数学问题五年级题

5个看似巨简单的数学问题至今无人能破
转自公众号:超级数学建模(ID:supermodeling)
数学有时候会变得特别复杂,然而幸好不是所有的数学问题都晦涩难懂。这篇文章将会向大家介绍数学领域中五个有趣的问题,问题本身简单易懂,但迄今仍未被数学家们解决。
图片来源:Justin Lewis
1. Collatz猜想
图片来源:Jon McLoone
Collatz猜想是一个简单有趣而又没有解决的数学问题。克拉兹问题(Collatz problem)也被叫做hailstone问题、3n+1问题、Hasse算法问题、Kakutani算法问题、Thwaites猜想或者Ulam问题。是指:随意选一个整数,如果它是偶数,那么将它除以2;如果它是奇数,那么将它乘以3再加1。对于得到的新的数,重复操作上面的运算过程。如果你一直操作下去,你每次都终将得到1。
德国数学家Collatz于1937年首次提出这个问题,题意清晰、明了、简单,连小学生都能看懂,得到许多大数学家的关注。日本角谷静夫谈到该猜想的历史时讲:“一个月里,耶鲁大学的所有人都着力于解决这个问题,毫无结果。同样的事情好象也在芝加哥大学发生了。有人猜想,这个问题是苏联克格勃的阴谋,目的是要阻碍美国数学的发展。”著名学者盖伊(R.K.Guy)在介绍这一问题的时,竟然冠以"不要试图去解决这些问题"为标题。匈牙利著名的多产数学家保罗·埃尔德什(Paul Erd?s)曾评论说,“数学还没有为这类问题做好准备”,认为这个猜想在现阶段难以解决。
邬家邦先生的《3N+1猜想》(湖南大学出版社,2001年)是国内较全面介绍、论述该问题的著作。该书说,“3N+1猜想之所以难以攻克,原因就在于对一般的n∈N,n的迭代轨迹序列这的元素排列杂乱无章,无规律可循”。
也有的数学家认为,这种形式如此简单,解决起来却又如此困难的问题,实在是可遇而不可求。该猜想任何程度的解决都是现代数学的一大进步,将开辟全新的领域。目前也有部分数学家和数学爱好者,在进行关于“负数的3x+1”、“5x+1”、“7x+1”等种种考拉兹猜想的变化形命题的研究。
许多学者对大量的自然数做了检验,均未发现反例。荷兰学者Eric Roosendaal在他的网站 (《 On the 3x + 1 problem》http://www.ericr.nl/wondrous/index.html) 上,介绍了世界上研究该问题的主要成果,并组织了世界范围的分布式计算,不断公布计算结果,2^60以内的数字均通过了验证。
关于 3x+1 问题以及相关问题的会议 1999 年 8 月在德国的 Eichst?tt 大学举行。会议参与者有:K. M. Monks(美国), Ken G. Monks (美国), Paul Andaloro (美国), Günther Wirsching (德国), Manfred Kudlek (德国) Ranan Banerji (美国), Jeffrey Lagarias (美国), Dierk Schleicher (德国),Marc Chamberland (美国), Jean-Louis Rouet (法国), Eric Roosendaal (荷兰), U. Fitze(瑞士),Marc Feix (法国),Edward Belaga (法国)等。
2011年5月,德国Gerhard Opfer在《Mathematics of Computation》上发表了一篇论文(预印本PDF),宣称证明了考拉兹猜想。一个月后,该作者承认证明是不完整的, “Collatz猜想是正确的” 的声明被撤回。(Thus,the statement “that the Collatz conjecture is true” has to be withdrawn, at least temporarily.)
来源:平常心
数学家们试验了数百万个数,至今还没发现哪怕一个不收敛到1的例子。然而问题在于,数学家们也没办法证明一定不存在一个特殊的数,在这一操作下最终不在1上收敛。有可能存在一个特别巨大的数,在这一套操作下趋向于无穷,或者趋向于一个除了1以外的循环的数。但没有人能证明这些特例的存在。
2. 移动沙发问题
图片来源:Claudio Rocchini
你要搬新家了,想把你的沙发搬过去。问题是,走廊有个转角,你不得不在角落位置上给沙发转方向。如果这个沙发很小,那没什么问题。如果是个挺大的沙发,估计得卡在角落上。如果你是个数学家,你会问自己:能够在角落上转过来的最大的沙发有多大呢?这个沙发不一定得是矩形,可以说任何形状。
这便是“移动沙发问题”的核心,具体来说就是:二维空间,走廊宽为1,转角90°,求能转过转角的最大二维面积是多少?
能转过转角的最大二维面积被称为“沙发常数”(the sofa constant)——这是真的,我不是骗你读书少。没人知道它到底有多大,但我们知道有一些相当大的沙发可以转得过去,所以我们知道沙发常数一定比它们大;也有一些沙发无论如何都转不过去,因此沙发常数一定比这些转不过去的面积小。迄今位置,我们知道沙发常数落在2.4之间。
3. 完美立方体问题
图片来源:Gfis
还记得勾股定理,A2 + B2 = C2 吗?A、B、C三个字母表示直角三角形的三边长。毕达哥拉斯三角形指的是三边长都是整数的直角三角形,即满足A2 + B2 = C2且A、B、C都是整数。现在我们将这个概念扩展到三维,在三维空间,我们需要四个数A、B、C和G。前三个数是立方体的三维边长,G是立方体的空间对角线长度。
正如有些三角形的三边都是整数一样,存在一些立方体的三边和体对角线(A、B、C和G)都是整数,但对于立方体来说还有三个面对角线(D、E和F),这就带来一个有趣的问题:有没有立方体满足这个7个边长都是整数的条件呢?
问题的目标在于找到一个立方体满足A2 + B2 + C2 = G2,且全部的边和对角线长度都是整数,这种立方体被称为完美立方体(perfect cuboid)。数学家们测试了各种不同的可能构型,还没找到任何一个满足条件的情况。但他们也不能证明这样的立方体不存在,因此搜寻完美立方体的工作还在继续。
4. 内接正方形问题
图片来源:Claudio Rocchini
随手画一个闭合曲线,这个曲线不一定要是圆,可以是任何你想要的形状,但曲线的起终点必须重合且曲线不能穿越自身,在这个曲线上可能找到四个点连成一个正方形。内接正方形假设的内容就是,每条闭合曲线(确切来说是每个平面内的简单闭合曲线)一定有一个内接正方形,这个正方形上四点都在这个闭合曲线上的某处。
许多闭合曲线上内接其他形状的问题都已经得到了解决,例如矩形或者三角形等,但正方形却有点复杂,至今数学家们还没有搞明白这个问题的正式证明。
5. 美好结局问题
图片来源:David Eppstein
这个问题之所以被命名为“美好结局问题”,是因为它促成了一对数学家的美好姻缘:数学家乔治·塞凯赖什(George Szekeres)和爱丝特·克莱(Esther Klein)都曾致力于解决这一问题,他们最终结婚了(而这个问题仍未解决)。概括来说,这个问题是这样的:
在一张纸面上随机放置5个点,假设这5个点排布不特殊(比如排在一条直线上),你总能找到其中四个点构成凸四边形,也即四个边夹角小于180°的四边形。这个定理的要点在于,不管这5个点的位置排布如何,你总能在5个点中构造一个凸四边形。
这是四边形的情况,而数学家发现,为了确保构造出一个凸五边形,似乎需要9个点;对于六边形则需要17个点,但此外更多边形的情况我们不清楚。构造七边形和更多变形需要多少点,依然是个谜。更重要的是,理应有一个公式告诉我们对于某一边数,需要多少个点。科学家们认为这个公式可能是M=1+2N-2,其中M是点数而N是边数。但至今为止数学家们能够证明的也就是上述这些有限范围内的结论了。
via:算法与数学之美
编辑:vingce
责任编辑:
声明:该文观点仅代表作者本人,搜狐号系信息发布平台,搜狐仅提供信息存储空间服务。
今日搜狐热点希尔伯特的23个数学问题
我的图书馆
希尔伯特的23个数学问题
德国数学家希尔伯特(图8-6)是19世纪末和20世纪上半叶最伟大的数学家之一.希尔伯特希尔伯特特别强调重大问题在数学发展中的作用,他指出:“如果我们想对最近的将来数学知识可能的发展有一个概念,那就必须回顾一下当今科学提出的,希望在将来能够解决的问题.”同时又指出:“某类问题对于一般数学进程的深远意义以及它们在研究者个人的工作中所起的重要作用是不可否认的.只要一门科学分支能提出大量的问题,它就充满生命力,而问题缺乏则预示着独立发展的衰亡或中止.”1900年8月,在巴黎召开的第二届国际数学家大会上,年仅38岁的希尔伯特应邀做了题为“数学问题”的著名讲演.在这具有历史意义的演讲中,他提出许多重要的思想:正如人类的每一项事业都追求着确定的目标一样,数学研究也需要自己的问题.正是通过这些问题的解决,研究者锻炼其钢铁意志,发现新观点,达到更为广阔的自由的境界.他阐述了重大问题所具有的特点,好的问题应具有以下三个特征:清晰性和易懂性;虽困难但又给人以希望;意义深远.同时,他还分析了研究数学问题时常会遇到的困难及克服困难的一些方法.就是在这次会议上,希尔伯特根据19世纪数学研究的成果和发展趋势提出23个悬而未决的数学问题,即著名的“希尔伯特的23个数学问题”.这次大会是数学史上一个重要的里程碑,他提出的23个问题更是功勋卓著、影响深远.希尔伯特的23个问题分为四大块:第1到第6问题是数学基础问题;第7到第12问题是数论问题;第13到第18问题是属于代数和几何问题;第19到第23问题属于数学分析问题.经过一个多世纪,希尔伯特提出的23个问题中,接近一半已经解决或基本解决.有些问题虽未解决,但也取得了重要的进展.问题1康托尔的连续统基数问题(公理化集合论)1874年,康托尔猜测在可数集基数与实数集基数之间没有别的基数,即著名的连续统假设.1938年,奥地利数理逻辑学家哥德尔证明了连续统假设与策梅洛-弗伦克尔(Zermelo-Fraenkel,ZF)集合论公理系统的无矛盾性.1963年,美国数学家科恩证明了连续统假设与ZF集合论公理系统彼此独立.因而连续统假设不能用ZF集合论公理系统加以证明,即连续统假设的真伪不可能在ZF集合论公理系统内判定.在这个意义上,问题已经解决了.问题2算术公理的相容性(数学基础)欧几里得几何的相容性可归结为算术公理的相容性.希尔伯特曾提出用形式主义计划的证明方法加以证明,后来发展为系统的希尔伯特计划(“元数学”或“证明论”),但1931年,哥德尔发表“不完备性定理”做出否定.1936年,根茨(G. Gentaen,)使用超限归纳法证明了算术公理系统的相容性,但数学的相容性问题至今未解决.问题3只根据合同公理证明等底等高的四面体有相等之体积是不可能的(几何基础)问题的含义是:存在两个等底等高的四面体,它们不可能分解为有限个小四面体,使这两组四面体彼此全等,这一问题很快于1900年由希尔伯特的学生德恩(M. Dehn,)给出了肯定的解答.这是希尔伯特问题中最早获得解决的一个.问题4直线作为两点间最短距离问题(几何基础)这一问题提得过于一般,满足这一性质的几何例子很多,只需要加以某些限制条件.在构造特殊度量几何方面已有很大进展,但未完全解决.1973年,苏联数学家波格列洛夫(Pogleov)宣布,在对称距离情况下,问题获得解决.问题5不要定义群的函数的可微性假设的李群概念(拓扑群论)这一问题简称连续群的解析性,即是否每一个局部欧式群都一定是李群.经过漫长的努力,这个问题于1952年,由美国格里森(Gleason)、蒙哥马利(Montqomery)和齐宾(Zipping)共同解决.1953年,日本的山迈彦得到完全肯定的结果.问题6物理公理的数学处理(数学物理)希尔伯特建议用数学的公理化方法推演出全部物理学.1933年,苏联数学家柯尔莫哥洛夫(A. Kolmogorov,)将概率论公理化.后来在量子力学、量子场论和热力学等领域,公理化方法获得很大成功,但物理学各个分支能否全盘公理化,很多人对此表示怀疑.公理化的物理意味着什么,仍是需要探讨的问题.问题7某些数的无理性与超越性(超越数论)要求证明:若是代数数,是无理数的代数数,则一定是超越数或至少是无理数.苏联数学家盖尔丰德(A. O. Gelfond)于1929年、德国数学家施奈德(T. Schneieder)及西格尔(C. L. Siegel,)于1934年各自独立地解决了这问题的后半部分.1966年贝克等大大推广了此结果.但是,超越数理论还远远未完成.要确定所给的数是否超越数,还没有统一的方法,如欧拉常数的无理性至今未获得证明.问题8素数分布问题(数论)希尔伯特在此问题中提到黎曼猜想、哥德巴赫猜想以及孪生素数问题.一般情形的黎曼猜想至今未解决.哥德巴赫猜想和孪生素数问题也未最终解决,这两个问题的最佳结果均属于中国的数学家陈景润.问题9任意数域中最一般的互反律之证明(类域论)该问题于1921年由日本学者高木贞治()、1927年由德国学者阿廷(E. Artin)各自给以基本解决.类域理论至今仍在发展之中.问题10丢番图方程可解性的判别(不定分析)希尔伯特提出问题:能否通过有限步骤来判定不定方程是否存在有理整数解.1970年,由苏联数学家马蒂雅塞维奇证明希尔伯特所期望的一般算法是不存在的.尽管得出了否定的结果,却产生了一系列很有价值的副产品,其中不少和计算机科学有密切联系.问题11系数为任意代数数的二次型(二次型理论)德国数学家哈塞(H. Hasse,)于1929年和西格尔于1951年在这个问题上获得了重要的结果.20世纪60年代,法国数学家魏依取得了新的重大进展,但未获最终解决.问题12阿贝尔(Abel)域上的克罗内克(L. Kroneker,)定理推广到任意代数有理域(复乘法理论)尚未解决.问题13不可能用只有两个变数的函数解一般的七次方程(方程论与实函数论)连续函数情形于1957年由苏联数学家阿诺尔德(V. Arnold,)否定解决.1964年,苏联数学家维图斯金(Vituskin)推广到连续可微情形.但若要求是解析函数,则问题仍未解决.问题14证明某类完全函数系的有限性(代数不变式理论)1958年,日本数学家永田雅宜举出反例给出了否定解决.问题15舒伯特(Schubert)记数演算的严格基础(代数几何学)由于许多数学家的努力,舒伯特演算的基础的纯代数处理已有可能,但舒伯特演算的合理性仍待解决.至于代数几何的基础,已由荷兰数学家范·德·瓦尔登于1940年及法国数学家魏依于1950年各自独立建立.问题16代数曲线与曲面的拓扑(曲线与曲面的拓扑学、常微分方程的定性理论)这个问题分为两部分:前半部分涉及代数曲线含有闭的分枝曲线的最大数目,后半部分要求讨论极限环的最大个数和相对位置.关于问题的前半部分,近年来不断有重要结果出现.关于问题的后半部分,1978年,中国的史松龄在秦元勋、华罗庚的指导下,与王明淑分别举出了至少有4个极限环的具体例子.1983年,中国的秦元勋进一步证明了二次系至多有4个极限环,从而最终解决了二次微分方程的解的结构问题,并且为希尔伯特第16问题的研究提供了新的途径.问题17半正定形式的平方表示式(实域论)一个实数n元多项式对任意数组都恒大于零或等于零,是否能写成平方和的形式?此问题于1927年,由阿廷给予肯定的解决.问题18用全等多面体构造空间(结晶体群理论)该问题由三部分组成.第一部分欧式空间仅有有限个不同类的带基本区域的运动群.第二部分包括是否存在不是运动群的基本区域但经适当毗连即可充满全空间的多面体?第一部分由德国数学家贝尔巴赫(Bieberbach)于1910年做出了肯定的回答.第二部分由德国数学家莱因哈特(Reinhart)于1928年、黑施于1935年做出了部分解决.第三部分至今未能解决.问题19正则变分问题的解是否一定解析(椭圆型偏微分方程理论)1929年,德国数学家伯恩斯坦(L. Bernstein,)证明了一个变元的、解析的非线性椭圆方程,其解必定是解析的.这个结果后来又被伯恩斯坦和苏联数学家彼德罗夫斯基等推广到多变元和椭圆组的情形.在此意义下,问题已获解决.问题20一般边值问题(椭圆型偏微分方程理论)偏微分方程边值问题的研究正处于蓬勃发展的阶段,已成为一个很大的数学分支,目前还在继续发展,进展十分迅速.问题21具有给定单值群的线性偏微分方程的存在性证明(线性常微分方程大范围理论)此问题属于线性常微分方程的大范围理论.希尔伯特于1905年、勒尔(H. Rohrl)于1957年分别得出重要结果.1970年,法国数学家德利涅(Deligne)做出了突出的贡献.问题22用自守函数将解析函数单值比(黎曼曲面体)此问题涉及深奥的黎曼曲面理论,一个变数的情形已由德国数学家克贝(P. Koebe)于1907年解决,但一般情形尚未解决.问题23变分法的进一步发展(变分法)这是一个不明确的数学问题,只是谈了一些对变分法的一般看法.希尔伯特本人和许多数学家对变分法的发展做出了重要的贡献.20世纪变分法已有了很大的进展.希尔伯特的23个数学问题的影响及意义希尔伯特的23个数学问题绝大部分业已存在,并不是希尔伯特首先提出来的,但他站在更高的层面,用更尖锐、更简单的方式重新提出了这些问题,并指出了其中许多问题的解决方向.在世纪之交提出的这23个问题,涉及现代数学的许多领域.一个世纪以来,这些问题激发着数学家们浓厚的研究兴趣,对20世纪数学的发展起着巨大的推动作用.许多世界一流的数学家都深深为这23个问题着迷,并力图解决这些问题.希尔伯特所提出的问题清晰、易懂,其中一些有趣得令许多外行都跃跃欲试.解决其中任意一个,或者在任意一个问题上有重大突破,就自然地被公认为是世界一流水平的数学家.我国的数学家陈景润因在解决希尔伯特第8个问题(即素数问题,包括黎曼猜想、哥德巴赫猜想等)上有重大贡献而为世人所瞩目,由此也可见希尔伯特问题的特殊地位.经过整整一个世纪,希尔伯特的23个数学问题中,将近一半已经解决或基本解决.有些问题虽未解决,但也取得了重要进展.希尔伯特提出的问题是极其深奥的,不少问题一般人连题目也看不懂.正因为困难,才吸引有志之士去做巨大的努力.但它又不是不可接近的,因而提供了使人们终有收获的科学猎场.一百多年来,人们始终注视着希尔伯特问题的研究,绝不是偶然的.希尔伯特问题的研究与解决大大推动了许多现代数学分支的发展,包括数理逻辑、几何基础、李群、数学物理、概率论、数论、函数论、代数几何、常微分方程、偏微分方程、黎曼曲面论和变分法等.第2问题和第10问题的研究,还促进了现代计算机理论的成长.当然,预测不可能全部符合后来的发展,20世纪数学发展的广度和深度都远远超出20世纪初年的预料,像代数拓扑、抽象代数、泛函分析和多复变量函数等许多理论学科都未列入这23个问题,更不要说与应用有关的应用数学以及随计算机出现发展起来的计算数学和计算机科学了.(本期责编:王芳)本文摘编自胡伟文 徐忠昌主编《数学文化欣赏》(北京:科学出版社,责任编辑吉正霞,2016.11)第八章部分,内容略有删节。ISBN:978-7-03-数学对于人类文化进步产生了重要的推动作用,对人的思想、精神世界和人文素质有着巨大的影响.高等学校开设了许多数学课程,但仍不可忽视数学文化的教育功能.《数学文化欣赏》是一本面向普通高等院校非数学专业大学生的文化素质教材,力求阐明数学的思想、方法与文化意义,阐述了数学的发展简史和其推进人类文化发展的作用,介绍了解析几何、微积分、概率论与数理统计等大学生必修课程的思想方法及其文化影响,指出了数学与爱情、文学、艺术和教育等方面的联系.特别需要指出的是,本书结合军校人才培养目标的特点,突出了数学与军事、数学与信息技术广泛而深刻的联系.一起阅读科学!科学出版社│微信ID:sciencepress-cspm专业品质 学术价值原创好读 科学品味点击“阅读原文”可购买本书本文为头条号作者发布,不代表今日头条立场。
喜欢该文的人也喜欢中国打工小伙震惊中外 无师自通破解数学界难题
余建春在浙江大学现场演示新算法。中国网新闻7月21日讯 据外媒报道,靠打工维生的中国小伙余建春,依据计算机科学及信息安全知识破解出了长期困扰数学界的一大难题。他因此被外界称为影片《心灵捕手》中主人公的现实原型。中国打工小伙上演现实版《心灵捕手》:自创算法一经确认即可成为数学界重要发现“当我望着钢琴时,只能看到一架木头及一堆琴键和踏板。但对于贝多芬和莫扎特来说,他们却能将钢琴弹奏得流畅自如。”奥斯卡获奖电影《心灵捕手》的主人公Will Hunting曾在影片中这样说道。然而谈及高等数学和科学时,他却“相当得心应手”。影片中的主人公Will Hunting是一名清洁工,但其与生俱来的数学天赋足以让他解出令MIT高材生都头痛的问题;现实中的余建春也只是一名连大学文凭都没有的物流公司包装工,但他却发现了一种识别卡迈克尔数的新算法,让这长期滞留在数学家面前难题有所起色。与Will Hunting神相似的余建春日前在中国引起群众广泛关注和敬畏,他的新算法同时得到了国际学术界的普遍赞赏。密苏里大学数学家William Banks告诉 ,这种算法一经确认,即可成为卡迈克尔数领域的一大重要发现。余建春的运算手稿。四处打工的河南小伙余建春每到一个新城市便去探访当地的大学,以求证他的数学算法是否正确。在过去的八年间,他曾向一些中国杰出数学家发送邮件,并附上自己对卡迈克尔数的解答方法,但从未得到回复。从未接受过相关教育 余建春:发现新算法全凭直觉与灵感直到浙江大学数学教授蔡天新与他取得联系,并邀请他来到研讨会现场演示运用新算法解答四道数学题。蔡教授目前正计划将余的卡迈克尔数相关理论发表出版。他表示,这种新算法极具想像力,余从未接受过任何有关数论的系统训练或高等数学课程,一切都源自他对数字的敏感和天赋。余建春告诉CNN,他对自己运用非传统算法成功识别“伪质数”感到“喜出望外”。卡迈克尔数超出了费尔玛对于质数的定义,它因可以被1和自身以外的数字整除而不满足质数的条件,这加大了人们识别真正质数的难度和复杂度。R.D.Charmichael在1910年发现了15个不满足条件数字,并推测类似的数字还将有更多。随着数学家们发现越来越多的多位数质数,目前的重点集中于对这些数字的细化分类。卡迈克尔数起始于561, , 2465……它们在计算机科学和信息安全方面发挥着重要作用。余建春称自己发现的这一新算法全凭直觉,当有关卡迈克尔的灵感涌现时,他便开始奋笔疾书地演算。他同时表示,虽然工作和生活都非常艰辛,但他仍旧会坚持相关的数学研究。值得高兴的是,余建春在不久之后就有机会将数学研究作为他的职业工作了。在相关新闻发布后,余便成为了当地红人,位于浙江湖州市的丝绸之路控股集团向他发送了数据分析职位的入职邀请。据中国日报消息,丝绸之路控股集团董事长凌兰芳称,这项工作将为余“提供更好的职业发展机会,并且给予他充裕的时间以拓展在数学方面的兴趣及才能”。1997年影片《心灵捕手》中,Matt Damon饰演的主人公Will Hunting作为MIT的清洁工,同时也是一名数学天才。关于《心灵捕手》,余建春称自己从未看过这部影片,但基于在数学方面的研究,他应该听说过影片中提及的另一位现实中的数学天才SrinivasaRamanujan. 《心灵捕手》中,治疗师Sean Maguire将主人公Will与自学成才的Ramanujan先生类比,后者在未接受数学培训的情况下为数论研究做出了卓越的贡献。Ramanujan出生于印度南部,大学时因家庭贫困而中途辍学,他将自己的研究发现寄给当时印度和英国的数学家们,但因被当作恶作剧而未曾得到回应。就像余建春遇到伯乐蔡天新一样,Ramanujan被剑桥大学数学家G.H. Hardy看重,最终受邀前往英国继续其研究发展。
正文已结束,您可以按alt+4进行评论
相关阅读:
相关搜索:
看过本文的人还看了
[责任编辑:fairy]
热门搜索:
Copyright & 1998 - 2018 Tencent. All Rights Reserved有哪些违背直觉的数学问题? - 知乎有问题,上知乎。知乎作为中文互联网最大的知识分享平台,以「知识连接一切」为愿景,致力于构建一个人人都可以便捷接入的知识分享网络,让人们便捷地与世界分享知识、经验和见解,发现更大的世界。<strong class="NumberBoard-itemValue" title="2被浏览<strong class="NumberBoard-itemValue" title=",464,290分享邀请回答1.7K68 条评论分享收藏感谢收起56258 条评论分享收藏感谢收起

我要回帖

更多关于 100个数学问题及答案 的文章

 

随机推荐