mannheim
United States Patent Application
Subject matter of the invention is a reagent preparation for binding components of a sample in the form of a tablet comprising a multitude of magnetic particles which are held together with the aid of excipients, and the use of this reagent preparation in analytical test,
Inventors:
Harttig, Herbert (Altrip, DE)
Application Number:
Publication Date:
11/29/2001
Filing Date:
06/29/2001
Export Citation:
Roche Diagnostics GmbH
Primary Class:
Other Classes:
International Classes:
G01N33/531; C12Q1/68; G01N33/543; G01N33/553; (IPC1-7): G01N33/553; C12Q1/68
View Patent Images:
&&&&&&PDF help
Related US Applications:
October, 2004SakataJanuary, 2004Hajizadeh et al.August, 2007Jeyarajah et al.January, 2008Polack et al.October, 2008BauerMay, 2006Stroobant et al.November, 2006FuedaDecember, 2005Radhamohan et al.January, 2009PoppJuly, 2004Ishikawa et al.January, 2002D'aurora
Attorney, Agent or Firm:
ARENT FOX KINTNER PLOTKIN & KAHN, PLLC (Suite 600, Washington, DC, , US)
What is claimed is:
1. A tablet for binding components of a sample, comprising a plurality of magnetic particles having a surface to which components of a sample can essenti and at least one excipient which links the magnetic particles to form a tablet.
2. The tablet according to claim 1, wherein the tablet further contains a reagent which facilitates the binding of said components to said magnetic particles.
3. The tablet according to claim 2, wherein said excipient comprises a chaotropic salt.
4. The tablet according to claim 1, wherein said magnetic particles have a diameter of less than 100 μm.
5. The tablet according to claim 1, wherein said magnetic particles have a glass-like surface.
6. The tablet according to claim 1, wherein said tablet weighs more than 5 mg.
7. The tablet according to claim 1, wherein said tablet further comprises reagents, which convert the components of the sample into a form enabling the components to bind to the magnetic particles.
8. A method of binding nucleic acids to magnetic particles, comprising adding a tablet comprising magnetic particles and at least one excipient to a sample cont and thereafter allowing said tablet to contact said sample until said excipient has dissolved and said nucleic acids are essentially completely bound to the surface of the magnetic particles.
9. The method of claim 8, further comprising the step of mechanically moving said tablet to facilitate the dissolving of said excipient in the sample.
10. The method of claim 8, further comprising applying a magnetic field to the sample to retain the magnetic particles and said nucleic and separating the magnetic particles and said nucleic acids bound thereto from the remainder of the sample.
11. A method of preparing a suspension of magnetic particles in a sample, comprising adding a tablet containing a plurality of magnetic particles and at least one excipient which is soluble in the
and moving the tablet within said sample, to facilitate the dissolution of the soluble excipient in the sample thereby releasing the magnetic particles to form said suspension.
12. A method of incorporating magnetic particles into a sample, comprising providing a dispenser containing a plurality of magnetic particle- activating the dispenser to release at least one of the t and permitting the particles contained in the tablets to disperse in the sample.
13. A method of separating components in a sample from the remainder of the sample, comprising placing magnetic particles in the sample, said particles having a surface to which allowing the components to bind to the surf applying a magnetic field to the sample to retain the magnetic particles and comp and separating the remainder of the sample from the retained particles and components bound thereto.
Description:
[0001] Subject matter of the invention is a reagent preparation for binding components of a sample in the form of a tablet, the use thereof for binding or purifying nucleic acids and a method of preparing a suspension of magnetic particles in a sample, and a method of incorporating magnetic particles in a sample.
[0002] A problem which frequently arises in the analysis of liquid samples is that the components to be analyzed are present only in very minute amounts. Moreover, the sample also contains numerous particles which are not to be determined but render the determination less accurate. It is therefore expedient to bind the analytes to a solid phase and remove the particles which are not to be determined together with the liquid. The isolated analytes can then be detected at the solid phase. Recently, especially the inner walls of reaction vessels such as tubes have been used as solid phases. Another option is to add a bead to the reaction vessel which is capable of binding the analyte. The bead size is such that the separation of liquid and beads can be accomplished by simple pipetting. Recently, however, continuously operating instruments have been designed where the analyte is bound to magnetic particles, and the bound analyte together with the magnetic particle are separated from the surrounding liquid with the aid of a magnetic field. The magnetic particles are provided with a surface capable of binding an analyte. [0003] These magnetic particle containing reagent preparations are offered in the form of suspensions to which the analyte-containing liquid to be assayed is added by pipetting. These pipetting steps are subject to deviations commonly found in connection with pipetting procedures. Further, pipetting errors are also difficult to trace back. [0004] It was hence an object of the present invention to eliminate the disadvantages found in the prior art and providing magnetic particles which allow easy dosing. [0005] Subject matter of the invention is hence a reagent preparation for binding components in a sample in the form of a tablet comprising a multitude of particles having a surface to which the components can essentially completely bind and excipients. Another subject matter of the invention is the use of these reagent preparations and a method of preparing magnetic suspensions. [0006] Components are understood to be particulate or molecular material. This includes especially cells, e.g. viruses or bacteria, but also isolated human or animal cells such as leukocytes, then also immunologically active low and high molecular chemical compounds such as haptens, antigens, antibodies, and nucleic acids. Particularly preferred are nucleic acids such as DNA or RNA. [0007] Samples as understood in the invention are for example clinical specimen such as blood, serum, mouth wash liquid, urine, cerebrospinal fluid, sputum, stool, punctate, and bone marrow samples. The sample can also stem from areas such as environmental analysis, food analysis or molecular-biological research, e.g. bacterial cultures, phage lysates, and products of amplification processes such as PCR. [0008] A tablet as understood in the invention is a solid, formed body, preferably in the form of a disk or a more or less perfectly shaped sphere. Other similar embodiments are also conceivable. Tablets of this kind are commonly known from drugs. A tablet preferably has a defined weight which exceeds 5 mg. [0009] A magnetic particle is a particle made of a material which can be attracted by a magnet, i.e. ferromagnetic or superparamagnetic materials. The invention prefers in particular superparamagnetic particles, especially those that are not premagnetized. Premagnetization as understood here is a process of bringing a material into contact with a magnet to increase resonance. Magnetide (Fe3O4) or Fe2O3 are particularly preferred. A magnetic particle is, however, also understood to include materials which contain (smaller) magnetic particles. This includes in particular Iriodin 600 a pigment which is commercially available from Merck (Darmstadt, Germany). The invention prefers in particular particles with an average grain size of less than 100 μm. A particularly preferred grain size ranges between 10 and 60 μm. The preferred grain distribution is re in particular, there are almost no particles smaller than 10 μm or larger than 60 μm. Particles which satisfy this requirement are described for example in WO . [0010] An essential element of the invention is the fact that magnetic particles have a surface to which components can bind. This binding can either be specific or relatively non-specific. Specific binding can be achieved by making use of a binding-specific interactions, e.g. antibodies and antigens, antibodies and haptens or complementary nucleic acids. A combination of these interactions is also possible. [0011] A known method of modifying a surface is, for example, the coating of particles with a streptavidin layer. It is thus possible to generate a universal matrix to which specific components can be bound from the sample via conjugates of biotin and a certain antibody, hapten or nucleic acid. The expert, especially one from the field of immunoassays, is familiar with corresponding embodiments. [0012] A relatively unspecific binding is the interaction between a glass-like surface and nucleic acids. The binding of nucleic acids from agarose gel in the presence of sodium iodide in ground flint glass is known from Proc Natl Acad USA 76, 615-619 (1979). U.S. Pat. No. 2,233,169 describes magnetic particles whose glass portion can bind nucleic acids. [0013] The invention proposes that the component to be determined bind essentially completely to the magnetic particles. The expert can easily determine the necessary amount of particles by varying the amount of magnetic particles to be added. As understood in the invention, an essentially complete binding means binding of more than 60%, particularly preferred more than 90% of the component to be bound found in the sample. [0014] Excipients essentially serve to maintain the shape of the tablet, i.e. to link the magnetic particles to form a tablet. Preferred excipients of the invention are those which dissolve rapidly in the sample where the reaction is to take place. As preferred liquid samples are aqueous solutions, it is possible to use those excipients that are usually employed in the manufacture of drugs. Polyethyleneglycol (PEG) and polyvinylpyrrolidon (PVP) are particularly preferred. [0015] DE-A-4406139 describes a magnetic depot drug with improved absorbance of the active components. The tablet contains a disk-like magnet and the active component is released over period of several hours. [0016] The International Journal of Pharmaceutics 119, 47-55 (1995) also describes a tablet with a delayed release of the drug. [0017] STP Pharmasciences Vol 4, 94) describes the manufacture of ferrrite-containing magnetic tablets and their administration to dogs. [0018] Moreover, the tablet of the invention can also contain stabilizing reagents. In a preferred manner, sugars such as D-mannite, trehalose, and sorbite are added. [0019] Surprisingly, magnetic particles, especially those with a glass surface, can be stored in the form of a tablet without visible hydrolysis of the glass and hence without visible elution of the iron from the magnetic portion. [0020] The magnetic particles are preferably glass magnet pigments or polymer magnetic beads or other magnetic particles with a size ranging between 0.1 μm and 100 μm; e.g. those described in DE . [0021] The preparation can also contain additives to facilitate the binding process of the components. This includes specificity enhancing substances like the above
but also substances which modify the sample properties such that the binding of the components to the surface is facilitated. When nucleic acids are used these are chaotropic salts such as guanidinium hydrochloride, sodium iodide, sodium perchlorate or the like. Chaotropic salts of this kind are known from Anal. Biochem. 121, 382-387 (1982) and DE-A 3734442. [0022] The reagent preparation can also contain reagents which convert the components into a form which basically enables a binding process. This includes reagents to lyse compartments, e.g. cells, which contain nucleic acids. Such a reagent is, for example, proteinase K or the above chaotropic salts. [0023] The reagent preparation can also contain pH buffer substances and reagents for dissolving links such as hydrogen bridges, hydrophobic and ion links as well as reagents for the specific detection of substances or indicators as they are known with components of immunoassays. [0024] The following composition has proven to be feasible for a preferred tablet:
1ParticularlyPreferredPreferredComponentAmountAmountExcipient (e.g. PEG, PVP, Calcium stearate)2-10% 3%Reagents0-90%87%Magnetic particles0.01-50%
[0025] The tablet of the invention can of course also contain other components, e.g.
the total amount acids up to 100%. The percentages given are weight percentages. [0026] The reagent preparation of the invention in the form of a tablet can be manufactured corresponding to other drugs in tablet form. To accomplish this, all necessary components are thoroughly mixed and aliquots are tabletted in a tablet press. This is accomplished in particular by applying pressure. Tablets of the invention can, however, also be obtained by granulating the mixture of components. For this purpose, a certain amount of the dry mixture is granulated with a solubilizing liquid. Then liquid is again withdrawn from the so obtained granulate. Uniform grain size can be obtained by sieving the granulate. [0027] These manufacturing processes entail a very low coefficient of variation of the tablet weight and hence a high reproducibility when dosing the reagent in the practice. Erroneous dosing is then reduced and easier to trace back. The tablets of the invention can be rapidly dissolved, preferably in less than 30 sec., particularly preferred in less than 1 to 10 sec. while the magnetic particles can be easily and readily dispersed. Tablet form is also expedient with respect to storage. Dosing can even be accomplished manually with the aid of a tablet dispenser. Adulterations which occur in suspensions and are caused by sedimentation of particles have not been observed. [0028] Another subject matter of the invention is the use of the reagent preparation for binding nucleic acids. To accomplish this, the reagent preparation is added to the sample and incubate until (1.) the tablet has dissolved and (2.) the nucleic acids are essentially completely bound to the surface. The tablet can be mechanically moved, if necessary. This increases both the dissolving rate of the tablet and the binding rate of the components. [0029] Another subject matter of the invention is the use of the reagent preparation for purifying nucleic acids. To achieve this, the magnetic particles and the nucleic acids bound thereto are separated from the surrounding sample liquid. This is advantageously accomplished in that a magnetic field is applied to retain the magnetic particles in a vessel or at a defined s then the sample liquid is removed (by e.g. pipetting or displacement) and, if desired, one or several washing steps with other liquids are performed. If desired, the bound nucleic acids can be separated again from the magnetic particles when suitable conditions are applied. In the case of a glass-like surface, these are low-salt conditions, i.e. the salt contents of the elution solution is less than 100 mmol/l. [0030] Another subject matter of the invention is a method of preparing a suspension magnetic particles in a sample comprising the steps of adding to the sample a tablet containing magnetic particles and soluble excipients and moving the tablet in sample, preferably with the aid of a movable magnetic field. The magnetic field can be moved in that a magnet in the vicinity of the sample is moved back and forth such that the magnetic particles are subject to continuous movement. It is, however, also possible that the vessel containing the sample with the tablet and the magnetic particles is moved with respect to the magnet. [0031] Yet another subject of the invention is a method of incorporating magnetic particles in a sample comprising the steps of providing a dispenser which contains a multitude of magnetic particle-containing tablets and activating the dispenser to release a tablet. Dispensers for providing tablets are commonly used when administering drugs in the form of tablets. They can be used manually for dosing procedures in the method of the invention. It is not absolutely necessary to release only one tablet per sample. It is also possible to release a defined number of tablets, e.g. between 2 and 10, depending on the intended use in the sample. [0032] The following example explain the invention greater detail: EXAMPLE 1 [0033] Preparation of the Glass Magnet Pigment [0034] A sol (SiO2:B2O3=7:3) was prepared in a 250 ml round flask under constant stirring while observing the following instructions [ ml tetraethylorthosilicate [0036] +7 ml anhydrous, non-denatured ethanol [0037] +14 ml 0.15 M HCl [0038] A two-phase mixture is obtained which is stirred at room temperature until one single phase is obtained. Then 37.8 ml trimethylborate are added dropwise. Subsequently the sol is for 2 hours kept at a temperature of 50° C. Then, 14.1 ml of 15 M HCl are added. [0039] After maturing, 22.5 g Iriodin 600 (Black Mica, Merck, Darmstadt, Germany) were added to 150 ml sol under stirring and then coated with a spray-drier (Buchi 190, Mini Spray Dryer). [0040] The powder obtained in the spray-drying process was then subject to temperature treatment under a nitrogen atmosphere. The heating rate was 1 K/min and the dwelling time was 2 hours at the compacting temperature. After compacting, the temperature was lowered down to the temperature of the follow- the nitrogen atmosphere was replaced by air and after the follow-up treatment, the powder was cooled down to room temperature. Agglomerates that may have formed were removed by sieving with a 50 μm sieve.
2ParameterGMP 2Maturing of the sol at 30° C. (h)36Percentage of pigment of the sol15(g/100 ml)Nozzle temperature (° C.)120Air current of nozzle (%)100Air pressure (bar)6Compacting temperature (° C.)534O2 Follow-up treatment (1 hour)(300° C.)
EXAMPLE 2 [0041] Tablet Production [0042] Pre-mixing Process [ g of glass magnet pigment GMP 2 were mixed with 500 g guanidinium hydrochloride and sieved through a 0.2 mm sieve using a GLA-ORV Frewiit sieving machine. The yield amounted to 536.4 this corresponds to 98.7%. [0044] Graining [ Tris-HCl and 0.259 g urea were dissolved in 2.2 ml bidest. water. Together with 266.4 g of the pre-mix, the solution was then grained. A total of 7 ml H2O bidest were added. The resulting granulate was dried in a vacuum at room temperature over a period of 24 hours and subsequently sieved through a 0.6 mm sieve. [0046] Tabletting [ of the granulate were mixed with 7.41 spray-hardened PEG 6000 and tabletted on a Korsch PH106 tablet press with a die size of 5 mm. The yield was 186.63 g or 2902 tablets. The tablets had a weight of 64.32 mg, a hardness of 1.5 kp, a dissolving time in dist. water at room temperature of 6 sec, a wear of 0.8%, and a tablet height of 2.77 mm. [0048] Tabletting machine and die were easy to clean, the bottom dies remained polished, the dies did not exhibit any coat. The mass ran through somewhat slowly resulting in weight CV of 4.65% which could be significantly improved by minor technical measures. EXAMPLE 3 [0049] Storage [0050] 10 tablets of example 1 were weighed and added into an open glass vessel and stored open in the lab at room temperature at appr. 50% rF. The weight was monitored over a period of four weeks. There were no weight changes. EXAMPLE 4 [0051] a) PCR Sample Preparation from Human Whole Blood with Magnetic Glass Particles Isolating the Nucleic Acid [0052] 10 mg of glass magnet particle GMP 2 were prepared in Eppendorf reaction vessels. 40 μl of proteinase K (20 mg/ml, obtained from lyophilisate) were added to each of 200 μl of thawed whole blood and mixed immediately. Subsequently, 200 μl binding buffer (6 M Guanidine-HCl, 10 mM Tris HCl, 10 mM urea, 30% Triton X-100, pH 4.4) were added, mixed and incubated for 10 minutes at 70° C. After addition of 200 μl i-propanol, the mixture was mixed for 10 seconds the sample was incubated for 20 min. at room temperature and mixed again for 10 seconds as was done before. Magnetic separation was carried out for at least 30 seconds in a Boehringer Mannheim magnet particle separator (Cat. no.: ). The supernatant was removed and analyzed as described further below. [0053] Using portions of 500 μl washing buffer (20 mM NaCl, 10 mM Tris-HCl, pH 7.5 (25° C.), 70% ethanol), the magnetic particles were washed by mixing for 10 seconds, incubating for 1 min at RT, and mixing again for 10 seconds, and then deposited at the vessel wall using the magnetic particle separator. The supernatant was removed and discarded. The washing procedure was repeated until the washing supernatant was colorless (total of 5 times) Now, the nucleic acids were eluted by mixing 3 times for 10 seconds using 200 μl each time and elution buffer that was preheated to 70° C.; then incubated again at for 10 min. at RT and mixed again for 10 min. [0054] Processing the Supernatant [0055] The supernatant obtained after the first binding to the magnetic glass particle was checked for its contents of nucleic acids as follows: The supernatant was transferred into a filter tube (Boehringer Mannheim Cat. no. 1744003, contained in the High Pure PCR Product Purification Kit) and centrifuged for 1 min at 8000 rpm using an Eppendorf table centrifuge). The flow-through was discarded and the filter tube washed 2× with 500 μl washing buffer each time (centrifuged again as before). The filter tube was centrifuged until it was dry and then eluted by repeating the centrifugation and using 2×200 μl 1× eluting buffer preheated to 70° C. [0056] Analysis of the Eluates and the Sample Supernatant [0057] 10 μl of sample buffer were added to 50 μl of the eluate and the supernatant processed 45 μl thereof were then for 90 minutes electrophoretically separated at 120 V in a 0.8% agarose gel. [0058] Various dilutions of the eluates and the processed supernatants were spectroscopically analyzed at 260 and 280 nm using a Uvikon 710 (Kontron). [0059] Using the Expand(TM) Long Template PCR (Boehringer Mannheim, Cat. no. 1681834), two 5 μl aliquots of the eluates were tested with specific primers for the human tPA gene (expected amplificate length 15 kb).
3amountamount perpermix Ibatchmix IIbatchdNTP, 100 mM each1μlExpand (TM) buffer 10 ×5μlprimer 1,200 ng/μl1μlExpand (TM) polymerase0.75μlprimer 2,225 ng/μl1μlH2O bidest.19.25μlH2O, bidest.17μl20μl25μl
[0060] Mix I was added into a thin-walled PCR tube, then 5 μl eluate were added, and then mix II was added. The mixture was mixed briefly and 30 μl mineral oil were layered on top of it. The batches were amplified in a Perkin Elmer Themocycler 9600 programmed as follows:
42 minutes92° C.10 seconds92° C.30 seconds65° C.10 cycles12 minutes68° C.10 seconds92° C.30 seconds65° C.20 cycles12 minutes +68° C.20 seconds per cycle7 minutes68° C.then 7° C.
[0061] 10 μl sample buffer were added to the 50 μl PCR batches and 45 μl thereof were then for 90 minutes electrophoretically separated at 120 V in a 0.8% agarose gel. [0062] b. Use of the Pigments of Example 2 Tabletted According to the Invention [0063] 2 tablets of example 2 were added into an Eppendorf reaction vessel, 40 ml proteinase K (20 mg/ml) and 200 μl thawed whole blood (cf. example 4a) were added and immediately mixed for 10 seconds on a vortex mixer. 200 μl of 30% Triton X-100 were added and mixed for 10 min on the vortex mixer. The treatment was then continued as described in example 4. [0064] c. Comparison [0065] Considering commonly accepted deviations, the results for 4a and 4b were identical with respect to both DNA yield in the first elution step and amplificability.
Previous Patent: Next Patent:
& 2004-. All rights reserved.

我要回帖

更多关于 血常规超敏crp偏高 的文章

 

随机推荐