冻到底到底醋杀菌有没有科学依据据,冻到什么层度合适

14被浏览3,504分享邀请回答6添加评论分享收藏感谢收起0添加评论分享收藏感谢收起企脚上没有羽毛又没有脂肪,站在雪地上为什么不怕冻?
南极的企鹅在冬季长时间踩在冰雪上,它们的脚为什么不会冻坏?几年前我曾听到收音机里讲,说相关信息家发现企鹅的脚内有一套独特的辅助血液循环系统,可以防止它们的脚被冻坏。此后我就再也没有看见过有关这方面的资料或解释。我也请教过一些研究企鹅的科学家,他们都未能给我一个满意的答复。
企鹅同其他生活在寒冷地区的鸟类一样,都已经适应了寒冷的气候,能够尽可能少地散失热量,保持自己身体主要部分温度在40℃左右。但是它们的脚却很难保暖,因为脚上既不长羽毛,也没有鲸脂一类脂肪的防护,而且还有相对来说很大的面积(寒带地区的哺乳动物也是如此,比如说北极熊)。
于是,企鹅通过两种机制来防止脚被冻坏。一种机制,是通过改变向双脚提供血液的动脉血管的直径来调节脚内的血液流量。当寒冷时,减少脚部的血液流量;当比较温暖时,增加血液流量。其实我们人类也有类似的机制,所以我们的手和脚在我们感到冷时会变得苍白;当觉得暖和时,则变得红润。这样一种调节机制极其复杂,由脑部的下丘脑控制,需要神经系统和各种激素的参与。
此外,企鹅在其双脚的上层还有一种“逆流热交换系统”。向脚提供温暖血液的动脉血管分叉为许多的小动脉血管,同时,在...
南极的企鹅在冬季长时间踩在冰雪上,它们的脚为什么不会冻坏?几年前我曾听到收音机里讲,说相关信息家发现企鹅的脚内有一套独特的辅助血液循环系统,可以防止它们的脚被冻坏。此后我就再也没有看见过有关这方面的资料或解释。我也请教过一些研究企鹅的科学家,他们都未能给我一个满意的答复。
企鹅同其他生活在寒冷地区的鸟类一样,都已经适应了寒冷的气候,能够尽可能少地散失热量,保持自己身体主要部分温度在40℃左右。但是它们的脚却很难保暖,因为脚上既不长羽毛,也没有鲸脂一类脂肪的防护,而且还有相对来说很大的面积(寒带地区的哺乳动物也是如此,比如说北极熊)。
于是,企鹅通过两种机制来防止脚被冻坏。一种机制,是通过改变向双脚提供血液的动脉血管的直径来调节脚内的血液流量。当寒冷时,减少脚部的血液流量;当比较温暖时,增加血液流量。其实我们人类也有类似的机制,所以我们的手和脚在我们感到冷时会变得苍白;当觉得暖和时,则变得红润。这样一种调节机制极其复杂,由脑部的下丘脑控制,需要神经系统和各种激素的参与。
此外,企鹅在其双脚的上层还有一种“逆流热交换系统”。向脚提供温暖血液的动脉血管分叉为许多的小动脉血管,同时,在脚部变冷的血液又通过与这许多动脉小血管紧挨在一起的数目相同的静脉小血管流回。这样,动脉小血管内温暖血液的热量就传递给了与之紧贴的静脉小血管内的逆流冷血,结果,真正带到脚部的热量其实是很少的。
在冬季,企鹅脚部的温度仅保持在冰点温度以上1~2℃,这样就最大限度地减少了热量散失,同时也防止了脚被冻伤。鸭子和鹅的脚也有类似的结构,但是,若把它们圈在温暖的室内饲养,过几个星期再把它们放回冰天雪地里,那么它们双脚贴地的一面就会被冻坏。这是因为它们的生理活动已经适应了温暖的环境,通向脚部的血流实际上已经被切断,此时再回到寒冷环境,脚部的温度就会下降到冰点以下。
我无法对企鹅是否有辅助血液循环系统发表看法,不过,企鹅的脚不会冻坏之谜,是可以从生物化学的角度来加以部分说明的,而且很有意思。
氧与生物体内的血红蛋白结合,通常是一种强烈的放热反应。一个血红蛋白分子吸收和添加氧原子,要释放出大量的热量(DH)。在相反的逆反应中,当血红蛋白分子释放出氧原子时,通常会吸收同等数量的热量。然而,氧化反应和脱氧反应发生在生物体的不同部分,也就是说发生两种反应所在的分子环境不同(比如说酸度不同),整个过程的结果,则是热量的散失或增加。
这DH的实际数值,可以因物种的不同相差很大。具体到南极企鹅的情形,在包括脚在内的外围冷组织中,DH值要比人类小得多。这就带来两个好处。首先,在进行脱氧反应时,企鹅的血红蛋白所吸收的热量大为减少,于是,它的双脚就不容易冻坏。
第二个好处来自热力学定律。根据热力学定律,任何一种可逆反应,包括血红蛋白的氧化反应和脱氧反应,较低的温度有利于进行放热反应,而不利于反方向进行的吸热反应。因此,在低温下,对于大多数物种,都是吸收氧的反应进行得比较激烈,而不容易进行释放氧的反应。一个物种所具有的DH如果相对来说不高不低正合适,那么这就意味着,在冷组织中血红蛋白对氧的亲和力不会变高到使氧无法从血红蛋白脱离出来。
DH因物种而异还带来一个非常有意思的结果,在某些南极的鱼类中,即使是氧脱离出来,实际上也是在释放热量。金枪鱼就是一个极端例子。在氧从血红蛋白脱离出来时居然会释放出大量的热量,以至于可以使金枪鱼的体温保持在比环境温度高出17℃。原来,并非所有鱼类都是冷血动物!
在动物中也有相反的例子,必须要减少由于代谢过于旺盛释放的热量。那种具有迁徙特性的水鸡(又叫“秧鸡”),它的血红蛋白氧化时释放的DH比温驯的鸽子要高很多。因此,水鸡进行长距离飞行时,当血红蛋白分子释放出氧原子时会吸收大量热量,体温也不会太高。
最后要说的是,胎儿也需要以某种方式散失热量。胎儿与外界的唯一联系是母亲向其提供的血液。胎儿血红蛋白氧化时的DH值比母亲血红蛋白的DH值低,结果,氧脱离母亲血液时所吸收的热量就会多于氧与胎儿的血红蛋白结合时所释放的热量。于是,便有热量转移至母亲的血液。也就是说,从胎儿带走了一部分热量。
其他答案(共22个回答)
在寒冷地区的鸟类一样,都已经适应了寒冷的气候,能够尽可能少地散失热量,保持自己身体主要部分温度在40℃左右。但是它们的脚却很难保暖,因为脚上既不长羽毛,也没有鲸脂一类脂肪的防护,而且还有相对来说很大的面积。
  于是,企鹅通过两种机制来防止脚被冻坏。一种机制,是通过改变向双脚提供血液的动脉血管的直径来调节脚内的血液流量。当寒冷时,减少脚部的血液流量;当比较温暖时,增加血液...
  南极的企鹅同其他相关信息在寒冷地区的鸟类一样,都已经适应了寒冷的气候,能够尽可能少地散失热量,保持自己身体主要部分温度在40℃左右。但是它们的脚却很难保暖,因为脚上既不长羽毛,也没有鲸脂一类脂肪的防护,而且还有相对来说很大的面积。
  于是,企鹅通过两种机制来防止脚被冻坏。一种机制,是通过改变向双脚提供血液的动脉血管的直径来调节脚内的血液流量。当寒冷时,减少脚部的血液流量;当比较温暖时,增加血液流量。这样一种调节机制极其复杂,由脑部的下丘脑控制,需要神经系统和各种激素的参与。
  此外,企鹅在其双脚的上层还有一种“逆流热交换系统”。向脚提供温暖血液的动脉血管分叉为许多的小动脉血管,同时,在脚部变冷的血液又通过与这许多动脉小血管紧挨在一起的数目相同的静脉小血管流回。这样,动脉小血管内温暖血液的热量就传递给了与之紧贴的静脉小血管内的逆流冷血,结果,真正带到脚部的热量其实是很少的。
  在冬季,企鹅脚部的温度仅保持在冰点温度以上1~2℃,这样就最大限度地减少了热量散失,同时也防止了脚被冻伤。鸭子和鹅的脚也有类似的结构,但是,若把它们圈在温暖的室内饲养,过几个星期再把它们放回冰天雪地里,那么它们双脚贴地的一面就会被冻坏。这是因为它们的生理活动已经适应了温暖的环境,通向脚部的血流实际上已经被切断,此时再回到寒冷环境,脚部的温度就会下降到冰点以下。
  氧与生物体内的血红蛋白结合,通常是一种强烈的放热反应。一个血红蛋白分子吸收和添加氧原子,要释放出大量的热量(DH)。在相反的逆反应中,当血红蛋白分子释放出氧原子时,通常会吸收同等数量的热量。然而,氧化反应和脱氧反应发生在生物体的不同部分,也就是发生两种反应所在的分子环境不同(比如酸度不同),整个过程的结果,则是热量的散失或增加。
  DH的实际数值,具体到南极企鹅的情形,在包括脚在内的外围冷组织中,DH值要比人类小得多。这就带来两个好处。首先,在进行脱氧反应时,企鹅的血红蛋白所吸收的热量大为减少,于是,它的双脚就不容易冻坏。
  第二个好处来自热力学定律。根据热力学定律,任何一种可逆反应,包括血红蛋白的氧化反应和脱氧反应,较低的温度有利于进行放热反应,而不利于反方向进行的吸热反应。因此,在低温下,对于大多数物种,都是吸收氧的反应进行得比较激烈,而不容易进行释放氧的反应。一个物种所具有的DH如果相对来说不高不低正合适,那么这就意味着,在冷组织中血红蛋白对氧的亲和力不会变高到使氧无法从血红蛋白脱离出来。
说科学家发现企鹅的脚内有一套独特的辅助血液循环系统,可以防止它们的脚被冻坏。此后我就再也没有看见过有关这方面的资料或解释。我也请教过一些研究企鹅的科学家,他们都未能给我一个满意的答复。
企鹅同其他生活在寒冷地区的鸟类一样,都已经适应了寒冷的气候,能够尽可能少地散失热量,保持自己身体主要部分温度在40℃左右。但是它们的脚却很难保暖,因为脚上既不长羽毛,也没有鲸脂一类脂肪的防护,而且还有相对来说很大的面积(寒带地区的哺乳动物也是如此,比如说北极熊)。
于是,企鹅通过两种机制来防止脚被冻坏。一种机制,是通过改变向双脚提供血液的动脉血管的直径来调节脚内的血液流量。当寒冷时,减少脚部的血液流量;当比较温暖时,增加血液流量。其实我们人类也有类似的机制,所以我们的手和脚在我们感到冷时会变得苍白;当觉得暖和时,则变得红润。这样一种调节机制极其复杂,由脑部的下丘脑控制,需要神经系统和各种激素的参与。
此外,企鹅在其双脚的上层还有一种“逆流热交换系统”。向脚提供温暖血液的动脉血管分叉为许多的小动脉血管,同时,在脚部变冷的血液又通过与这许多动脉小血管紧挨在一起的数目相同的静脉小血管流回。这样,动脉小血管内温暖血液的热量就传递给了与之紧贴的静脉小血管内的逆流冷血,结果,真正带到脚部的热量其实是很少的。
在冬季,企鹅脚部的温度仅保持在冰点温度以上1~2℃,这样就最大限度地减少了热量散失,同时也防止了脚被冻伤。鸭子和鹅的脚也有类似的结构,但是,若把它们圈在温暖的室内饲养,过几个星期再把它们放回冰天雪地里,那么它们双脚贴地的一面就会被冻坏。这是因为它们的生理活动已经适应了温暖的环境,通向脚部的血流实际上已经被切断,此时再回到寒冷环境,脚部的温度就会下降到冰点以下。
我无法对企鹅是否有辅助血液循环系统发表看法,不过,企鹅的脚不会冻坏之谜,是可以从生物化学的角度来加以部分说明的,而且很有意思。
氧与生物体内的血红蛋白结合,通常是一种强烈的放热反应。一个血红蛋白分子吸收和添加氧原子,要释放出大量的热量(DH)。在相反的逆反应中,当血红蛋白分子释放出氧原子时,通常会吸收同等数量的热量。然而,氧化反应和脱氧反应发生在生物体的不同部分,也就是说发生两种反应所在的分子环境不同(比如说酸度不同),整个过程的结果,则是热量的散失或增加。
这DH的实际数值,可以因物种的不同相差很大。具体到南极企鹅的情形,在包括脚在内的外围冷组织中,DH值要比人类小得多。这就带来两个好处。首先,在进行脱氧反应时,企鹅的血红蛋白所吸收的热量大为减少,于是,它的双脚就不容易冻坏。
第二个好处来自热力学定律。根据热力学定律,任何一种可逆反应,包括血红蛋白的氧化反应和脱氧反应,较低的温度有利于进行放热反应,而不利于反方向进行的吸热反应。因此,在低温下,对于大多数物种,都是吸收氧的反应进行得比较激烈,而不容易进行释放氧的反应。一个物种所具有的DH如果相对来说不高不低正合适,那么这就意味着,在冷组织中血红蛋白对氧的亲和力不会变高到使氧无法从血红蛋白脱离出来。
DH因物种而异还带来一个非常有意思的结果,在某些南极的鱼类中,即使是氧脱离出来,实际上也是在释放热量。金枪鱼就是一个极端例子。在氧从血红蛋白脱离出来时居然会释放出大量的热量,以至于可以使金枪鱼的体温保持在比环境温度高出17℃。原来,并非所有鱼类都是冷血动物!
在动物中也有相反的例子,必须要减少由于代谢过于旺盛释放的热量。那种具有迁徙特性的水鸡(又叫“秧鸡”),它的血红蛋白氧化时释放的DH比温驯的鸽子要高很多。因此,水鸡进行长距离飞行时,当血红蛋白分子释放出氧原子时会吸收大量热量,体温也不会太高。
最后要说的是,胎儿也需要以某种方式散失热量。胎儿与外界的唯一联系是母亲向其提供的血液。胎儿血红蛋白氧化时的DH值比母亲血红蛋白的DH值低,结果,氧脱离母亲血液时所吸收的热量就会多于氧与胎儿的血红蛋白结合时所释放的热量。于是,便有热量转移至母亲的血液。也就是说,从胎儿带走了一部分热量。
参考资料:
南极的企鹅在冬季长时间踩在冰雪上,它们的脚为什么不会冻坏?几年前我曾听到收音机里讲,说科学家发现企鹅的脚内有一套独特的辅助血液循环系统,可以防止它们的脚被冻坏。此后我就再也没有看见过有关这方面的资料或解释。我也请教过一些研究企鹅的科学家,他们都未能给我一个满意的答复。
企鹅同其他生活在寒冷地区的鸟类一样,都已经适应了寒冷的气候,能够尽可能少地散失热量,保持自己身体主要部分温度在40℃左右。但是它们的脚却很难保暖,因为脚上既不长羽毛,也没有鲸脂一类脂肪的防护,而且还有相对来说很大的面积(寒带地区的哺乳动物也是如此,比如说北极熊)。
于是,企鹅通过两种机制来防止脚被冻坏。一种机制,是通过改变向双脚提供血液的动脉血管的直径来调节脚内的血液流量。当寒冷时,减少脚部的血液流量;当比较温暖时,增加血液流量。其实我们人类也有类似的机制,所以我们的手和脚在我们感到冷时会变得苍白;当觉得暖和时,则变得红润。这样一种调节机制极其复杂,由脑部的下丘脑控制,需要神经系统和各种激素的参与。
此外,企鹅在其双脚的上层还有一种“逆流热交换系统”。向脚提供温暖血液的动脉血管分叉为许多的小动脉血管,同时,在脚部变冷的血液又通过与这许多动脉小血管紧挨在一起的数目相同的静脉小血管流回。这样,动脉小血管内温暖血液的热量就传递给了与之紧贴的静脉小血管内的逆流冷血,结果,真正带到脚部的热量其实是很少的。
在冬季,企鹅脚部的温度仅保持在冰点温度以上1~2℃,这样就最大限度地减少了热量散失,同时也防止了脚被冻伤。鸭子和鹅的脚也有类似的结构,但是,若把它们圈在温暖的室内饲养,过几个星期再把它们放回冰天雪地里,那么它们双脚贴地的一面就会被冻坏。这是因为它们的生理活动已经适应了温暖的环境,通向脚部的血流实际上已经被切断,此时再回到寒冷环境,脚部的温度就会下降到冰点以下。
我无法对企鹅是否有辅助血液循环系统发表看法,不过,企鹅的脚不会冻坏之谜,是可以从生物化学的角度来加以部分说明的,而且很有意思。
氧与生物体内的血红蛋白结合,通常是一种强烈的放热反应。一个血红蛋白分子吸收和添加氧原子,要释放出大量的热量(DH)。在相反的逆反应中,当血红蛋白分子释放出氧原子时,通常会吸收同等数量的热量。然而,氧化反应和脱氧反应发生在生物体的不同部分,也就是说发生两种反应所在的分子环境不同(比如说酸度不同),整个过程的结果,则是热量的散失或增加。
这DH的实际数值,可以因物种的不同相差很大。具体到南极企鹅的情形,在包括脚在内的外围冷组织中,DH值要比人类小得多。这就带来两个好处。首先,在进行脱氧反应时,企鹅的血红蛋白所吸收的热量大为减少,于是,它的双脚就不容易冻坏。
第二个好处来自热力学定律。根据热力学定律,任何一种可逆反应,包括血红蛋白的氧化反应和脱氧反应,较低的温度有利于进行放热反应,而不利于反方向进行的吸热反应。因此,在低温下,对于大多数物种,都是吸收氧的反应进行得比较激烈,而不容易进行释放氧的反应。一个物种所具有的DH如果相对来说不高不低正合适,那么这就意味着,在冷组织中血红蛋白对氧的亲和力不会变高到使氧无法从血红蛋白脱离出来。
DH因物种而异还带来一个非常有意思的结果,在某些南极的鱼类中,即使是氧脱离出来,实际上也是在释放热量。金枪鱼就是一个极端例子。在氧从血红蛋白脱离出来时居然会释放出大量的热量,以至于可以使金枪鱼的体温保持在比环境温度高出17℃。原来,并非所有鱼类都是冷血动物!
在动物中也有相反的例子,必须要减少由于代谢过于旺盛释放的热量。那种具有迁徙特性的水鸡(又叫“秧鸡”),它的血红蛋白氧化时释放的DH比温驯的鸽子要高很多。因此,水鸡进行长距离飞行时,当血红蛋白分子释放出氧原子时会吸收大量热量,体温也不会太高。
最后要说的是,胎儿也需要以某种方式散失热量。胎儿与外界的唯一联系是母亲向其提供的血液。胎儿血红蛋白氧化时的DH值比母亲血红蛋白的DH值低,结果,氧脱离母亲血液时所吸收的热量就会多于氧与胎儿的血红蛋白结合时所释放的热量。于是,便有热量转移至母亲的血液。也就是说,从胎儿带走了一部分热量。
据说企鹅的脚内有一套独特的辅助血液循环系统,可以防止它们的脚被冻坏。
企鹅同其他生活在寒冷地区的鸟类一样,都已经适应了寒冷的气候,能够尽可能少地散失热量,保持自己身体主要部分温度在40℃左右。但是它们的脚却很难保暖,因为脚上既不长羽毛,也没有鲸脂一类脂肪的防护,而且还有相对来说很大的面积(寒带地区的哺乳动物也是如此,比如说北极熊)。
  于是,企鹅通过两种机制来防止脚被冻坏。一种机制,是通过改变向双脚提供血液的动脉血管的直径来调节脚内的血液流量。当寒冷时,减少脚部的血液流量;当比较温暖时,增加血液流量。其实我们人类也有类似的机制,所以我们的手和脚在我们感到冷时会变得苍白;当觉得暖和时,则变得红润。这样一种调节机制极其复杂,由脑部的下丘脑控制,需要神经系统和各种激素的参与。
  此外,企鹅在其双脚的上层还有一种“逆流热交换系统”。向脚提供温暖血液的动脉血管分叉为许多的小动脉血管,同时,在脚部变冷的血液又通过与这许多动脉小血管紧挨在一起的数目相同的静脉小血管流回。这样,动脉小血管内温暖血液的热量就传递给了与之紧贴的静脉小血管内的逆流冷血,结果,真正带到脚部的热量其实是很少的。
  在冬季,企鹅脚部的温度仅保持在冰点温度以上1~2℃,这样就最大限度地减少了热量散失,同时也防止了脚被冻伤。鸭子和鹅的脚也有类似的结构,但是,若把它们圈在温暖的室内饲养,过几个星期再把它们放回冰天雪地里,那么它们双脚贴地的一面就会被冻坏。这是因为它们的生理活动已经适应了温暖的环境,通向脚部的血流实际上已经被切断,此时再回到寒冷环境,脚部的温度就会下降到冰点以下。
企鹅能在南极落户,并在那里生儿育女,一代一代传下去,成为冰雪世界的永久居民,这确实是生物界的一大奇迹。特别是帝企鹅能在南极的冬季繁殖,更是生物界的一大壮举。登上...
企鹅被称为"有羽毛的鱼",这主要归功于企鹅在水下自在的游泳姿态和飞快的游泳速度。企鹅虽然与鲸的体积相差较大,但是它们在水下的速度却不相上下。企鹅的速度能达到5....
有两只脚还有两个翅膀
可以这样试:把羽毛拔光,这时候你会发现企鹅冻死了,结果出来了,保暖用的
答: 宝宝通过食物来补充氨基酸就可以了,对于六个月龄以内的宝宝而言,最适宜的蛋白质还是母乳蛋白质。断奶后的宝宝来说动物性蛋白如蛋、奶、肉、鱼等,还有大豆蛋白,它们的氨...
答: 加盟粉婆婆土豆粉后,可以免费学习技术,还有技术老师亲自指导。直到学会为止。
答: 生物多样性对人类生存和发展的价值是巨大的。它提供人类所有的食物和许多诸如木材、纤维、油料、橡胶等重要的工业产品。中医药绝大部分来自生物,它是维持人们健康的重要组...
答: 人类的文化成果通过教育者附着在个体的意识当中,塑造了新的个体,为个体关于未来的指向提供了透视器和显微镜
大家还关注
Copyright &
Corporation, All Rights Reserved
确定举报此问题
举报原因(必选):
广告或垃圾信息
激进时政或意识形态话题
不雅词句或人身攻击
侵犯他人隐私
其它违法和不良信息
报告,这不是个问题
报告原因(必选):
这不是个问题
这个问题分类似乎错了
这个不是我熟悉的地区14被浏览3,504分享邀请回答0添加评论分享收藏感谢收起“秋冻”到底靠不靠谱?这5种人4个地方不能冻_突袭网
当前位置&:&&&&“秋冻”到底靠不靠谱?这5种人4个地方不能冻
热门标签:&
“秋冻”到底靠不靠谱?这5种人4个地方不能冻
编辑:王亮评论:
古人云,春捂秋冻,不生杂病。但面对转凉的天气,有的人仍然穿得非常单薄,甚至在冷空气来临之际,仍恪守秋冻的信念,结果染上感冒等呼吸道疾病。其实秋冻不能简单的理解为少穿衣服,应该“科学地秋冻”。
秋 / 听天命、顺天时
初秋时节,暑热未消,气温偏高,气候变化比较平缓。此时,少穿点衣服,使身体略感凉意,适当“冻一冻”是有益健康的。
晚秋时节,气候变化较大,早晚温差增加,一旦有强冷空气活动,气温急剧下降时,就应及时、适当地增衣保暖。此时若再一味强求“秋冻”,就会适得其反。
秋 / 早晚要保暖
早,气温比较寒冷,早起晨练要添加衣物,注意保暖。
晚,当太阳公公下山后,你会感觉到温度急剧下降,劳动一天后身体又略显疲惫,正是外邪入侵的时候,一定要保暖。
秋 / 四个部位要保暖
腹部受凉容易引起胃部不适,甚至疼痛,特别是有胃病史的人更要加以注意。
脚是人体各部位中离心脏最远的地方,而脚部又汇集了全身的经脉,所以人们常说“脚冷,则冷全身”。
全身若冷,机体抵抗力就会下降,病邪就有可能乘虚而入。
这个部位受凉,向下容易引起感冒;向上则会导致颈部血管收缩,不利于脑部供血。
肩关节及其周围组织相对比较脆弱,容易受伤。
秋 / 五类人群不能秋冻
心脑血管疾病
心脑血管疾病患者应注意保暖,根据气温变化随时增减衣服。因为,当身体受到寒冷刺激后,交感神经会比较兴奋,全身毛细血管收缩,血液循环外周阻力加大,引起血压上升,心、脑负荷加重,加上“秋燥”常引起体内缺水,导致血液黏稠度增加,极易诱发心绞痛、心肌梗死、中风等疾病。
秋天是胃病的多发季节,且深秋时节气温变化无常,胃肠道对寒冷刺激非常敏感,若不慎着凉,容易引起胃炎、胃溃疡等疾病复发,严重者可引起胃出血、胃穿孔等并发症。
呼吸道疾病
有支气管炎、哮喘、肺心病等病史的人也不宜“秋冻”。寒冷会对人的气道产生不良刺激,从而诱发气管、支气管或小气道的痉挛,使得上述疾病复发或加重。
患有风湿、类风湿性关节炎的患者常反复出现腿部胀痛、沉重感,受寒后可使上述症状加重,出现关节疼痛,或伴有肿胀,行走不便等。
糖尿病常并发血管神经病变,表现为微循环障碍、手足麻木、疼痛,严重者可表现为坏疽。
此外,身体调节功能较差的老年人以及正在生长发育的婴幼儿也不宜进行“秋冻”。
www.lvyefuwu.com
素材来源于健康老人帮,如有侵权请及时联系小编
天津阳光绿叶家政返回搜狐,查看更多 责任编辑:
更多精彩 >>>

我要回帖

更多关于 手相有没有科学依据 的文章

 

随机推荐