mantal test 的 R检验是什么东西,得出来>0.5 0.5-0.25 <0.25分别有什么意义?

意大利MARZOCCHI齿轮泵0.25D18,0.25D24,0.25D30,0.25D36,0.25D48,0.25D60,0.5D0.50,0.5D0.75,0.5D1.00,0.5D1.30,0.5D1.60,0.25R18,0.25R24,0.25R30,0.25R36,0.25R48,0.25R60,ALM1-R-4-E1,-意大利MARZOCCHI齿轮泵0.25D18,0.25D24,0.25D30,0.25D36,0.25D48,0.25D60,0.5D0.50,0.5D0.75,0.5D1.00,0.5D1.30,0-意大利MARZOCCHI齿轮泵0.25D18,0.25D24,0.25D30,0.25D36,0.25D48,0.25D60,0.5D0.50,0.5D0.75,0.5D1.00,0.5D1.30,0-武汉富鑫达液压气动设备有限公司
意大利MARZOCCHI齿轮泵0.25D18,0.25D24,0.25D30,0.25D36,0.25D48,0.25D60,0.5D0.50,0.5D0.75,0.5D1.00,0.5D1.30,0.5D1.60,0.25R18,0.25R24,0.25R30,0.25R36,0.25R48,0.25R60,ALM1-R-4-E1,
意大利MARZOCCHI原装齿轮泵&武汉一级代理&,武汉富鑫达液压气动设备有限公司
ALP1-D-2,ALP1-D-3,ALP1-D-4,ALP1-D-5,ALP1-D-6,ALP1-D-7,ALP1-D-9,ALP1-D-11,ALP1-D-13,ALP1-D-16,ALP1-D-20,ALP1A-D-2,ALP1A-D-3,ALP1A-D-4,ALP1A-D-5,ALP1A-D-6,ALP1A-D-7,ALP1A-D-9,ALP1A-D-11,ALP1A-D-13,ALP1A-D-16,ALP1A-D-20,ALP2A-D-6,ALP2A-D-9,ALP2A-D-10,ALP2A-D-12,ALP2A-D-13,ALP2A-D-16,ALP2A-D-20,ALP2A-D-22,ALP2A-D-25,ALP2A-D-30,ALP2A-D-34,ALP2A-D-37,ALP2A-D-40,ALP2A-D-50,ALP2-D-6,ALP2-D-9,ALP2-D-10,ALP2-D-12,ALP2-D-13,&
ALP2-D-16,ALP2-D-20,ALP2-D-22,ALP2-D-25,ALP2-D-30,ALP2-D-34,ALP2-D-37,&
ALP2-D-40,ALP2-D-50,&
2D6,2D9,2D10,2D12,2D13,2D20,2D22,2D25,2D30,2D34,2D37,2D40,2D50,1PD3.3GAS&
1PD4.2GAS,0.25D18,2D16,GHP2A-D-40-C1-FG,GHP2-D-20-FG,GHP1A-D-5-C1-FG,&
GHP1-D-2-TO-E,ALP1-D-4-TO-E,ALP1-D-6-TO-E,ALP3-D-25-TO-E,ALP3-D-40-TO-E,&
GHP1A-D-2-FG,GHP1A-D-3-FG,GHP1A-D-4-FG,GHP1A-D-5-FG,GHP1A-D-6-FG,&
GHP1A-D-7-FG,GHP1A-D-9-FG,GHP2A-D-6-FG,GHP2A-D-9-FG,GHP2A-D-10-FG,&
GHP2A-D-13-FG,GHP2A-D-16-FG,GHP2A-D-20-FG,GHP2A-D-22-FG,GHP2A-D-25-FG,&
GHP2A-D-30-FG,GHP2A-D-34-FG,GHP2A-D-40-FG,GHP3A-D-30-FG,GHP3A-D-33-FG,&
GHP3A-D-40-FG,GHP3A-D-50-FG,GHP3A-D-60-FG,GHP3A-D-66-FG,GHP3A-D-80-FG,&
GHP3A-D-94-FG,GHP3A-D-110-FG,GHP3A-D-120-FG,GHP3A-D-135-FG,ALP1A,ALP2A,ALP3A,ALM1,ALM2,ALM3,GHM1A,GHM2A,GHM3A,GHP1A,GHP2A,&
1PD7.5;ALP2D6;ALP2D20;2BR,0.25D18,AA2,1PD6.7,3M80AC,ALP2D22,GHP2A-D-34;1PD11.5,GHP3-D-40,GHP3-D-3,GHP1-D-6GHP2-S-13,LK1PD9.2G,PD3D50+2D16,PD3D50+2D20,PD3D30+2D13,ALP2A-D-30,ALP2A-D-40,ALP2-D-16-CO-FG,ALP2-D-16-FG;ALP2-D-22-CO,KLPD6.7G,ALP2-D-6,ALP2A-D-16,ALP2A-D-34,ALP2A-D-9,ALP2-D-22,ALP1-D-11,ALP2-D-20,ALP2-D-30;&
ALP2BK1-D-6,ALP2BK1-D-9,ALP2BK1-D-10,ALP2BK1-D-12,ALP2BK1-D-13,ALP2BK1-D-16,ALP2BK1-D-20,ALP2BK1-D-22,ALP2BK1-D-25,ALP2BK1-D-30,ALP2BK1-D-34,ALP2BK1-D-37,ALP2BK1-D-40,ALP2BK2-D-6,ALP2BK2-D-9,ALP2BK2-D-10,ALP2BK2-D-12,ALP2BK2-D-13,ALP2BK2-D-16,ALP2BK2-D-20,ALP2BK2-D-22,ALP2BK2-D-25,ALP2BK2-D-30,ALP2BK2-D-34,ALP2BK2-D-37,ALP2BK2-D-40,ALP2BK4-D-6,ALP2BK4-D-9,ALP2BK4-D-10,ALP2BK4-D-12,ALP2BK4-D-13,ALP2BK4-D-16,ALP2BK4-D-20,ALP2BK4-D-22,ALP2BK4-D-25,ALP2BK4-D-30,ALP2BK4-D-34,ALP2BK4-D-37,ALP2BK4-D-40,ALP2BK7-D-6,ALP2BK7-D-9,ALP2BK7-D-10,ALP2BK7-D-12,ALP2BK7-D-13,ALP2BK7-D-16,ALP2BK7-D-20,ALP2BK7-D-22,ALP2BK7-D-25,ALP2BK7-D-30,ALP2BK7-D-34,ALP2BK7-D-37,ALP2BK7-D-40,ALP3-D-30,ALP3-D-33,ALP3-D-40,ALP3-D-50,ALP3-D-60,ALP3-D-66,ALP3-D-80,ALP3-D-94,ALP3-D-110,ALP3-D-120,ALP3-D-135,&
ALP3A-D-30,ALP3A-D-33,ALP3A-D-40,ALP3A-D-50,ALP3A-D-60,ALP3A-D-66,ALP3A-D-80,ALP3A-D-94,ALP3A-D-110,ALP3A-D-120,ALP3A-D-135,ALP4-D-130,ALP4-D-160,ALP4-D-190,ALP4-D-220,ALP4-D-250,ALP4-D-270,ALP4-D-300,&
ALP4E-D-130,ALP4E-D-160,ALP4E-D-190,ALP4E-D-220,ALP4E-D-250,ALP4E-D-270,ALP4E-D-300,ALP4A-D-130,ALP4A-D-160,ALP4A-D-190,ALP4A-D-220,ALP4A-D-250,ALP4A-D-270,ALP4A-D-300,GHP1-D-2,GHP1-D-3,GHP1-D-4,GHP1-D-5,GHP1-D-6,GHP1-D-7,GHP1-D-9,GHP1-D-11,GHP1-D-13,GHP1-D-16,GHP1-D-20,GHP1A-D-2,GHP1A-D-3,GHP1A-D-4,GHP1A-D-5,GHP1A-D-6,GHP1A-D-7,GHP1A-D-9,GHP1A-D-11,GHP1A-D-13,GHP1A-D-16,GHP1A-D-20,GHP1AQ-D-2,GHP1AQ-D-3,GHP1AQ-D-4,GHP1AQ-D-5,GHP1AQ-D-6,GHP1AQ-D-7,GHP1AQ-D-9,GHP1AQ-D-11,GHP1AQ-D-13,GHP1AQ-D-16,GHP1AQ-D-20,GHP1A2-D-2,GHP1A2-D-3,GHP1A2-D-4,GHP1A2-D-5,GHP1A2-D-6,GHP1A2-D-7,GHP1A2-D-9,GHP1A2-D-11,GHP1A2-D-13,GHP1A2-D-16,GHP1A2-D-20,GHP2-D-6,GHP2-D-9,GHP2-D-10,GHP2-D-12,GHP2-D-13,GHP2-D-16,GHP2-D-20,GHP2-D-22,GHP2-D-25,GHP2-D-30,GHP2-D-34,GHP2-D-37,GHP2-D-40,GHP2-D-50,GHP2A-D-6,GHP2A-D-9,GHP2A-D-10,GHP2A-D-12,GHP2A-D-13,GHP2A-D-16,GHP2A-D-20,GHP2A-D-22,GHP2A-D-25,GHP2A-D-30,GHP2A-D-34,GHP2A-D-37,GHP2A-D-40,GHP2A-D-50,GHP2A3-D-6,GHP2A3-D-9,GHP2A3-D-10,GHP2A3-D-12,GHP2A3-D-13,GHP2A3-D-16,GHP2A3-D-20,GHP2A3-D-22,GHP2A3-D-25,GHP2A3-D-30,GHP2A3-D-34,GHP2A3-D-37,GHP2A3-D-40,GHP2A3-D-50,GHP2BK1-D-6,GHP2BK1-D-9,GHP2BK1-D-10,GHP2BK1-D-12,GHP2BK1-D-13,GHP2BK1-D-16,GHP2BK1-D-20,GHP2BK1-D-22,GHP2BK1-D-25,GHP2BK1-D-30,GHP2BK1-D-34,GHP2BK1-D-37,GHP2BK1-D-40,&
GHP2BK2-D-6,GHP2BK2-D-9,GHP2BK2-D-10,GHP2BK2-D-12,GHP2BK2-D-13,GHP2BK2-D-16,GHP2BK2-D-20,GHP2BK2-D-22,GHP2BK2-D-25,GHP2BK2-D-30,GHP2BK2-D-34,GHP2BK2-D-37,GHP2BK2-D-40,GHP2BK4-D-6,GHP2BK4-D-9,GHP2BK4-D-10,GHP2BK4-D-12,GHP2BK4-D-13,GHP2BK4-D-16,GHP2BK4-D-20,GHP2BK4-D-22,GHP2BK4-D-25,GHP2BK4-D-30,GHP2BK4-D-34,GHP2BK4-D-37,GHP2BK4-D-40,GHP2BK7-D-6,GHP2BK7-D-9,GHP2BK7-D-10,GHP2BK7-D-12,GHP2BK7-D-13,GHP2BK7-D-16,GHP2BK7-D-20,GHP2BK7-D-22,GHP2BK7-D-25,GHP2BK7-D-30,GHP2BK7-D-34,GHP2BK7-D-37,GHP2BK7-D-40,GHP3-D-30,GHP3-D-33,GHP3-D-40,GHP3-D-50,GHP3-D-60,GHP3-D-66,GHP3-D-80,GHP3-D-94,GHP3-D-110,GHP3-D-120,GHP3-D-135,GHP3A-D-30,GHP3A-D-33,GHP3A-D-40,GHP3A-D-50,GHP3A-D-60,GHP3A-D-66,GHP3A-D-80,GHP3A-D-94,GHP3A-D-110,GHP3A-D-120,GHP3A-D-135,GHP3A2-D-30,GHP3A2-D-33,GHP3A2-D-40,GHP3A2-D-50,GHP3A2-D-60,GHP3A2-D-66,GHP3A2-D-80,GHP3A2-D-94,GHP3A2-D-110,GHP3A2-D-120,GHP3A2-D-135,GHP3BK1-D-30,GHP3BK1-D-33,GHP3BK1-D-40,GHP3BK1-D-50,GHP3BK1-D-60,GHP3BK1-D-66,GHP3BK1-D-80,GHP35-D-66,GHP35-D-80,GHP35-D-94,GHP35-D-110,GHP35-D-120,GHP35-D-135,1PD1.6,1PD2,1PD2.5,1PD3.3,1PD4.2,1PD5,1PD5.8,1PD6.7,1PD7.5,1PD9.2,1PD11.5,&
1PD1.6GAS,1PD2GAS,1PD2.5GAS,1PD3.3GAS,1PD4.2GAS,1PD5GAS,1PD5.8GAS,1PD6.7GAS,1PD7.5GAS,1PD9.2GAS,1PD11.5GAS,1PD1.6KA,1PD2KA,1PD2.5KA,1PD3.3KA,1PD4.2KA,1PD5KA,1PD5.8KA,1PD6.7KA,1PD7.5KA,1PD9.2KA,1PD11.5KA,&
K1PD1.6G,K1PD2G,K1PD2.5G,K1PD3.3G,K1PD4.2G,K1PD5G,K1PD5.8G,K1PD6.7G,K1PD7.5G,K1PD9.2G,K1PD11.5G,KL1PD1.6G,KL1PD2G,KL1PD2.5G,KL1PD3.3G,KL1PD4.2G,KL1PD5G,KL1PD5.8G,KL1PD6.7G,KL1PD7.5G,KL1PD9.2G,KL1PD11.5G,&
KF1PD1.6G,KF1PD2G,KF1PD2.5G,KF1PD3.3G,KF1PD4.2G,KF1PD5G,KF1PD5.8G,KF1PD6.7G,KF1PD7.5G,KF1PD9.2G,KF1PD11.5G,1BK4D1.6,1BK4D2,1BK4D2.5,1BK4D3.3,1BK4D4.2,1BK4D5,1BK4D5.8,1BK4D6.7,1BK4D7.5,1BK4D9.2,1BK4D11.5,&
1BK7D1.6,1BK7D2,1BK7D2.5,1BK7D3.3,1BK7D4.2,1BK7D5,1BK7D5.8,1BK7D6.7,1BK7D7.5,1BK7D9.2,1BK7D11.5,1PBW082S,1PBW164S,1PBW200S,1PBW246S,1PBW328S,1PBW430S,1PBW580S,1PR1.6,1PR2,1PR2.5,1PR3.3,1PR4.2,1PR5,1PR5.8,1PR6.7,1PR7.5,1PR9.2,1PR11.5,1PR1.6GAS,1PR2GAS,1PR2.5GAS,1PR3.3GAS,1PR4.2GAS,1PR5GAS,1PR5.8GAS,1PR6.7GAS,1PR7.5GAS,1PR9.2GAS,1PR11.5GAS,&
0.25D18,0.25D24,0.25D30,0.25D36,0.25D48,0.25D60,0.5D0.50,0.5D0.75,0.5D1.00,0.5D1.30,0.5D1.60,0.25R18,0.25R24,0.25R30,0.25R36,0.25R48,0.25R60,ALM1-R-4-E1,ALM1-R-5-E1,ALM1-R-6-E1,ALM1-R-7-E1,ALM1-R-9-E1,ALM1-R-11-E1,ALM1-R-13-E1,ALM1-R-16-E1,ALM1A-R-4-E1,ALM1A-R-5-E1,ALM1A-R-6-E1,ALM1A-R-7-E1,ALM1A-R-9-E1,ALM1A-R-11-E1,ALM1A-R-13-E1,ALM1A-R-16-E1,&
ALM2-R-6-E1,ALM2-R-9-E1,ALM2-R-10-E1,ALM2-R-12-E1,ALM2-R-13-E1,ALM2-R-16-E1,ALM2-R-20-E1,ALM2-R-22-E1,ALM2-R-25-E1,ALM2-R-30-E1,ALM2-R-34-E1,ALM2-R-37-E1,ALM2-R-40-E1,ALM2A-R-6-E1,ALM2A-R-9-E1,ALM2A-R-10-E1,ALM2A-R-12-E1,ALM2A-R-13-E1,ALM2A-R-16-E1,ALM2A-R-20-E1,ALM2A-R-22-E1,ALM2A-R-25-E1,ALM2A-R-30-E1,ALM2A-R-34-E1,ALM2A-R-37-E1,ALM2A-R-40-E1,ALM3-R-33-E1,ALM3-R-40-E1,ALM3-R-50-E1,ALM3-R-60-E1,ALM3-R-66-E1,ALM3-R-80-E1,ALM3-R-94-E1,ALM3-R-110-E1,ALM3-R-120-E1,ALM3-R-135-E1,ALM3A-R-33-E1,ALM3A-R-40-E1,ALM3A-R-50-E1,ALM3A-R-60-E1,ALM3A-R-66-E1,ALM3A-R-80-E1,ALM3A-R-94-E1,ALM3A-R-110-E1,ALM3A-R-120-E1,ALM3A-R-135-E1,GHM1-R-4-E1,GHM1-R-5-E1,GHM1-R-6-E1,GHM1-R-7-E1,GHM1-R-9-E1,GHM1-R-11-E1,GHM1-R-13-E1,GHM1-R-16-E1,GHM1A-R-4-E1,GHM1A-R-5-E1,GHM1A-R-6-E1,GHM1A-R-7-E1,GHM1A-R-9-E1,GHM1A-R-11-E1,GHM1A-R-13-E1,GHM1A-R-16-E1,GHM1AQ-R-4-E1,GHM1AQ-R-5-E1,GHM1AQ-R-6-E1,GHM1AQ-R-7-E1,GHM1AQ-R-9-E1,GHM1AQ-R-11-E1,GHM1AQ-R-13-E1,GHM1AQ-R-16-E1,GHM2-R-6-E1,GHM2-R-9-E1,GHM2-R-10-E1,GHM2-R-12-E1,GHM2-R-13-E1,GHM2-R-16-E1,GHM2-R-20-E1,GHM2-R-22-E1,GHM2-R-25-E1,GHM2-R-30-E1,GHM2-R-34-E1,GHM2-R-37-E1,GHM2-R-40-E1,GHM2A-R-6-E1,GHM2A-R-9-E1,GHM2A-R-10-E1,GHM2A-R-12-E1,GHM2A-R-13-E1,GHM2A-R-16-E1,GHM2A-R-20-E1,GHM2A-R-22-E1,GHM2A-R-25-E1,GHM2A-R-30-E1,GHM2A-R-34-E1,GHM2A-R-37-E1,GHM2A-R-40-E1,GHM2A3-R-6-E1,GHM2A3-R-9-E1,GHM2A3-R-10-E1,GHM2A3-R-12-E1,GHM2A3-R-13-E1,GHM2A3-R-16-E1,GHM2A3-R-20-E1,GHM2A3-R-22-E1,GHM2A3-R-25-E1,GHM2A3-R-30-E1,GHM2A3-R-34-E1,GHM2A3-R-37-E1,GHM2A3-R-40-E1,GHM3-R-33-E1,GHM3-R-40-E1,GHM3-R-50-E1,GHM3-R-60-E1,GHM3-R-66-E1,GHM3-R-80-E1,GHM3-R-94-E1,GHM3-R-110-E1,GHM3-R-120-E1,GHM3-R-135-E1,&
GHM3A-R-33-E1,GHM3A-R-40-E1,GHM3A-R-50-E1,GHM3A-R-60-E1,GHM3A-R-66-E1,GHM3A-R-80-E1,GHM3A-R-94-E1,GHM3A-R-110-E1,GHM3A-R-120-E1,GHM3A-R-135-E1,GHM3A2-R-33-E1,GHM3A2-R-40-E1,GHM3A2-R-50-E1,GHM3A2-R-60-E1,GHM3A2-R-66-E1,GHM3A2-R-80-E1,GHM3A2-R-94-E1,GHM3A2-R-110-E1,GHM3A2-R-120-E1,GHM3A2-R-135-E1,GHM35-R-66-E1,GHM35-R-80-E1,GHM35-R-94-E1,GHM35-R-110-E1,GHM35-R-120-E1,GHM35-135-E1,&
马祖奇ALP系列齿轮泵
马祖奇ALP1-D-2齿轮泵&&马祖奇GHP1A-D-2-FG齿轮泵&
马祖奇ALP1-D-3齿轮泵&马祖奇GHP1A-D-3-FG齿轮泵
马祖奇ALP1-D-4齿轮泵&马祖奇GHP1A-D-4-FG齿轮泵
马祖奇ALP1-D-5齿轮泵&马祖奇GHP1A-D-5-FG齿轮泵
&&姓&&名:*&
&&电&&话:*&
&&单&&位:*&
&&邮&&箱:&&
留言内容:*&
验证码:*&
仪器仪表交易网 北京搜宝网络技术有限公司 版权所有 2003 - , All Rights Reserved
[-tj_fromurl-]
[-tj_accessurl-]
[-tj_clientip-]
[-tj_useragent-]
[-tj_psid-]
[-tj_userid-]
[-tj_dbno-]
[-tj_pname-][硕博论文][内科学]HIF-1α-ALA564-ALA803增强MSCS对COCL..
扫扫二维码,随身浏览文档
手机或平板扫扫即可继续访问
[硕博论文][内科学]HIF-1α-ALA564-ALA803增强MSCS对COCL<,2>化学损害心肌细胞的保护作用
举报该文档为侵权文档。
举报该文档含有违规或不良信息。
反馈该文档无法正常浏览。
举报该文档为重复文档。
推荐理由:
将文档分享至:
分享完整地址
文档地址:
粘贴到BBS或博客
flash地址:
支持嵌入FLASH地址的网站使用
html代码:
&embed src='/DocinViewer-4.swf' width='100%' height='600' type=application/x-shockwave-flash ALLOWFULLSCREEN='true' ALLOWSCRIPTACCESS='always'&&/embed&
450px*300px480px*400px650px*490px
支持嵌入HTML代码的网站使用
您的内容已经提交成功
您所提交的内容需要审核后才能发布,请您等待!
3秒自动关闭窗口文档分类:
在线文档经过高度压缩,下载原文更清晰。
淘豆网网友近日为您收集整理了关于La0.75Mg0.25Ni3.5-xMx(M=Si,Zn;x=0-0.5)储氢合金的相结构与电化学性能的文档,希望对您的工作和学习有所帮助。以下是文档介绍:La0.75Mg0.25Ni3.5-xMx(M=Si,Zn;x=0-0.5)储氢合金的相结构与电化学性能 第 34卷第 6期 2oO8年 12月兰州理】: 大学学报 J oumal()f Lanzhou Ul1iversity of Technology Voi.34
No.6 I)ec.2OO8 文章编号:(2O08)O6一OOO9一O6 La0. 75 M go.25 Ni3. 5一
M (M =Si,Zn; =0~0.5) 储氢合金的相结构与电化学性能罗永春,史 亮,康 龙,阎汝煦,孔令斌(兰州理工大学甘肃省有色金属新材料重点实验室,甘肃兰州 73OO5O) 摘要:研究 Si和 Zn元素分别部分替代 Ni后合金 Lao. Mg0 2 Ni。.s一 M (M:Si,Zn;z=O~O.5)的微观组织及电化学性能.x射线衍射(xRD)结果表明,La‘)。 5Mg0 25Ni3.s一 Si』合金由cacu5型相、Ce2N 型相和 LaMgNi4型相组成,随着 Si含量增加,CaCu5型相明显增加.Lao.7sM蓟.z5Nlb.5一 Zm 合金由 CaCu5型相、( (来源:淘豆网[/p-3878753.html])2Ni 型相和 LaNi3型相组成.随着 zn的增加,合金中 Ce2NI7型相逐渐减少,caCu 型相和 LaNis型相则相应增加.电化学实验表明,2 种元素的加入均使得合金的高倍率放电性能下降;Si的加入降低了合金最大放电容量和交换电流密度,但活化次数也随之减少,电化学循环稳定性提高.Zn元素的加入,对合金最大放电容量影响较小. 关键词:储氢合金;相结构;电化学性能中图分类号:TG146.4
文献标识码:A Phase structure and electr0chemicaI pr0perties 0f hydr0gen storage alloys L2Io. 75M 勖. 25Ni3. 5一 M
(M = Si,Zn; =0~ 0.5) LUO Y0n chun,SHI Liang,KANG Long,YAN Ru_xu,KONG Ling七 in (State Key I
.of Gansu AdvaI1ced Non-ferr0us Meta1 Materials,l且nzh(来源:淘豆网[/p-3878753.html])ou Univ.of Teck ,Lanzhou
730o5O,China) Abstract:
The micr()_structure and electrochemica1 properties of thus
fo肿 ed quaternary alloys L
75Mg0-25N.3_5一 M (M :Si,Zn;z—O~O.5)was investigated after replacing the portion of N.by Si or Zn in I ao. 75 M g0. 25 Ni3. 5 . The analysis of)厂_ray diffraction (XRD)showed that I a。. 75 M 勘. 25 Ni3. 5一
c0nsisted of CaCu5一type phase,l: 2 Ni7一type phase,and I aM gNi4~type phase,and the I a0. 75 M 勖.25 N i3. 5(来源:淘豆网[/p-3878753.html])~
Zn consis— ted of CaCu5一type phase,Ce2Ni7~type phase,and I aNi3一type phase. The increase of Si content led to an increase of the content of I aNi5一type phase. The increase 0f Zn content 1ed to an decrease of content of Ce2 Ni7一type phase,but the LalNi3一type phase and CaCus—type phase wOuld increase at the same time.The electrochemical test indicated that the high rate dischargeability of alloy electrodes would decreases when either of the two eI(来源:淘豆网[/p-3878753.html])ements was added. The maximum discharge capacity and the exchange current density (Io)of the alloy electrodes wOu1d decrease,but the activation properties would increas and the cyclic sta— bility of the al1oys improve with the Si content. The maximum discharge capacity of the alloy electr。des would be decreased a little when the Zn was added. Key wOI‘dS:hydelectrochemjcaI properties 以贮氢合金为负极材料的 Ni—MH二次电池具有能量密度高、耐(来源:淘豆网[/p-3878753.html])过充放电能力强、循环寿命好、无公害以及无记忆效应等优点,因而获得了广泛应用 ].I a_M Ni基 AB3 ̄3. 型贮氢合金电极由于具有较高的电化学放电容量(410 mAh/g)和较好的收稿日期:2O08一O4~】7 基金项目:国家自然科学基金(5O】7】O21) 作者简介:罗永春(1964一),男,陕西韩城人,教授活化性能得到国内外研究人员的广泛关注[4I引,但迄今该合金电极的循环稳定性能仍比较差[8_1o].目前国内外主要通过 B端元素部分替代来改善合金电极循环寿命,取代的元素主要有 Co、Mn、Fe、Cu、 Al、Sn等[ 。.本文以 I a-M ·Ni系 A2 B7型合金为研究对象,设计了 I a。.75Mg。_25NI3.5一 Si (z一0.05、 0.1、0.2、O.3和 0.4)和 l a。.75Mg0.25Ni3.5一 Zn (z=== O.2、O.3、O.4和 0.5)合金,研究和分析 Si或 Zn元兰州理工大学学报 第 34卷素替代 Ni元素时对 I 一M Ni(来源:淘豆网[/p-3878753.html])系 A
型合金相结构和电化学性能的影响. 1 实验方法 I {1o. 75 M go. 25 Ni3. 5一 S
和 I a0.75 Mgo.25 Ni3.5一 z
合金均在 0.2 MPa的高纯氩气气氛中用高频感应熔炼,然后浇注到水冷铜坩埚中.所用原料的质量分数均高于 99.8 .考虑到熔炼合金时 Mg元素的烧损和挥发,合金中加入一定过量的 Mg.铸态合金退火处理是在 o.3 MPa高纯氩气保护条件下加热至 1 173 K保温 24 h,再随炉冷却. 合金相结构分析在日本 Rigaku cI/ma 24O0 型 x射线衍射仪上进行数据采集.衍射数据用 Full— prof软件[ 。]进行 etveld全谱拟合分析以获得晶胞参数和相丰度.采用 JSM一58∞I
型扫描电镜进行组织形貌观察和 EDS微区成分分析. 合金电化学性能测试在开口三电极测试系统中进行.将合金粉与镍粉按质量比 l:3混合后,在 20 MPa压力下冷压成型.正极为容量过剩的烧结氢氧化镍(Ni(OH)2/Ni0OH),(来源:淘豆网[/p-3878753.html])参比电极为 Hg/HgO 电极,电解液为 6 mol/I 的 KOH溶液.合金电极活化充放电电流密度为 10O mA/g,循环时改为 300 mA/g,放电截止电压均为一0.6 V(相对于 Hg/ HgO参比电极).在电极完全活化后,通过测定合金电极在不同放电电流密度(600 mA/g及 9OO mA/ g)下的放电容量来研究合金的高倍率放电性能(HRD),其计算式为 HRD — G/(C + C 。o)× 1OO
l17_18j,线性极化测试在 CHI60OA 电化学工作站上进行,放电深度(DOD)为 5O
,扫描速度为 O.1 mV/s,扫描范围为一5~5 mV(相对于开路电位). 2 结果与讨论 2.1 合金微观组织图 1a为 I a。.75Mg。.25Ni3.5一 Si (z一0~O.4)合金的 XRD图谱.从图中可以看出,随 Si含量的增加,合金的相组成有比较明显的变化. 一0时,合金由 CaCu 型相和 Ce Ni 型相组成,其中 CaCu 型相的相丰度仅为 8.93(来源:淘豆网[/p-3878753.html])
,当 z一0.4时,CaCu 相增加到 93.11Ce。Ni 型相的相丰度随 Si质量分数增加而减少,从:一0时的 9】.O7
,减少到 z=O.4 时的 6.73
.表】合金 XRD分析结果的数据表明, 当 z≥O.2时,合金的主相由 Ce。Ni 型相转变为 CaCu 型相.另外,在 z≥o.3时,衍射图谱中出现了少量的 I aMgNI4型相.由于 Si元素的原子半径(rsi 一0.164 nm)与 Ni元素的原子半径(rNi=O.162 nm)相差不大,从合金的晶格参数变化很难判断 Si 元素的影响. (a)La0.75 Mgo.2s Ni3 5一 S (z—O~ O.4) (b)La0.7sM g0 25Ni3.s
( —O~O.5) 图 1
La0_75M勘.2sNi3.5一 M (M=si, =0~0.5)合金的 x射线衍射图谱 F
1 ⅪtD patterIls 0f alloys La0.75M甑25N'3.5一 M (M =sj, (来源:淘豆网[/p-3878753.html])=0~O.5) 图 2a为 I a。. Mg。.。 Ni。.。Si0_2合金的扫描电镜背散射照片,它主要由一深色相(A)和浅色相(B)组成.EDS能谱微区成分分析表明,图中 A 相为 CaCu 型相,而 B相为 Ce Ni 型相,2相的分布比例与 X射线衍射拟合结果比较吻合.同时发现 Si元素主要富集在 CaCu 型相当中.因此,可以认为 Si元素是形成 CaCu 型相的促进元素,这与 S.Srivas— tava_1明等人的研究结果相吻合. 图 1b为 I ao.75M .2jNi3.5一 Z (Iz一0~0.5)合金的 XRD 图谱.可以看出合金由 CaCus型相和 ce2Ni7型相以及 LaNi。型相组成.随着 zn元素质量分数的增加,I aNi。型相的相丰度逐渐增加,而 Ce。Ni 型相的相丰度明显减少,同时合金主相 Ce。Ni 型相的晶胞参数(以轴和 c轴)及晶胞体积均在不断增加.zn元素对 CaCu 相和 LaNi。型相的第 6期 罗永春等:
,sM勖.z N .-一- M (M(来源:淘豆网[/p-3878753.html])—si,z=O~O.5)储氢合金的相结构与电化学性能 ·11· 表 1
5M勖.2sNi3.s一 M (M=si, =O~O.5)合金晶体结构参数和相组成 T.db.1 Chrystallene structurdl pa
eters and phaSe c0nlposition of aIlI='yS La0.75M
sN_b.5一 (M=Si, =O~0.5) (b)La0.75M西.2sNi3.0Zr】o.5 图 2 La仉75M .25Ni3.5一 M (M=sj, =O~0.5)合金的 l 00O倍 sEM 照片 FIg.2
sEM graphs of allo),s La0.75M勘.25Ni3.5一 M (M=Si, =O~O.5) 晶胞参数和晶胞体积影响规律不明显,但随 zn质量分数的增加,2相的相丰度呈增加趋势. 图 2b是 Lao.7 Mg0_25Ni3.0Zno.5合金的 SEM 背散射照片. 可以看到合金明显分为 3个相,即白色相(D), 深灰色相(F)和浅灰色基体相(C).通过能谱分析可以得知,图中的 D相为 CaCu5型相,F相为 I Ni。型相,而 C相为 CezNi 型相.其中 Zn元素主要集中在 CaCus型相和 I aNi。型相中.这与 B. Ro d y sk KielCbik[。。]等人的结论相吻合. 2.2 合金电化学性能 2.2.1 活化性能及最大放电容量图 3是 I
s Mgo.zs Ni3-5一 Si 合金的活化曲线,表 2是该合金电极的电化学性能.由图 3和表 2 可知,随合金中 Si含量的增加,合金最大放电容量((
)明显降低,c
从 371.26 mAh/g降到 233.O7 mAh/g,当z≥0.2时,最大放电容量的降低尤为显著.与 X射线衍射结果相结合,可以看出这是由于剧烈的相组成变化造成的.与此同时,合金的活化次数有所减少,但是当 z&O.1时,活化次数基本稳定在 4次. 兰州理工大学学报 第 34卷 00 二: 《量釜图 3
Lao.75M .z5N.】.5一 S ( =O~O.4)合金电极的活化曲线辱 3
Activatj0n cIn
0f d髓h les I
_5- S ( =O~O.4)all0ys 表 2
75M 25Ni3.s一 M (M=Si,Zn; =O~O.5) 合金电极的电化学性能 Tab.2
Electm cheIIlt∞l pr0perties Of aIl0yed electrodes La0.75M 勘. 25Ni3. 5一 M (M=Si, =0~0.s) 图 4是 I a0.75 M
25 Ni3.5一 Z
合金的活化曲线.从图中可以看出,随 Zn元素含量的增加,合金最大放电容量逐渐减小,但其变化幅度并不显著,z —O.2时最高,为 351.6 mAh/g,z—O.4时最低,为 331.74 mAh/g,由表 2可知,zn元素的加入显著减少了合金所需的活化次数,从最多的 10次降到了 4 次.说明 Zn元素的加入对合金活化性能有所改善. . C
E 岛 敞图 4
L 7sM勘.2 NI-1. 一 z ( =O~0.5)合金电极的活化曲线 Fig.4
Activat10n cu、^es of La0.75 M
. 2s Ni3.5一 ZIk( =0 ~O.5)electr0d鹤 al10ys 图 5和图 6是合金充分活化后的放电曲线(放& \
目图 5 La0.,sM .:sNi3.s一 s ( =O~0.4)合金电极放电曲线 S
Disd r罂:curv
0f elt曲 1o【Ies
. 75M甄25№.5一( =0~0.4)all0yS &
La0. 5M勖. Ni3.5一 z ( =0~O.5)合金电极放电曲线 6
cIⅡ s 0f elec由md
.T5 M . 25 N'b.5一( =0~O.5)alloys 电电流 1O0 mA/g).可以看出,所有合金的放电曲线中均呈现一个反映合金氢化物放氢反应的放电电位平台.但 Si和 zn元素添加对放电电位平台的影响不尽相同.与 z===O合金比较,当 一O.05时,合金电极的放电电位平台明显提高至 0.853 8 V(相对于 Hg/HgO),但随着 Si元素的增加,这一数值逐渐降低,z 一o.4时,放电电位降低到 o.839 5 V (相对于 Hg/HgO);而 Lao.75Mgo.25N.3_5
合金的放电电位从 zzn—O.2时的 O.815 4 V(相对于 Hg/HgO)降低到-zzn—o.5时的0.799 2 V(相对于 Hg/HgO),其始终低于 z—o的合金. 2.2.2 循环稳定性图 7为 Lao.75Mg0.25Ni3.5一 S 合金的电化学循环曲线,可以看出,加入 Si元素能够提高合金的电化学循环稳定性,实验结果如表 2所示.这是由于合金中的 CaCu 型相增加并成为主相,而 CaCus型相与 Ce Ni 型相相比其特点是电化学容量较低而循环稳定性较好. 图 8为 I a。. Mgo. N
一 zn 合金的电化学循环曲线,结合表 2中合金电极放电容量保持率第 6期 罗永春等:L
一 M (M一 ,Zn;z—O~O.5)储氢合金的相结构与电化学性能 ·13· (S 。)数据,可以看出,合金的电化学循环稳定性呈先增加后减小的趋势.在 z一0.4时,S s。值达到 90.72
,而当-z—O.5时又减小至 83.57%.同活化性能一样,这些现象与其相变化是紧密相关的,是几种相变化综合作用的结果. 4O0 35O { 3 0(】豳= 25O 2o¨0 4OO ∞ 350 《 二 3O0 垫250 \
涩餐碍逛耀放电电流密度/(mA‘ ’) 图 9
.75 M甑:s Ni3.5一 Sir( =0~O.4)合金电极在 298 K条件下高倍率放电曲线 F
High.f0ld discllargeab.1i毋 curVes 0f e
tr0d . 75 M 勘. 25 N.b.5一 SI工(
= 0~ 0.4)alI∞rs at 298 K \
餐甜逍里蝗 放电电流密度/(n1A’ ) 图 10
Lao.75M勖. Ni3.5一 z ( =O~0.5)合金电极在 298 K条件下高倍率放电曲线 F喀 10 High_f0ld discllargcability cuI_ves 0f elec 0d 75
( =0~o-5)螂 at 298 K 度增加均呈下降趋势.其中 La。. Mg。.2 Ni。. 一 S 合金的 HRD。。。值从一0.05时的 8o.02
下降到 z—O.4时的67.33 .La0.75Mg0-25Ni3.5一 z
合金的 HRD9。。值由 lz一0.2时的 81.O4
下降到 z一 0.5时的77.95 9/6. 2.2.4 合金电极交换电流密度图 11和图 12分别为合金电极的线性极化图, 根据图中的线性极化的斜率可计算得 2组合金的交换电流密度L(mA/g),如表2所示.可以看出,Si元素 b0 g ·
崔苎i 襁蟋一超电压/mv 图 11
La0., M勖.25N.3.s一 ( =O~0.4)合金电极的线性极化曲线 Fi吕 11
Linear p0|arizati锄 ctIr.’1
Of dec打od
La吼75 M 勘. 2sN.b.5一 S ( ==0~0.4)al10 rs 口艄一蟋一 超电压/mv 图 12 La0.75M勘.25Ni3-5- z
( =O~0.5)合金电极的线性极化曲线 F唔 l2
Linear p0Iarizati0n curves of dectrodes Lan”M醣25Nh5一 z ( =0~O。5)all∞兰州理工大学学报 第 34卷的加人会降低合金的交换电流密度,j。值随着 Si含量的增加明显降低,由最高的】68.49 mA/g降低到最低的 126.74 mA/g.而 zn元素的加入,使合金的交换电流密度呈现一种先上升再下降的趋势.在 zn 含量较低时,, 值明显升高,最高达到 2O6.84 mA/ g,但随着么n含量的增加,J。值又逐渐下降,在一0.5时降到 171.06 mA/g. 3 结论])I ao.75Mg0. 25N
一 Si (z一0.05~O.4)合金主要由 CaCu5型相、Ce2Ni 型相和 I aMgNi 型相组成,Si元素的加入能促进 CaCu 型相和 I aMgNi4 相的形成.La0.75 M 25 N
— Zn 合金(z一0.2~ 0.5)由 CaCu 型相和 Ce2Ni 型相以及 I aNi。型相组成,Zn元素主要固溶于 CaCu 型相和 CezNi 型相中. 2)Si元素的加入使合金的最大放电容量明显降低,但活化次数减少,循环稳定性提高.zn元素的加人使合金最大放电容量有少量降低,活化性能无明显变化,同时可以明显提高合金的电化学循环稳定性,z===O.4时 I a0. 5M g0_ 5N
一 Zn 合金的电化学循环稳定性最好,这是由于不同相组成变化综合作用的结果. 3)2种合金的高倍率放电性能均随添加元素含量的增加呈下降趋势.Si使合金的交换电流密度明显降低,而 zn的加入使合金交换电流密度呈先上升后下降的趋势. 参考文献[1]
wILLEMs JJ G.Metal hy
de tro(ies stabi1ity of LaNi5一 related c0mpounds口].Phi1ips J Res,l984,39(1):1矗[2]
I I R,wu J M,wANG X L_Effect of AB5一type hydr(Jgen stor— age alloy prepared by different teclm iques on the pr0pert es 0f MH/Ni batteries口].J All0ys and(二0mpounds,20OO,311(1): 4O一45. [3]
sAKAI T,MIYAMURA H,KURIYAMA N,
n .Meta1 h dride an0des for nicke1一hydrogen secondary battery[J].J E1ec— tr。chem Soc,199O,l37(3):795 798. [4]
KADIR K,SAKAI T,uEHARA I.structure investigation and hydr(堰en storage capacity 0f YMg2Ni9 and(
5)(Mg一( )Ni9:new phase in the AB2(=二9 system isostructural with I
g2Ni9 [J].J A11oys pounds,):264 270. [5]
KADIR K,SAKAI T,UEHARA I.Structure investigation and hyd r(]gen storage capacity 0f I丑M g2 Ni9 and (I五o 65( 0 35) (Mg1.32(_1锄 68)N
of the AB2
type structure口].J Al1oys aI1d(二0m I)0unds,2OOO,3O2(1—2):112 ll7. [6]
CHEN J,TAKASHITA H T,rrANAKA H,
口.Hydri djng properties of I aN
and ( LNi3 and thcir substitutes with Pu— Ni3一type structure口j.J Alloys and Con1pounds,2∞O,3O2(1— 2):3O4—313. [7] K0HN0 T,Y0sHIDA H,KAwAsH1MA F,
.Hydr0gen st0rage properties of new ternary system alloys:L Ⅵg2Ni9, I 5Mg2Ni23,I且3MgNil4[J].J A11oys and(二0mpounds,20OO, 311(2):I 5一L7. [8]
I Iu Yongfeng,PAN Hongge,GA0 Mingxia,
nz.Investiga— tion 0n the structure and electrochem ica1 properties of the rare- earth Mg-based l1ydrogen storage electr(1de al】oys[J]_Acta M et Sin,2OO3,39(6):666—672. [9]
【 IA0 B,I I Y Q,LU G L,
nz.The ekctrUchemical proper— ties of Im Mg3一 Ni9( 一 1.O一2.O)hydrogen st0rage a1l0ys 厂J].J A11oys and( mpounds,2OO3,356—357(11):746—749. [1O]
wANG D,I uO Yongchun,YAN Ruxu,
nz.Prepa『a— tion of hydrogen storage a11oy I
.67M gn 33N i2. 5(二oo.5 and its trochemica1 propertics口].Rare Metal Materia1s and En— gineering,2OO4,33(12):. [u]
zHANG Faliang,I u0 Y0ngchun,CHEN Jiangping,
nf. Effect of annealing treatment on structure and electrochemi— ca1 p r()perties ofI
.67 M g。.33 Ni2. 5
5 al1oy e1ectr0des[J]. Power sources,2OO5,15O(4):247—254. [12] 张法亮,罗永春,张永超,等.I a_Mg-Ni系 A2
型贮氢合金的结构与电化学性能口].中国稀土学报,2oO6,24(5):592— 598. [13] 张法亮,罗永舂,孙凯,等.La1 5Mg0.5Ni7
(-z一0~ 1. 8)贮氢合金结构和电化学性能研究[J].功能材料,20O6,2 (37):265—269. [14] 许剑轶,闰汝煦,王大辉.A2 B7型 I a0 75Mg。25Ni3.5 Al (z— O~O.3)合金相结构及电化学性能[J].稀有金属材料与工程,2OO7,36(2):349—352. [15] 罗永春,陈江平,张法亮,等.La
MgNi14(z—O~2)贮氢合金的相结构与电化学性能研究 LJ].兰州理工大学学报, 2OO6,32(4):2O一24. [16]
Y0uNG R八 The rietveld meth0d[M].Lond0n:0xf0rd u— niversity Press,1993. [17] 康龙,罗永春.贮氢合金动力学测试方法的研究[J].甘肃工业大学学报,l995,21(2):l5—18. [18] 罗永春,蔡秀娟,阎汝煦,等.PuNi3和 Ce2Ni 型贮氢合金电极容量衰减的交流阻抗谱分析[J].兰州理工大学学报, 2OO7,33(4):l3—17. [19]
SRIVAsTAVA s,sRⅣ AsTAVA 0 N.Investigations 0n synthesis,characterlzati0n and hydrogenation behaviouIDf the spi
and them al—m elted versions of LaN i5
— O.1,O. 3,0.5)hydmgen storage materia1s[J].J A11oys — pounds,l998,267(2):24
sKA_KIEcBIKB,1wAsIEczKOw ,DRuLIsH, e£a£.H ydrogenation equi卜 ibria characteristics of LaN 一 zn intermeta1ljcs[J].J Al1oys pounds,2OO0,298 (1):237—243.播放器加载中,请稍候...
该用户其他文档
下载所得到的文件列表La0.75Mg0.25Ni3.5-xMx(M=Si,Zn;x=0-0.5)储氢合金的相结构与电化学性能.pdf
文档介绍:
La0.75Mg0.25Ni3.5-xMx(M=Si,Zn;x=0-0.5)储氢合金的相结构与电化学性能 第 34卷第 6期 2oO8年 12月兰州理】: 大学学报 J oumal()f Lanzhou Ul1iversity of Technology Voi.34
No.6 I)ec.2OO8 文章编号:(2O08)O6一OOO9一O6 La0. 75 M go.25 Ni3. 5一
M (M =Si,Zn; =0~0.5) 储氢合金的相结构与电化学性能...
内容来自淘豆网转载请标明出处.

我要回帖

更多关于 jquery lt gt 的文章

 

随机推荐