如何怎么判断数列是否收敛Gaussian计算正常结束?Gaussian收敛标准是什么

gaussian的主要功能_科普知识_中国百科网
gaussian的主要功能
    gaussian -主要功能 Gaussian 03新增加了以下内容: 新的量子化学方法(1) ONIOM模块做了增强对ONIOM(MO:MM)计算支持电子嵌入,可以在QM区域的计算中考虑MM区域的电特性。通过算法的改善,ONIOM(MO:MM)对大分子(如蛋白质)的优化更快,结果更可靠。ONIOM(MO:MM)能够计算解析频率,ONIOM(MO:MO)的频率计算更快。提供对一般分子力场(MM)的支持,包括读入和修改参数。包含了独立的MM优化程序。支持任何ONIOM模拟的外部程序。(2) 修改和增强了溶剂模块改善和增强了连续介质模型(PCM):默认是IEFPCM模型,解析频率计算可以用于SCRF方法。此外改善了空穴生成技术。模拟溶液中的很多特性。可以对Klamt的COSMO-RS程序产生输入,通过统计力学方法,用于计算溶解能,配分系数,蒸汽压,以及其它整体性质。(3) 周期性边界条件(PBC)增加了PBC模块,用于研究周期体系,例如聚合物,表面,和晶体。PBC模块可以对一维、二维或三维重复性分子或波函求解具有边界条件的Schrodinger方程。周期体系可以用HF和DFT研究能量和梯度;(4) 分子动力学方法动力学计算可以定性地了解反应机制和定量地了解反应产物分布。计算包含两个主要近似:Born-Oppenheimer分子动力学(BOMD), 对势能曲面的局域二次近似计算经典轨迹。计算用Hessian算法预测和校正走步,较以前的计算在步长上能够改善10倍以上。还可以使用解析二级导数,BOMD能够用于所有具有解析梯度的理论方法。提供原子中心密度矩阵传播(ADMP)分子动力学方法,用于Hartree-Fock和DFT。吸取了Car和Parrinello的经验,ADMP传递电子自由度,而不是求解每个核结构的SCF方程。与Car-Parrinello不同之处在于,ADMP传递密度矩阵而不是MO。如果使用了原子中心基组,执行效率会更高。这一方法解决了Car-Parrinello存在的一些限制,例如,不再需要用D代替H以获得能量守恒,纯DFT和混合DFT均可使用。ADMP也可以在溶剂存在的情况下执行,ADMP可以用于ONIOM(MO:MM)计算。(5) 激发态激发态计算方面做了增强:由于改善了在完全组态相互作用计算中求解CI矢量的算法,提高了CASSCF执行效率。对能量和梯度计算可以使用约14个轨道(频率计算仍是8个)。限制活性空间(RAS)的SCF方法。RASSCF把分子轨道分成五个部分:最低的占据轨道(计算中作为非活性轨道考虑),计算中作为双占据的RAS1空间,包含对所研究问题非常重要分子轨道的RAS2空间,弱占据的RAS3空间,以及未占据轨道(计算中做冻结处理)。因此,CASSCF在RAS计算中分成三个部分,考虑的组态通过定义RAS1空间允许的最少电子数和RAS3空间允许的最多电子数,以及三个RAS空间电子总数来产生。nbo轨道可用于定义CAS和RAS活性空间。对于对应成键/孤对电子的反键轨道可以提供相当好的初始猜测。对称性匹配簇/组态相互作用(SAC-CI)方法,用于有机体系激发态的高精度计算,研究两个或更多电子激发的过程(例如电离谱的扰动),以及其它的问题。CIS,TD-HF和TD-DFT的激发态计算中可以考虑溶剂影响。 新的分子特性(1) 自旋-自旋耦合常数,用于辅助识别磁谱的构像。(2) g张量以及其它的超精细光谱张量,包括核电四次常数,转动常数,四次离心畸变项,电子自旋转动项,核自旋转动项,偶极超精细项,以及Fermi接触项。所有的张量可以输出到Pickett的拟合与光谱分析程序。(3) 谐性振-转耦合常数。分子的光谱特性依赖于分子振、转模式的耦合。可用于分析转动谱。(4) 非谐性振动及振-转耦合。通过使用微扰理论,更高级的项可以包含到频率计算中,以产生更精确的结果。(5) 预共振Raman光谱,可以产生基态结构,原子间连接,以及振动态的信息。(6) 旋光性以及旋光色散,通过GIAO计算,用于识别手性体系的异构体。(7) 电子圆二色性(ECD)。这一特性是光学活性分子在可见-紫外区域的差异吸收,用于归属绝对构型。预测的光谱还可用于解释已存在的ECD数据和归属峰位,(8) 含频极化和超极化,用于研究材料的分子特性随入射光波长的变化。(9) 用量度无关原子轨道(GIAO)方法计算磁化率,它类似于电极化率,用于研究分子的顺磁/反磁特性。(10) 预测气相和在溶剂中的电、磁特性和光谱。(11) ONIOM预测电、磁特性。 新增加的基本算法(1) 更好的初始轨道猜测。Gaussian 03使用Harris泛函产生初始猜测。这个泛函是对DFT非迭代的近似,它产生的初始轨道比Gaussian 98要好,例如,对有机体系有所改善,对金属体系有明显改善。(2) 新的SCF收敛算法,几乎可以解决以前所有的收敛问题。对于其它极少数的不收敛情况,Gaussian 03提供了Fermi展宽和阻尼方法。(3) 纯DFT计算的密度拟合近似。这一近似在计算库仑相互作用时,把密度用一组原子中心函数展开,而不是计算全部的双电子积分。它用线性换算的算法,对中等体系的纯DFT计算可以极大地提高计算效率,而又不损失多少精度。Gaussian 03可以对AO基自动产生合适的拟合基,也可以选择内置的拟合基。(4) 更快的自动FMM方法,用于适中的体系(纯DFT约100个原子,混合DFT约150个原子)。(5) 对纯DFT使用更快的库仑能算法,节省库仑问题的CPU时间。(6) O(N)更精确的交换能量项。在Hartree-Fock和DFT计算中,通过删除密度矩阵的零值项来屏蔽精确的交换贡献。这可以节省时间,而又不损失精度。 新增功能:(1) 新的密度泛函:OPTX交换,PBE和B95相关,VSXC和HCTH纯泛函,B1及其变体B98,B97-1,B97-2,PBE1PBE混合泛函。(2) 高精度能量方法:G3及其变体,W1方法。另外还包含W1BD,它用BD代替耦合簇,比CBS-QB3和G3更精确,当然计算也更加昂贵。(3) 对重元素全电子基组计算的Douglas-Kroll-Hess标量相对论修正,用于当ECP基组不能满足精度的情况。(4) 逼近基组极限的UGBS基组。
收录时间:日 08:38:29 来源:百科网 作者:匿名
上一篇: &(&&)
创建分享人
喜欢此文章的还喜欢
Copyright by ;All rights reserved. 联系:QQ:gaussian-filter 在数字图像处理中,对 通过时域的快速傅立叶变换提取 边缘的过程 会出现噪声 Special Effects 图形
238万源代码下载-
&文件名称: gaussian-filter
& & & & &&]
&&所属分类:
&&开发工具: matlab
&&文件大小: 2215 KB
&&上传时间:
&&下载次数: 11
&&提 供 者:
&详细说明:在数字图像处理中,对图像通过时域的快速傅立叶变换提取图像边缘的过程中,会出现噪声干扰,提取出一些对图像造成干扰的信息,使得提取效果较差。通过设计一个二维高斯滤波器降低噪声对边缘提取的干扰,从而得到较好的边缘提取效果。-In digital image processing, the image edge extraction process on the image through the fast Fourier transform of the time domain, there will be noise, to extract some interference caused to the image information, so that the extraction effect is poor. By designing a two-dimensional Gaussian filter to reduce noise interference on the edge extraction, whereby preferably the edge extraction.
文件列表(点击判断是否您需要的文件,如果是垃圾请在下面评价投诉):
&&高斯滤波器在图像拉普拉斯边缘提取中的应用.docx&&baby.bmp&&baby_noise.bmp&&imfreqfilt.m&&imgaussflpf.m&&Lap_Gauss.fig&&Lap_Gauss.m&&lena.bmp
&[]:很好,推荐下载
&输入关键字,在本站238万海量源码库中尽情搜索:
&[] - 特征空间方法是现代谱估计的重要方法之一。针对噪声中的复正弦信号的模型,通过特征矢量的方法进行信号空间的分解。通过将信号空间分解为谐波信号空间和噪声信号空间这两个相互正交的空间的方法进行谱估计。Pisarenko,Music,ESPRIT算法都是这一类方法的重要算法。我们通过对不同算法进行比较分析不同
&[] - 混沌粒子群优化(CPSO, Chaos Particle Swarm Optimization)算法融合了PSO算法的快收敛和CO算法的遍历随机等特点,在PSO算法每一代挑选出的最优解附近的区域里,用混沌算法进一步搜索,防止其陷入局部最优值,从而改进了PSO算法的不足,成为一种高效的优化算法。
&[] - gaussian filter in digital image processing
&[] - 基于高斯滤波的图像处理算法,在各种图像处理的试验中效果非常不错。
&[] - 高斯滤波器对图像的去噪效果,具有很好的效果。
&[] - 自己编写的用WSE的方法设计的二维数字滤波器,效果不错。
&[] - 滤除图像噪声,在图像中加二维中值滤波器使图像降噪还原需要的图像
&[] - 对于磁共振图像,使用高斯滤波器对图像进行滤波,对滤波后的图像进行边缘和图像区域的选取,计算两者的均值和标准差,最后得到新的信噪比值。如何判断Gaussian计算正常结束?Gaussian收敛标准是什么?
首先,我们必须理解收敛是什么意思。在自洽场(SCF)计算中,自洽循环中,首先产生一个轨道占据的初始猜测,
1)然后根据此轨道占据构造电荷密度和哈密顿量。
2)对角化哈密顿量,得到新的轨道能级和占据。
3)产生新的电荷分布和哈密顿量,重复步骤2)
经过一定次数的循环后,某次循环前和循环后的电荷密度差别小于一定的标准,我们称之为收敛。
如果以上过程不能收敛,则gaussian给出convergence failure的警告。
如果SCF计算收敛失败,你首先会采取哪些技巧呢?这里是我们强烈推荐的首选方法。1 考虑使用更小的基组
由于一定的基组对应于一定精度和速度,所以更换基组并不在所有的情况下都适用。方法是首先用小基组进行计算,由前一个波函得到用于大基组计算的初始猜测(Guess=Read自动进行)。2 增加最大循环步数
Gaussian默认的最大循环步数为64 (SCF=DM或SCF=QC方法则为512),如果循环次数超过这个数目则会汇报...
首先,我们必须理解收敛是什么意思。在自洽场(SCF)计算中,自洽循环中,首先产生一个轨道占据的初始猜测,
1)然后根据此轨道占据构造电荷密度和哈密顿量。
2)对角化哈密顿量,得到新的轨道能级和占据。
3)产生新的电荷分布和哈密顿量,重复步骤2)
经过一定次数的循环后,某次循环前和循环后的电荷密度差别小于一定的标准,我们称之为收敛。
如果以上过程不能收敛,则gaussian给出convergence failure的警告。
如果SCF计算收敛失败,你首先会采取哪些技巧呢?这里是我们强烈推荐的首选方法。1 考虑使用更小的基组
由于一定的基组对应于一定精度和速度,所以更换基组并不在所有的情况下都适用。方法是首先用小基组进行计算,由前一个波函得到用于大基组计算的初始猜测(Guess=Read自动进行)。2 增加最大循环步数
Gaussian默认的最大循环步数为64 (SCF=DM或SCF=QC方法则为512),如果循环次数超过这个数目则会汇报convergence failure。在一定的情况下,不收敛的原因仅仅是因为最大循环步数不够。可以通过设置maxcyc来增大最大循环步数。更多的SCF迭代(SCF(MaxCycle=N),其中N是迭代数)。这很少有帮助,但值得一试。3
放宽收敛标准如果接近SCF但未达到,收敛标准就会放松或者忽略收敛标准。这通常用于不是在初始猜测而是在平衡结构收敛的几何优化。SCF=Sleazy放松收敛标准,Conver选项给出更多的控制。4
尝试改变初始构型首先略微减小键长,接下来略微增加键长,接下来再对结构作一点改变。5
尝试能级移动Level shifting (SCF=Vshift)
如果不收敛的原因是波函数的震荡行为,通常是因为在相近的能量上的泰的混合。对于这种情况,我们可以采用level shifting的方法。Level shifting的含义是人工的升高非占据轨道的能级,以防止和最高占据轨道之间的混合,以达到收敛的目的。在Gaussian中此方法的关键词为SCF=Vshift6
使用强制的收敛方法SCF=QCSCF=QC通常最佳,但在极少数情况下SCF=DM更快。此关键字将大大增加计算时间,但是收敛的机会更大。不要忘记给计算额外增加一千个左右的迭代。应当测试这个方法获得的波函,保证它最小,并且正好不是稳定点(使用Stable关键字)。7
对开壳层体系,尝试收敛到同一分子的闭壳层离子,接下来用作开壳层计算的初始猜测。添加电子可以给出更合理的虚轨道,但是作为普遍的经验规则,阳离子比阴离子更容易收敛。选项Guess=Read定义初始猜测从Gaussian计算生成的checkpoint文件中读取。8
一些程序通过减小积分精度加速SCF。对于使用弥散函数,长程作用或者低能量激发态的体系,必须使用高积分精度:SCF=NoVarAcc。9
改变模型或方法
可以考虑改变模型方法。比较常见的方法有HF,G相关信息,MCSCF,CASSCF,MPn等。改变模型方法通常也会收敛性质。通常,精度更高的方法更难收敛。精度比较低的方法产生的计算结果可以作为高精度计算的初始猜测。考虑使用不同理论级别的计算。这并不总是实用的,但除此之外,增加迭代数量总是使得计算时间和使用更高理论级别差不多。10
关闭DIIS外推(SCF=NoDIIS)。同时进行更多的迭代(SCF=(MaxCycle=N))。11
试着改用DIIS之外其它方法(SCF=SD或SCF=SSD)。
Gaussian不收敛的可能原因及对策:
1 由于体系有很多能量相近的能级,导致计算不收敛。如果计算中采用的是Hartree-Fock方法或者其他的混合形式的交换相关势(如B3LYP),则可以尝试一下的方法进行改进。scf=(noincfock,conver=11,maxcyc=1025) iop(5/22=20)用以上的命令行将强制Gaussian采用EDIIS的算法。此算法计算量更大,但是更加稳定。在命令行里也增加了最大循环数,以增加收敛的到基态的可能性。2. 检查是否有初始文件错误常见初级错误:a. 自旋多重度错误b. 变量赋值为整数c. 变量没有赋值或多重赋值d. 键角小于等于0度,大于等于180度e. 分子描述后面没有空行f. 二面角判断错误,造成两个原子距离过近g. 分子描述一行内两次参考同一原子,或参考原子共线3. SCF(自洽场)不收敛则一般是L502错误,省却情况做64个cycle迭代(G03缺省128 cycles)a. 修改坐标,使之合理b. 改变初始猜
Guess=Huckel 或其他的,看Guess关键词。c. 增加叠代次数 SCFCYC=N (对小分子作计算时最好不要增加,很可能结构不合理)d. iop(5/13=1)这样忽略不收敛,继续往下做。4. 分子对称性改变a. 修改坐标,强制高对称性或放松对称性b. 给出精确的、对称性确定的角度和二面角。 如CH4的角度给到109.47122c. 放松对称性判据
Symm=loosed. 不做对称性检查 iop(2/16=1) (最好加这个选项)
iop(2/16=2) 则保持新的对称性来计算5. Opt时收敛的问题a. 修改坐标,使之合理b. 增加叠代次数optcyc=N6. 优化过渡态,若势能面太平缓,则不好找到。iop(1/8=10) 默认30(下一个结构和该结构的差别0.3&A),可改成10。如果每一步都要用到小的步长,应该加opt(notrustupdate)7. 在CI(组态)方法中如QCISD(T),CCSD(T),CID方法中,省却最大循环50,若出错(L913错误)解决方法:#P QCISD(maxcyc=N) 注:N≤5128. 优化过渡态opt=TS (给出过渡态)
opt=qst2 (给出反应物和产物)
opt=qst3 (给出反应物和产物和过渡态)a.
用G03时的出错 opt=ts 必须加FC (force constant)写法:opt=(TS, calcFc)or opt=(TS,calchffc)计算HF力常数,对QCISD,CCSD等方法用;or opt=(TS,modRedundant)
(最好写这个)b. 如果计算采用QCISD计算(不好计算FC)则写为QCISD opt=(TS, calcHFFC) (用HF计算FC)9. 无法写大的Scratch文件RWFa. 劈裂RWF文件 %rwf=loc1,size1,loc2,size2,……..,locN,-1b. 改变计算方法 MP2=Direct可以少占硬盘空间c. 限制最大硬盘 maxdisk=N GB,****MB,有些系统写2GB会出错,可以写2000MB10. FOPT出错 原因是变量数与分子自由度数不相等。 可用POPT 或直接用OPT11. 优化过渡态只能做一个STEP 原因是负本征数目不对 添加 iop(1/11)=1或者noeigentest (eigentest 是表示优化过渡态检测分子振动的本征值,过渡态只有一个负值,但优化的时候往往出现两个或者更多的情况,默认的是如果出现多于一个的情况就停止优化计算,这往往时不必要的,noeigentest表示优化时不坐此检测,实际上优化过渡态的时候出现两个三个很正常的,只是第一个一般负的很大,接着的比较小,不会影响过渡态的搜寻,当然有时候需要自己判断是不是接近真实的过渡态。其实经验上也是过渡态的本征虚频越小,相对越难找。)对于 (L502, L508, L9999)出错的对策对于一个优化计算,它的过程是先做一个SCF计算,得到这个构型下的能量,然后优化构型,再做SCF,然后再优化构型。。。因此,会有两种不收敛的情况:一是在某一步的SCF不收敛(L502错误),或者构型优化没有找到最后结果(L9999错误)。预备知识:计算时保存chk文件,可以在后续计算中使用guess=read读初始猜测.对于SCF不收敛,通常有以下的解决方法:1. 使用小基组,或低级算法计算,得到scf收敛的波函数,用guess=read读初始波函数。2. 使用scf=qc,这个计算会慢,而且需要用stable关键字来测试结果是否波函数稳定。如果这个还不收敛,会提示L508错误。3. 改变键长,一般是缩小一点,有时会有用。4. 计算相同体系的其他电子态,比如相应的阴离子、阳离子体系或单重态体系,得到的收敛波函数作为初始猜测进行计算。对于优化不收敛,即L9999错误,实际上是在规定的步数内没有完成优化,即还没有找到极小值点。(或者对于过渡态优化,还没有找到过渡态)这有几种可能性:1. 看一下能量的收敛的情况,可能正在单调减小,眼看有收敛的趋势,这样的情况下,只要加大循环的步数(opt(maxcycle=200)),可能就可以解决问题了。2. 加大循环步数还不能解决的(循环步数有人说超过200再不收敛,再加也不会有用了,这虽然不一定绝对正确,但200步应该也差不多了),有两种可能。一是查看能量,发现能量在振荡了,且变化已经很小了,这时可能重新算一下,或者构型稍微变一下,继续优化,就可以得到收敛的结果(当然也有麻烦的,看运气和经验了);二是构型变化太大,和你预计的差别过大,这很可能是你的初始构型太差了,优化不知道到哪里去了,这时最好检查一下初始构型,再从头优化。3. 对于L9999快达到收敛时,考虑减小优化步长有时对于能量振荡的情况也是有用的,opt(maxstep=1).(flyingheart )
其他答案(共1个回答)
综合软件包。其可执行程序可在不同型号的大型计算机,超级计算机,工作站和个人计算机上运行,并相应有不同的版本。
前几天我在路上看见一小孩,脸上颜色那个叫精彩,白色的斑纹一块块的,上班后还告诉了我一同事,偶然一次去...
前几天我在路上看见一小孩,脸上颜色那个叫精彩,白色的斑纹一块块的,上班后还告诉了我一同事,偶然一次去...
前几天我在路上看见一小孩,脸上颜色那个叫精彩,白色的斑纹一块块的,上班后还告诉了我一同事,偶然一次去...
大家还关注
确定举报此问题
举报原因(必选):
广告或垃圾信息
激进时政或意识形态话题
不雅词句或人身攻击
侵犯他人隐私
其它违法和不良信息
报告,这不是个问题
报告原因(必选):
这不是个问题
这个问题分类似乎错了
这个不是我熟悉的地区

我要回帖

更多关于 如何判断收敛和发散 的文章

 

随机推荐