自动化磨床叉车出现spn alarmervoalarm 什么意思

2277人阅读
数控技术常用术语大全:为了方便读者阅读相关数控资料和国外数控产品的相关手册,在此选择了常用的数控词汇及其英语对应单词,所选用的数控术语主要参考国际标准ISO 2806和中华人民共和国国家标准GB
以及近年新出现的一些数控词汇。
1)计算机数值控制 (Computerized Numerical Control, CNC) 用计算机控制加工功能,实现数值控制。
2)轴(Axis)机床的部件可以沿着其作直线移动或回转运动的基准方向。
3)机床坐标系( Machine Coordinate Systern )固定于机床上,以机床零点为基准的笛卡尔坐标系。
4)机床坐标原点( Machine Coordinate Origin )机床坐标系的原点。
5)工件坐标系( Workpiece Coordinate System )固定于工件上的笛卡尔坐标系。
6)工件坐标原点( Wrok-piexe Coordinate Origin)工件坐标系原点。
7)机床零点( Machine zero )由机床制造商规定的机床原点。
8)参考位置( Reference Position )机床启动用的沿着坐标轴上的一个固定点,它可以用机床坐标原点为参考基准。
9)绝对尺寸(Absolute Dimension)/绝对坐标值(Absolute Coordinates)距一坐标系原点的直线距离或角度。
10)增量尺寸( Incremental Dimension ) /增量坐标值(Incremental Coordinates)在一序列点的增量中,各点距前一点的距离或角度值。
11)最小输人增量(Least Input Increment) 在加工程序中可以输人的最小增量单位。
12)命令增量(Least command Increment)从数值控制装置发出的命令坐标轴移动的最小增量单位。
13)插补 (InterPolation)在所需的路径或轮廓线上的两个已知点间根据某一数学函数(例如:直线,圆弧或高阶函数)确定其多个中间点的位置坐标值的运算过程。
14)直线插补(Llne Interpolation)这是一种插补方式,在此方式中,两点间的插补沿着直线的点群来逼近,沿此直线控制刀具的运动。
15)圆弧插补(Circula : Interpolation)这是一种插补方式,在此方式中,根据两端点间的插补数字信息,计算出逼近实际圆弧的点群,控制刀具沿这些点运动,加工出圆弧曲线。
16)顺时针圆弧(Clockwise Arc)刀具参考点围绕轨迹中心,按负角度方向旋转所形成的轨迹.方向旋转所形成的轨迹.
17)逆时针圆弧(Counterclockwise Arc)刀具参考点围绕轨迹中心,按正角度方向旋转所形成的轨迹。
18)手工零件编程(Manual Part Prograrnmiog)手工进行零件加工程序的编制。
19)计算机零件编程(Cornputer Part prograrnrnlng)用计算机和适当的通用处理程序以及后置处理程序准备零件程序得到加工程序。
20)绝对编程(Absolute Prograrnming)用表示绝对尺寸的控制字进行编程。
21)增量编程(Increment programming)用表示增量尺寸的控制字进行编程。
22)宇符(Character)用于表示一组织或控制数据的一组元素符号。
23)控制字符(Control Character)出现于特定的信息文本中,表示某一控制功能的字符。
24)地址(Address)一个控制字开始的字符或一组字符,用以辨认其后的数据。
25)程序段格式(Block Format)字、字符和数据在一个程序段中的安排。
26)指令码(Instruction Code) /机器码(Machine Code)计算机指令代码,机器语言,用来表示指令集中的指令的代码。
27)程序号(Program Number)以号码识别加工程序时,在每一程序的前端指定的编号 .
28)程序名(Prograo Name)以名称识别加工程序时,为每一程序指定的名称。
29)指令方式(Command Mode)指令的工作方式。
30)程序段(Block)程序中为了实现某种操作的一组指令的集合.
31)零件程序(P art Program)在自动加工中,为了使自动操作有效按某种语言或某种格式书写的顺序指令集。零件程序是写在输人介质上的加工程序,也可以是为计算机准备的输人,经处理后得到加工程序。
32)加工程序(Machine Program)在自动加工控制系统中,按自动控制语言和格式书写的顺序指令集。这些指令记录在适当的输人介质上,完全能实现直接的操作。
33)程序结束(End of Program)指出工件加工结束的辅助功能
34)数据结束(End of Data)程序段的所有命令执行完后,使主轴功能和其他功能(例如冷却功能)均被删除的辅助功能。
35)程序暂停(Progrom Stop)程序段的所有命令执行完后,删除主轴功能和其他功能,并终止其后的数据处理的辅助功能.
36)准备功能(Preparatory Functton)使机床或控制系统建立加工功能方式的命令.
37)辅助功能(MiscellaneouS Function)控制机床或系统的开关功能的一种命令。
38)刀具功能(Tool Funetion)依据相应的格式规范,识别或调人刀具。
39)进给功能(Feed Function)定义进给速度技术规范的命令。
40)主轴速度功能(Spindle Speed Function)定义主轴速度技术规范的命令。
41)进给保持(Feed Hold)在加工程序执行期问,暂时中断进给的功能。
42)刀具轨迹(Tool Path)切削刀具上规定点所走过的轨迹。
43)零点偏置(Zero Offset)数控系统的一种特征.它容许数控测量系统的原点在指定范围内相对于机床零点移动,但其永久零点则存在数控系统中。
44)刀具偏置(Tool Offset)在一个加工程序的全部或指定部分,施加于机床坐标轴上的相对位移.该轴的位移方向由偏置值的正负来确定.
45)刀具长度偏置(Tool Length Offset)在刀具长度方向卜的偏晋
46)刀具半径偏置(Tool Radlus OffseO)刀具在两个坐标方向的刀具偏置。
47)刀具半径补偿(Cutter Compensation)垂直于刀具轨迹的位移,用来修正实际的刀具半径与编程的刀具半径的差异
48)刀具轨迹进给速度(Tool Path Feedrate)刀具上的基准点沿着刀具轨迹相对于工件移动时的速度,其单位通常用每分钟或每转的移动量来表示。
49)固定循环(Fixed Cycle , Canned Cycle)预先设定的一些操作命令,根据这些操作命令使机床坐标袖运动,主袖工作,从而完成固定的加工动作。例如,钻孔、铿削、攻丝以及这些加工的复合动作。
50)子程序(Subprogram)加工程序的一部分,子程序可由适当的加工控制命令调用而生效
51)工序单(Planning sheet)在编制零件的加工工序前为其准备的零件加工过程表。
52)执行程序(Executlve Program)在 CNC 系统中,建立运行能力的指令集合
53)倍率(Override)使操作者在加工期间能够修改速度的编程值(例如,进给率、主轴转速等)的手工控制功能。
54)伺服机构(Servo-Mwchanisnt)这是一种伺服系统,其中被控量为机械位置或机械位置对时间的导数.
55)误差(Error)计算值、观察值或实际值与真值、给定值或理论值之差
56)分辨率(Resolution)两个相邻的离散量之间可以分辨的最小间隔.数控机床各种故障维修方法列举:
由于现代数控系统的可靠性越来越高,数控系统本身的故障越来越低,而大部分故障的发生则是非系统本身原因引起的。系统外部的故障主要指由于检测开关、液压元件、气动元件、电气执行元件、机械装置等出现问题而引起的。
& 数控设备的外部故障可以分为软故障和外部硬件损坏引起的硬故障。软故障是指由于操作、调整处理不当引起的,这类故障多发生在设备使用前期或设备使用人员调整时期。对于数控系统来说,另一个易出故障的地方为伺服单元。由于各轴的运动是靠伺服单元控制伺服电机带动滚珠丝杠来实现的。用旋转编码器作速度反馈,用光栅尺作位置反馈。一般易出故障的地方为旋转编码器与伺服单元的驱动模块。也有个别的是由于电源原因而引起的系统混乱。特别是对那些带计算机硬盘保存数据的系统。例如,德国西门子系统840C。
& 例1:一数控车床刚投入使用的时候,在系统断电后重新启动时,必须要返回到参考点。即当用手动方式将各轴移到非干涉区外后,再使各轴返回参考点。否则,可能发生撞车事故。所以,每天加工完后,最好把机床的轴移到安全位置。此时再操作或断电后就不会出现问题。
& 外部硬件操作引起的故障是数控修理中的常见故障。一般都是由于检测开关、液压系统、气动系统、电气执行元件、机械装置出现问题引起的。这类故障有些可以通过报警信息查找故障原因。对一般的数控系统来讲都有故障诊断功能或信息报警。维修人员可利用这些信息手段缩小诊断范围。而有些故障虽有报警信息显示,但并不能反映故障的真实原因。这时需根据报警信息和故障现象来分析解决。
& 例2:我厂一车削单元采用的是SINUMERIK840C系统。机床在工作时突然停机。显示主轴温度报警。经过对比检查,故障出现在温度仪表上,调整外围线路后报警消失。随即更换新仪表后恢复正常。
& 例3:同样是这台车削中心,工作时CRT显示9160报警&9160 NO PART WITH GRIPPER 1 CLOSED VERIFY V14-5&。这是指未抓起工件报警。但实际上抓工件的机械手已将工件抓起,却显示机械手未抓起工件报警。查阅PLC图,此故障是测量感应开关发出的。经查机械手部位,机械手工作行程不到位,未完全压下感应开关引起的。随后调整机械手的夹紧力,此故障排除。
& 例4:一台立式加工中心采用FANUC-OM控制系统。机床在自动方式下执行到X轴快速移动时就出现414#和410#报警。此报警是速度控制OFF和X轴伺服驱动异常。由于此故障出现后能通过重新启动消除,但每执行到X轴快速移动时就报警。经查该伺服电机电源线插头因电弧爬行而引起相间短路,经修整后此故障排除。
& 例5:操作者操作不当也是引起故障的重要原因。如我厂另一台采用840C系统的数控车床,第一天工作时完全正常,而第二天上班时却无论如何也开不了机,工作方式一转到自动方式下就报警&EMPTYING SELECTED MOOE SELECTOR&。加工完工件后,主轴不停,机械手就去抓取工件,后来仔细检查各部位都无毛病,而是自动工作条件下的一个模式开关位置错了。所以,当有些故障原因不明的报警出现的话,一定要检查各工作方式下的开关位置。
& 还有些故障不产生故障报警信息,只是动作不能完成,这时就要根据维修经验、机床的工作原理和PLC运行状况来分析判断了。
& 对于数控机床的修理,重要的是发现问题。特别是数控机床的外部故障。有时诊断过程比较复杂,但一旦发现问题所在,解决起来比较简单。对外部故障诊断应遵从以下两条原则。首先要熟练掌握机床的工作原理和动作顺序。其次,要会利用PLC梯形图。NC系统的状态显示功能或机外编程器监测PLC的运行状态,一般只要遵从以上原则,小心谨慎,一般的数控故障都会及时排除。&数控机床维修技术简述:&随着电子技术和自动化技术的发展,数控技术的应用越来越广泛。以微处理器为基础,以大规模集成电路为标志的数控设备,已在我国批量生产、大量引进和推广应用,它们给机械制造业的发展创造了条件,并带来很大的效益。但同时,由于它们的先进性、复杂性和智能化高的特点,在维修理论、技术和手段上都发生了飞跃的变化。
数控维修技术不仅是保障正常运行的前提,对数控技术的发展和完善也起到了巨大的推动作用,因此,目前它已经成为一门专门的学科。
另外任何一台数控设备都是一种过程控制设备,这就要求它在实时控制的每一时刻都准确无误地工作。任何部分的故障与失效,都会使机床停机,从而造成生产停顿。因而对数控系统这样原理复杂、结构精密的装置进行维修就显得十分必要了。尤其对引进的CNC机床,大多花费了几十万到上千万美元。在许多行业中,这些设备均处于关键的工作岗位,若在出现故障后不及时维修排除故障,就会造成较大的经济损失。
我们现有的维修状况和水平,与国外进口设备的设计与制造技术水平还存在很大的差距。造成差距的原因在于:人员素质较差,缺乏数字测试分析手段,数域和数域与频域综合方面的测试分析技术等有待提高等等。
下面我们从现代数控系统的基本构成入手,探讨数控系统的诊断与维修。
1 数控系统的构成与特点
目前世界上的数控系统种类繁多,形式各异,组成结构上都有各自的特点。这些结构特点来源于系统初始设计的基本要求和工程设计的思路。例如对点位控制系统和连续轨迹控制系统就有截然不同的要求。对于T系统和M系统,同样也有很大的区别,前者适用于回转体零件加工,后者适合于异形非回转体的零件加工。对于不同的生产厂家来说,基于历史发展因素以及各自因地而异的复杂因素的影响,在设计思想上也可能各有千秋。例如,美国Dynapath系统采用小板结构,便于板子更换和灵活结合,而日本FANUC系统则趋向大板结构,使之有利于系统工作的可靠性,促使系统的平均无故障率不断提高。然而无论哪种系统,它们的基本原理和构成是十分相似的。一般整个数控系统由三大部分组成,即控制系统,伺服系统和位置测量系统。控制系统按加工工件程序进行插补运算,发出控制指令到伺服驱动系统;伺服驱动系统将控制指令放大,由伺服电机驱动机械按要求运动;测量系统检测机械的运动位置或速度,并反馈到控制系统,来修正控制指令。这三部分有机结合,组成完整的闭环控制的数控系统。
控制系统主要由总线、CPU、电源、存贮器、操作面板和显示屏、位控单元、可编程序控制器逻辑控制单元以及数据输入/输出接口等组成。最新一代的数控系统还包括一个通讯单元,它可完成CNC、PLC的内部数据通讯和外部高次网络的连接。伺服驱动系统主要包括伺服驱动装置和电机。位置测量系统主要是采用长光栅或圆光栅的增量式位移编码器。
数控系统的主要特点是:可靠性要求高:因为一旦数控系统发生故障,即造成巨大经济损失;有较高的环境适应能力,因为数控系统一般为工业控制机,其工作环境为车间环境,要求它具有在震动,高温,潮湿以及各种工业干扰源的环境条件下工作的能力;接口电路复杂,数控系统要与各种数控设备及外部设备相配套,要随时处理生产过程中的各种情况,适应设备的各种工艺要求,因而接口电路复杂,而且工作频繁。
2 现代数控系统维修工作的基本条件
2.1 维修工作人员的基本条件
维修工作开展得好坏首先取决于人员条件。维修工作人员必须具备以下要求:
高度的责任心与良好的职业道德;
知识面广,掌握计算机技术、模拟与数字电路基础、自动控制与电机拖动、检测技术及机械加工工艺方面的基础知识与一定的外语水平;
经过良好的技术培训,掌握有关数控、驱动及PLC的工作原理,懂得CNC编程和编程语言;
熟悉结构,具有实验技能和较强的动手操作能力;
掌握各种常用(尤其是现场)的测试仪器、仪表和各种工具。
2.2 在维修手段方面应具备的条件
准备好常用备品、配件;
随时可以得到微电子元器件的实际支援或供应;
必要的维修工具、仪器、仪表、接线、微机。最好有小型编程系统或编程器,用以支援设备调试;
完整资料、手册、线路图、维修说明书(包括CNC操作说明书)以及接口、调整与诊断、驱动说明书,PLC说明书(包括PLC用户程序单),元器件表格等。
2.3 维修前的准备
接到用户的直接要求后,应尽可能直接与用户联系,以便尽快地获取现场信息、现场情况及故障信息。如数控机床的进给与主轴驱动型号、报警指示或故障现象、用户现场有无备件等。据此预先分析可能出现的故障原因与部位,而后在出发到现场之前,准备好有关的技术资料与维修服务工具、仪器备件等,做到有备而去。
3 现场维修
现场维修是对数控机床出现的故障(主要是数控部分)进行诊断,找出故障部位,以相应的正常备件更换,使机床恢复正常运行。这过程的关键是诊断,即对系统或外围线路进行检测,确定有无故障,并对故障定位指出故障的确切位置。从整机定位到插线板,在某些场合下甚至定位到元器件。这是整个维修工作的主要部分。
3.1 数控系统的故障诊断
初步判别 通常在资料较全时,可通过资料分析判断故障所在,或采取接口信号法根据故障现象判别可能发生故障的部位,而后再按照故障与这一部位的具体特点,逐个部位检查,初步判别。在实际应用中,可能用一种方法即可查到故障并排除,有时需要多种方法并用。对各种判别故障点的方法的掌握程度主要取决于对故障设备原理与结构掌握的深度。
报警处理 ①系统报警的处理:数控系统发生故障时,一般在显示屏或操作面板上给出故障信号和相应的信息。通常系统的操作手册或调整手册中都有详细的报警号,报警内容和处理方法。由于系统的报警设置单一、齐全、严密、明确、维修人员可根据每一警报后面给出的信息与处理办法自行处理。②机床报警和操作信息的处理:机床制造厂根据机床的电气特点,应用PLC程序,将一些能反映机床接口电气控制方面的故障或操作信息以特定的标志,通过显示器给出,并可通过特定键,看到更详尽的报警说明。这类报警可以根据机床厂提供的排除故障手册进行处理,也可以利用操作面板或编程器根据电路图和PLC程序,查出相应的信号状态,按逻辑关系找出故障点进行处理。
无报警或无法报警的故障处理 当系统的PLC无法运行,系统已停机或系统没有报警但工作不正常时,需要根据故障发生前后的系统状态信息,运用已掌握的理论基础,进行分析,做出正确的判断。下面阐述这种故障诊断和排除办法。
故障诊断方法
常规检查法
目测 目测故障板,仔细检查有无保险丝烧断,元器件烧焦,烟熏,开裂现象,有无异物断路现象。以此可判断板内有无过流,过压,短路等问题。
手摸 用手摸并轻摇元器件,尤其是阻容,半导体器件有无松动之感,以此可检查出一些断脚,虚焊等问题。
通电 首先用万用表检查各种电源之间有无断路,如无即可接入相应的电源,目测有无冒烟,打火等现象,手摸元器件有无异常发热,以此可发现一些较为明显的故障,而缩小检修范围。
例如:在哈尔滨某工厂排除故障时,机床的数控系统和PLC运行正常,但机床的液压系统无法启动,用编程器检查PLC程序运行正常,各所需信号状态均满足开机条件。进一步检查中发现,PLC信号状态与图纸和设备上的标记不一致,停机拔出电路板检查,发现PLC两块输出板编址不对,与另两块位置搞错,经交换后,机床正常运转。对于发生这个故障的机床所采用的SIMATIC S5-150K可编程控制器,只要编址正确,无论将线路板的位置怎样排列,系统均能正常运转,但相应地执行元件和信号源必须正确地对应,一旦对应错误就会发生故障,甚至毁坏机床。另外,根据用户提供的故障现象,结合自己的现场观察,运用系统工作原理亦可迅速做出正确判断。
仪器测量法 当系统发生故障后,采用常规电工检测仪器,工具,按系统电路图及机床电路图对故障部分的电压,电源,脉冲信号等进行实测判断故障所在。如电源的输入电压超限,引起电源监控可用电压表测网络电压,或用电压测试仪实时监控以排除其它原因。如发生位置控制环故障可用示波器检查测量回路的信号状态,或用示波器观察其信号输出是否缺相,有无干扰。例如,上海某厂在排除故障中,系统报警,位置环硬件故障,用示波器检查发现有干扰信号,我们在电路中用接电容的方法将其滤掉使系统工作正常。如出现系统无法回基准点的情况,可用示波器检查是否有零标记脉冲,若没有可考虑是测量系统损坏。
用可编程控制器进行PLC中断状态分析:可编程序控制器发生故障时,其中断原因以中断堆栈的方式记忆。使用编程器可以在系统停止状态下,调出中断堆栈和块堆栈,按其所指示的原因,查明故障所在。在可编程序控制器的维修中这是最常用有效和快速的办法。
接口信号检查:通过用可编程序控制器检查机床控制系统的接口信号,并与接口手册的正确信号相对比,亦可查出相应的故障点。
诊断备件替换法:现代数控系统大都采用模块化设计,按功能不同划分不同模块,随着现代技术的发展,电路的集成规模越来越大技术也越来越复杂,按常规方法,很难把故障定位到一个很小的区域,而一旦系统发生故障,为了缩短停机时间,我们可以根据模块的功能与故障现象,初步判断出可能的故障模块,用诊断备件将其替换,这样可迅速判断出有故障的模块。在没有诊断备件的情况下可以采用现场相同或相容的模块进行替换检查,对于现代数控的维修,越来越多的情况采用这种方法进行诊断,然后用备件替换损坏模块,使系统正常工作。尽最大可能缩短故障停机时间,使用这种方法在操作时注意一定要在停电状态下进行,还要仔细检查线路板的版本,型号,各种标记,跨接是否相同,对于有关的机床数据和电位计的位置应做好记录,拆线时应做好标志。
利用系统的自诊断功能判断:现代数控系统尤其是全功能数控具有很强的自诊断能力,通过实施时监控系统各部分的工作,及时判断故障,给出报警信息,并做出相应的动作,避免事故发生。然而有时当硬件发生故障时,就无法报警,有的数控系统可通过发光管不同的闪烁频率或不同的组合做出相应的指示,这些指示配合使用就可帮助我们准确地诊断出故障模板的位置。如SINUMERIK 8系统根据MS100 CPU板上四个指示灯和操作面板上的FAULT灯的亮灭组合就可判断出故障位置。
上述诊断方法,在实际应用时并无严格的界限,可能用一种方法就能排除故障,亦可能需要多种方法同时进行。其效果主要取决于对系统原理与结构的理解与掌握的深度,以及维修经验的多少。 3.2 数控系统的常见故障分析
根据数控系统的构成,工作原理和特点,结合我们在维修中的经验,将常见的故障部位及故障现象分析如下。
位置环 这是数控系统发出控制指令,并与位置检测系统的反馈值相比较,进一步完成控制任务的关键环节。它具有很高的工作频度,并与外设相联接,所以容易发生故障。
常见的故障有:①位控环报警:可能是测量回路开路;测量系统损坏,位控单元内部损坏。②不发指令就运动,可能是漂移过高,正反馈,位控单元故障;测量元件损坏。③测量元件故障,一般表现为无反馈值;机床回不了基准点;高速时漏脉冲产生报警可能的原因是光栅或读头脏了;光栅坏了。
伺服驱动系统 伺服驱动系统与电源电网,机械系统等相关联,而且在工作中一直处于频繁的启动和运行状态,因而这也是故障较多的部分。
其主要故障有:①系统损坏。一般由于网络电压波动太大,或电压冲击造成。我国大部分地区电网质量不好,会给机床带来电压超限,尤其是瞬间超限,如无专门的电压监控仪,则很难测到,在查找故障原因时,要加以注意,还有一些是由于特殊原因造成的损坏。如华北某厂由于雷击中工厂变电站并窜入电网而造成多台机床伺服系统损坏。②无控制指令,而电机高速运转。这种故障的原因是速度环开环或正反馈。如在东北某厂,引进的西德WOTAN公司转子铣床在调试中,机床X轴在无指令的情况下,高速运转,经分析我们认为是正反馈造成的。因为系统零点漂移,在正反馈情况下,就会迅速累加使电机在高速下运转,而我们按标签检查线路后完全正确,机床厂技术人员认为不可能接错,在充分分析与检测后我们将反馈线反接,结果机床运转正常。机床厂技术人员不得不承认德方工作失误。还有一例子,我们在天津某厂培训讲学时,应厂方要求对他们厂一台自进厂后一直无法正常工作的精密磨床进行维修,其故障是:机床一启动电机就运转,而且越来越快,直至最高转速。我们分析认为是由于速度环开路,系统漂移无法抑制造成。经检查其原因是速度反馈线接到了地线上造成。③加工时工件表面达不到要求,走圆弧插补轴换向时出现凸台,或电机低速爬行或振动,这类故障一般是由于伺服系统调整不当,各轴增益系统不相等或与电机匹配不合适引起,解决办法是进行最佳化调节。④保险烧断,或电机过热,以至烧坏,这类故障一般是机械负载过大或卡死。
电源部分 电源是维持系统正常工作的能源支持部分,它失效或故障的直接结果是造成系统的停机或毁坏整个系统。一般在欧美国家,这类问题比较少,在设计上这方面的因素考虑的不多,但在中国由于电源波动较大,质量差,还隐藏有如高频脉冲这一类的干扰,加上人为的因素(如突然拉闸断电等)。这些原因可造成电源故障监控或损坏。另外,数控系统部分运行数据,设定数据以及加工程序等一般存贮在RAM存贮器内,系统断电后,靠电源的后备蓄电池或锂电池来保持。因而,停机时间比较长,拔插电源或存贮器都可能造成数据丢失,使系统不能运行。
可编程序控制器逻辑接口 数控系统的逻辑控制,如刀库管理,液压启动等,主要由PLC来实现,要完成这些控制就必须采集各控制点的状态信息,如断电器,伺服阀,指示灯等。因而它与外界种类繁多的各种信号源和执行元件相连接,变化频繁,所以发生故障的可能性就比较多,而且故障类型亦千变万化。
其他 由于环境条件,如干扰,温度,湿度超过允许范围,操作不当,参数设定不当,亦可能造成停机或故障。有一工厂的数控设备,开机后不久便失去数控准备好信号,系统无法工作,经检查发现机体温度很高,原因是通气过滤网已堵死,引起温度传感器动作,更换滤网后,系统正常工作。不按操作规程拔插线路板,或无静电防护措施等,都可能造成停机故障甚至毁坏系统。
一般在数控系统的设计、使用和维修中,必须考虑对经常出现故障的部位给予报警,报警电路工作后,一方面在屏幕或操作面板上给出报警信息,另一方面发出保护性中断指令,使系统停止工作,以便查清故障和进行维修。
3.3 故障排除方法
初始化复位法 一般情况下,由于瞬时故障引起的系统报警,可用硬件复位或开关系统电源依次来清除故障,若系统工作存贮区由于掉电,拔插线路板或电池欠压造成混乱,则必须对系统进行初始化清除,清除前应注意作好数据拷贝记录,若初始化后故障仍无法排除,则进行硬件诊断。
参数更改,程序更正法 系统参数是确定系统功能的依据,参数设定错误就可能造成系统的故障或某功能无效。例如,在哈尔滨某厂转子铣床上采用了测量循环系统,这一功能要求有一个背景存贮器,调试时发现这一功能无法实现。检查发现确定背景存贮器存在的数据位没有设定,经设定后该功能正常。有时由于用户程序错误亦可造成故障停机,对此可以采用系统的块搜索功能进行检查,改正所有错误,以确保其正常运行。
调节,最佳化调整法 调节是一种最简单易行的办法。通过对电位计的调节,修正系统故障。如某军工厂维修中,其系统显示器画面混乱,经调节后正常。在山东某厂,其主轴在启动和制动时发生皮带打滑,原因是其主轴负载转矩大,而驱动装置的斜升时间设定过小,经调节后正常。
最佳化调整是系统地对伺服驱动系统与被拖动的机械系统实现最佳匹配的综合调节方法,其办法很简单,用一台多线记录仪或具有存贮功能的双踪示波器,分别观察指令和速度反馈或电流反馈的响应关系。通过调节速度调节器的比例系数和积分时间,来使伺服系统达到即有较高的动态响应特性,而又不振荡的最佳工作状态。在现场没有示波器或记录仪的情况下,根据经验,即调节使电机起振,然后向反向慢慢调节,直到消除震荡即可。
备件替换法 用好的备件替换诊断出坏的线路板,并做相应的初始化启动,使机床迅速投入正常运转,然后将坏板修理或返修,这是目前最常用的排故办法。
改善电源质量法 目前一般采用稳压电源,来改善电源波动。对于高频干扰可以采用电容滤波法,通过这些预防性措施来减少电源板的故障。
维修信息跟踪法 一些大的制造公司根据实际工作中由于设计缺陷造成的偶然故障,不断修改和完善系统软件或硬件。这些修改以维修信息的形式不断提供给维修人员。以此做为故障排除的依据,可正确彻底地排除故障。
3.4 维修中应注意的事项
从整机上取出某块线路板时,应注意记录其相对应的位置,连接的电缆号,对于固定安装的线路板,还应按前后取下相应的压接部件及螺钉作记录。拆卸下的压件及螺钉应放在专门的盒内,以免丢失,装配后,盒内的东西应全部用上,否则装配不完整。
电烙铁应放在顺手的前方,远离维修线路板。烙铁头应作适当的修整,以适应集成电路的焊接,并避免焊接时碰伤别的元器件。
测量线路间的阻值时,应断电源,测阻值时应红黑表笔互换测量两次,以阻值大的为参考值。
线路板上大多刷有阻焊膜,因此测量时应找到相应的焊点作为测试点,不要铲除焊膜,有的板子全部刷有绝缘层,则只有在焊点处用刀片刮开绝缘层。
不应随意切断印刷线路。有的维修人员具有一定的家电维修经验,习惯断线检查,但数控设备上的线路板大多是双面金属孔板或多层孔化板,印刷线路细而密,一旦切断不易焊接,且切线时易切断相邻的线,再则有的点,在切断某一根线时,并不能使其和线路脱离,需要同时切断几根线才行。
不应随意拆换元器件。有的维修人员在没有确定故障元件的情况下只是凭感觉那一个元件坏了,就立即拆换,这样误判率较高,拆下的元件人为损坏率也较高。
拆卸元件时应使用吸锡器及吸锡绳,切忌硬取。同一焊盘不应长时间加热及重复拆卸,以免损坏焊盘。
更换新的器件,其引脚应作适当的处理,焊接中不应使用酸性焊油。
记录线路上的开关,跳线位置,不应随意改变。进行两极以上的对照检查时,或互换元器件时注意标记各板上的元件,以免错乱,致使好板亦不能工作。
查清线路板的电源配置及种类,根据检查的需要,可分别供电或全部供电。应注意高压,有的线路板直接接入高压,或板内有高压发生器,需适当绝缘,操作时应特别注意。
4 数控机床开机调试
数控机床是一种技术含量很高的机电仪一体化的机床,用户买到一台数控机床后,是否正确的安全地开机,调试是很关键的一步。这一步的正确与否在很大程序上决定了这台数控机床能否发挥正常的经济效率以及它本身的使用寿命,这对数控机床的生产厂和用户厂都是事关重大的课题。数控机床开机,调试应按下列的步骤进行。
4.1 通电前的外观检查
机床电器检查 打开机床电控箱,检查继电器,接触器,熔断器,伺服电机速度,控制单元插座,主轴电机速度控制单元插座等有无松动,如有松动应恢复正常状态,有锁紧机构的接插件一定要锁紧,有转接盒的机床一定要检查转接盒上的插座,接线有无松动,有锁紧机构的一定要锁紧。
CNC电箱检查 打开CNC电箱门,检查各类接口插座,伺服电机反馈线插座,主轴脉冲发生器插座,手摇脉冲发生器插座,CRT插座等,如有松动要重新插好,有锁紧机构的一定要锁紧。按照说明书检查各个印刷线路板上的短路端子的设置情况,一定要符合机床生产厂设定的状态,确实有误的应重新设置,一般情况下无需重新设置,但用户一定要对短路端子的设置状态做好原始记录。
接线质量检查 检查所有的接线端子。包括强弱电部分在装配时机床生产厂自行接线的端子及各电机电源线的接线端子,每个端子都要用旋具紧固一次,直到用旋具拧不动为止,各电机插座一定要拧紧。
电磁阀检查 所有电磁阀都要用手推动数次,以防止长时间不通电造成的动作不良,如发现异常,应作好记录,以备通电后确认修理或更换。
限位开关检查 检查所有限位开关动作的灵活及固定性是否牢固,发现动作不良或固定不牢的应立即处理。
按钮及开关检查 操作面板上按钮及开关检查,检查操作面板上所有按钮,开关,指示灯的接线,发现有误应立即处理,检查CRT单元上的插座及接线。
地线检查 要求有良好的地线,测量机床地线,接地电阻不能大于1&O。
电源相序检查 用相序表检查输入电源的相序,确认输入电源的相序与机床上各处标定的电源相序应绝对一致。
有二次接线的设备,如电源变压器等,必须确认二次接线的相序的一致性。要保证各处相序的绝对正确。此时应测量电源电压,做好记录。
4.2 机床总电压的接通
接通机床总电源,检查CNC电箱,主轴电机冷却风扇,机床电器箱冷却风扇的转向是否正确,润滑,液压等处的油标志指示以及机床照明灯是否正常,各熔断器有无损坏,如有异常应立即停电检修,无异常可以继续进行。
测量强电各部分的电压特别是供CNC及伺服单元用的电源变压器的初次级电压,并作好记录。
观察有无漏油,特别是供转塔转位、卡紧,主轴换档的以及卡盘卡紧等处的液压缸和电磁阀。如有漏油应立即停电修理或更换。
4.3 CNC电箱通电
按CNC电源通电按扭,接通CNC电源,观察CRT显示,直到出现正常画面为止。如果出现ALARM显示,应该寻找故障并排除,此时应重新送电检查。
打开CNC电源,根据有关资料上给出的测试端子的位置测量各级电压,有偏差的应调整到给定值,并作好记录。
将状态开关置于适当的位置,如日本FANUC系统应放置在MDI状态,选择到参数页面。逐条逐位地核对参数,这些参数应与随机所带参数表符合。如发现有不一致的参数,应搞清各个参数的意义后再决定是否修改,如齿隙补偿的数值可能与参数表不一致,这在进行实际加工后可随时进行修改。
将状态选择开关放置在JOG位置,将点动速度放在最低档,分别进行各坐标正反方向的点动操作,同时用手按与点动方向相对应的超程保护开关,验证其保护作用的可靠性,然后,再进行慢速的超程试验,验证超程撞块安装的正确性。
将状态开关置于回零位置,完成回零操作,参考点返回的动作不完成就不能进行其它操作。因此遇此情况应首先进行本项操作,然后再进行第4项操作。
将状态开关置于JOG位置或MDI位置,进行手动变档试验,验证后将主轴调速开关放在最低位置,进行各档的主轴正反转试验,观察主轴运转的情况和速度显示的正确性,然后再逐渐升速到最高转速,观察主轴运转的稳定性。
进行手动导轨润滑试验,使导轨有良好的润滑。
逐渐变化快移超调开关和进给倍率开关,随意点动刀架,观察速度变化的正确性。
4.4 MDI试验
测量主轴实际转速 将机床锁住开关放在接通位置,用手动数据输入指令,进行主轴任意变档,变速试验,测量主轴实际转速,并观察主轴速度显示值,调整其误差应限定在5%之内。
进行转塔或刀座的选刀试验 其目的是检查刀座或正、反转和定位精度的正确性。
功能试验 根据定货的情况不同,功能也不同,可根据具体情况对各个功能进行试验。为防止意外情况发生,最好先将机床锁住进行试验,然后再放开机床进行试验。
EDIT功能试验 将状态选择开关置于EDIT位置,自行编制一简单程序,尽可能多地包括各种功能指令和辅助功能指令,移动尺寸以机床最大行程为限,同时进行程序的增加,删除和修改。
自动状态试验 将机床锁住,用编制的程序进行空运转试验,验证程序的正确性,然后放开机床,分别将进给倍率开关,快速超调开关,主轴速度超调开关进行多种变化,使机床在上述各开关的多种变化的情况下进行充分地运行,后将各超调开关置于100%处,使机床充分运行,观察整机的工作情况是否正常。
至此,一台数控机床才算开机调试完毕。
5 维修调试后的技术处理
在现场维修结束后,应认真填写维修记录,列出有关必备的备件的清单,建立用户档案,对于故障时间,现象,分析诊断方法,采用排故方法,如果有遗留问题应详尽记录,这样不仅使每次故障都有据可查,而且也可以积累维修经验。
以上对于数控系统维修技术的阐述,是我们几年中近百次数控系统的调试和维修的经验的总结。虽然,数控系统种类繁多,故障千变万化,维修方法也不尽相同,一篇短文很难尽述,但是我们仍希望把一些基本方法与思路写出来,与大家交流以期能引起人们对数控系统维修技术的重视,维修技术的直接目的和结果是使数控系统恢复正常运行,从而保证生产的顺利进行。目前在我们国家数控技术正迅速向各工业部门渗透,随着电子技术的发展,数控技术在国民经济中的地位也就随之提高,那么对于数控技术重要组成部分-数控系统维修技术也应迅速适应数控技术飞速发展的要求,作为一名数控系统维修技术人员,就应该不断地学习和掌握新的知识与技术,寻找新的维修诊断的方法和手段,为推动数控系统维修技术的发展做出应有的贡献。
数控机床外部故障的诊断与维修几例: 由于现代数控系统的可靠性越来越高,数控系统本身的故障越来越低,而大部分故障的发生则是非系统本身原因引起的。系统外部的故障主要指由于检测开关、液压元件、气动元件、电气执行元件、机械装置等出现问题而引起的。    数控设备的外部故障可以分为软故障和外部硬件损坏引起的硬故障。软故障是指由于操作、调整处理不当引起的,这类故障多发生在设备使用前期或设备使用人员调整时期。对于数控系统来说,另一个易出故障的地方为伺服单元。由于各轴的运动是靠伺服单元控制伺服电机带动滚珠丝杠来实现的。用旋转编码器作速度反馈,用光栅尺作位置反馈。一般易出故障的地方为旋转编码器与伺服单元的驱动模块。也有个别的是由于电源原因而引起的系统混乱。特别是对那些带计算机硬盘保存数据的系统。例如,德国西门子系统840C。    例1:一数控车床刚投入使用的时候,在系统断电后重新启动时,必须要返回到参考点。即当用手动方式将各轴移到非干涉区外后,再使各轴返回参考点。否则,可能发生撞车事故。所以,每天加工完后,最好把机床的轴移到安全位置。此时再操作或断电后就不会出现问题。    外部硬件操作引起的故障是数控修理中的常见故障。一般都是由于检测开关、液压系统、气动系统、电气执行元件、机械装置出现问题引起的。这类故障有些可以通过报警信息查找故障原因。对一般的数控系统来讲都有故障诊断功能或信息报警。维修人员可利用这些信息手段缩小诊断范围。而有些故障虽有报警信息显示,但并不能反映故障的真实原因。这时需根据报警信息和故障现象来分析解决。    例2:我厂一车削单元采用的是SINUMERIK840C系统。机床在工作时突然停机。显示主轴温度报警。经过对比检查,故障出现在温度仪表上,调整外围线路后报警消失。随即更换新仪表后恢复正常。     例3:同样是这台车削中心,工作时CRT显示9160报警&9160 NO PART WITH GRIPPER 1 CLOSED VERIFY V14-5&。这是指未抓起工件报警。但实际上抓工件的机械手已将工件抓起,却显示机械手未抓起工件报警。查阅PLC图,此故障是测量感应开关发出的。经查机械手部位,机械手工作行程不到位,未完全压下感应开关引起的。随后调整机械手的夹紧力,此故障排除。    例4:一台立式加工中心采用FANUC-OM控制系统。机床在自动方式下执行到X轴快速移动时就出现414#和410#报警。此报警是速度控制OFF和X轴伺服驱动异常。由于此故障出现后能通过重新启动消除,但每执行到X轴快速移动时就报警。经查该伺服电机电源线插头因电弧爬行而引起相间短路,经修整后此故障排除。    例5:操作者操作不当也是引起故障的重要原因。如我厂另一台采用840C系统的数控车床,第一天工作时完全正常,而第二天上班时却无论如何也开不了机,工作方式一转到自动方式下就报警&EMPTYING SELECTED MOOE SELECTOR&。加工完工件后,主轴不停,机械手就去抓取工件,后来仔细检查各部位都无毛病,而是自动工作条件下的一个模式开关位置错了。所以,当有些故障原因不明的报警出现的话,一定要检查各工作方式下的开关位置。    还有些故障不产生故障报警信息,只是动作不能完成,这时就要根据维修经验、机床的工作原理和PLC运行状况来分析判断了。    对于数控机床的修理,重要的是发现问题。特别是数控机床的外部故障。有时诊断过程比较复杂,但一旦发现问题所在,解决起来比较简单。对外部故障诊断应遵从以下两条原则。首先要熟练掌握机床的工作原理和动作顺序。其次,要会利用PLC梯形图。NC系统的状态显示功能或机外编程器监测PLC的运行状态,一般只要遵从以上原则,小心谨慎,一般的数控故障都会及时排除。
数控机床几例故障的检修:&在数控机床中,大部分的故障都有资料可查,但也有一些故障,提供的报警信息较含糊甚至根本无报警,或者出现的周期较长,无规律,不定期,给查找分析带来了很多困难。对这类机床故障,需要对具体情况分析,进行耐心的查找,而且检查时特别需要机械、电气、液压等方面的综合知识,不然就很难快速、正确地找到故障的真正原因。以下的几例故障就具有上述情况。
(1)青海XH755卧式加工中心,工作时出现Y轴正(十)向误差增大,所加工的零件报废,测量检查发现误差范围可从 0.01~0.50mm。
根据故障情况,首先检查了机床的位置显示数值,与程序中要求的尺寸相同,即要求Y轴移动100mm时,在屏幕上显示也是100mm,同时在屏幕上无报警信息。对伺服控制器检查,没有发现异常情况,使用百分表在Y轴方向检查,发现尺寸的变化是根据移动的 次数逐步增大的。根据以上检查的情况分析,数控系统和伺服放大器都是正常的,引起故障的原因还是在联轴器上。Y轴的联轴器如附图所示。将电动机拆卸,对 联轴器进行仔细检查、测量后发现有以下问题:中间的联接块的键与轴上联接套的槽配合过松,且键与槽接触的深度不够,槽内有2/3的空隙。经重新配做中间联接块,调整接触深度后故障排除。
(2)一台配用FANUC-0MC系统的加工中心经数控改装,使用一段时间后出现换刀故障,刀插入主轴刀孔时,出现错位机床上无任何报警信息。
在对机床故障进行了仔细的观察后,发现造成刀具插入错位是因主轴定向后又偏离了原先的位置。在使用手动方式检查主轴定向时发现有一个奇怪的现象:主轴在定向完成后位置是正确的,当用手去动一下主轴时,主轴会慢慢地向施力的相反方向转动一小段距离。逆时针旋转时在定向完成后只转一点,在加力向顺时针转动后能返回到原先的位置。为了确认电气部分是否正常,在主轴定向后检查了有关的信号均正常。由于定向控制是通过编码器进行检测的,因此对编码器产生了怀疑。对该部分的电气和机械联接进行检查,当将编码器从主轴上拆开后即发现编码器上的联轴器止退螺丝松动已向后移,因而出现工作时编码器与检测齿轮不能同步,使主轴的定向位置不准,造成换刀错位故障。
(3)瑞士斯都特S-45数控磨床, SINUMERIK-3数控系统,工作时不定时地出现123、122、222号报警。报警有时在Z轴快速移动或刚开始移动时出现,有时在修正砂轮时出现。
该故障的情况较特别,经向操作人员询问,在每天早晨开机时正常,但工作到下午时故障就频繁出现,机床无法使用。检查电动机和伺服控制器都正常,查看报警说明其中原因有机械阻力过大,手动检查丝杆和电动机无异常,但在拆卸机床防护罩,对丝杆进行检查 时,无意中发现防护罩两侧已堆积了大量的磨屑。原来机床经一夜停歇,磨屑已干燥,在早晨开机时一般能正 常工作,但在使用一段时间后,因冷却液使堆积的磨屑膨胀,造成防护罩移动阻力增大。经清除磨屑后,故障排除。正常使用了很长一段时间后,又出现了上述报警。对故障进行检查后,发现有多方面的原因,如电动机故障,光栅尺故障,机械故障等,而其中出现最多的原因是光栅尺因被带水气的压缩空气污染。该光栅尺内通压缩空气,以防止灰尘进人,但由于在潮湿天气空气湿度大,压缩空气中的水未被滤净同时吹人,使光栅尺模糊,引起检测错误。所以,在检查时应根据具体情况分析,不能对出现的相同故障一概而论。 作者:萧山杭维柯公司 毛建中
数控滚齿机伺服系统故障:&初始故障已由维修人员检查出来,为一检测元件的供电变压器断线。换了变压器后,一通电,膨的一声,并出现飞车现象,人工紧急停车。断电检查,伺服系统的供电模块损坏,大功率管崩裂,印制板烧焦有一大洞。 经专业维修人员检查,由于供电模块损坏,设备不能运行,只有先恢复供电模块然后才能进行全面检查。 供电模块的印制板中,有的元器件已损坏,烧焦,无法辨认也无法测试,印制线路也熔断不少。由于没有技术资料,故给测绘工作带来很大困难。 根据测绘的结果,分析线路,补齐烧损的部位,计算元器件的参数值,重新制作印制板恢复了供电模块,接上模拟负载进行调试,调整好泄放电压的峰值。 检查测试元件供电变压器的接线,发现接线出错,重联接。装入供电模块,通电,供电模块正常。 作手动操作,有的轴向不能运行。检查位置模块,无输入。再进一步检查,两个轴向光电编码器已损坏。更换后全部手动正常。再自动运行,全部正常。 通过本例说明,维修人员在维修中拆卸元器件的时候,应对元器件的位置、各对应接线作上标记,有详细的记录,装入元器件时应仔细检查接线的正确性。 维修人员除能够依照原印制线路板作测绘外,还要具有较广泛的线路知识,能够推导线路中元器件的参数值。& & 数控设备检测元件的故障及维修:&检测元件是数控机床伺服系统的重要组成部分,它起着检测各控制轴的位移和速度的作用,它把检测到的信号反馈回去,构成闭环系统。测量方式可分为直接测量和间接测量:直接测量就是对机床的直线位移采用直线型检测元件测量,直接测量常用的检测元件一般包括:直线感应同步器、计量光栅、磁尺激光干涉仪。间接测量就是对机床的直线位移采用回转型检测元件测量,间接测量常用的检测元件一般包括:脉冲编码器、旋转变压器、圆感应同步器、圆光栅和圆磁栅。
当机床出现如下故障现象时,应考虑是否是由检测元件的故障引起的:1.机械振荡(加/减速时):(1)脉冲编码器出现故障,此时检查速度单元上的反馈线端子电压是否在某几点电压下降,如有下降表明脉冲编码器不良,更换编码器。(2)脉冲编码器十字联轴节可能损坏,导致轴转速与检测到的速度不同步,更换联轴节。(3)测速发电机出现故障,修复,更换测速机。
2.机械暴走(飞车):在检查位置控制单元和速度控制单元的情况下,应检查:(1)脉冲编码器接线是否错误,检查编码器接线是否为正反馈,A相和B相是否接反。(2)脉冲编码器联轴节是否损坏,更换联轴节。(3)检查测速发电机端子是否接反和励磁信号线是否接错。
3.主轴不能定向或定向不到位:在检查定向控制电路设置和调整,检查定向板,主轴控制印刷电路板调整的同时,应检查位置检测器(编码器)是否不良,此时测编码器输出波形。
4.坐标轴振动进给:在检查电动机线圈是否短路,机械进给丝杠同电机的连接是否良好,检查整个伺服系统是否稳定的情况下,检查脉冲编码是否良好、联轴节联接是否平稳可靠、测速机是否可靠。
5.NC报警中因程序错误,操作错误引起的报警。如FAUNUC 6ME系统的NC报警090.091。出现NC报警,有可能是主电路故障和进给速度太低引起。同时,还有可能是:(1) 脉冲编码器不良。(2) 脉冲编码器电源电压太低,(此时调整电源电压的15V,使主电路板的+5V端子上的电压值在4.95-5.10V内)。(3)没有输入脉冲编码器的一转信号而不能正常执行参考点返回。
6.伺服系统的报警号:如FAUNUC 6ME系统的伺服报警:416、426、436、446、456。SIEMENS 880系统的伺服报警:1364 SIEMENS 8系统的伺服报警:114、104等。 当出现如上报警号时,有可能是:(1)轴脉冲编码器反馈信号断线,短路和信号丢失,用示波器测A相、B相一转信号。(2)编码器内部受到污染、太脏、信号无法正确接收。
我厂现有数控设备15台,其中,西门子8系统加工中心一台,西门子880系统加工中心二台,数控切割机四台,IRB2000焊接机器人三台,CNCJ一800X8100数控折弯机一台,FAUNUC 6系统加工中心一台,普通数控车床三台,从91年使用第一台YBM-90N西门子8系统加工中心开始至今,从使用过程中出现的故障来看,检测元件出现的故障占了很大比例:下面就几具典型故障作一个分析。
故障一:脉冲编码器光电盘划分,导致工作台定位不准。故障现象:芬兰VMC800 SIMES 880立式加工中心的工作台为双工作台,通过交换工作台完成两工件加工,工作台靠鼠盘定位,鼠牙盘等分360个齿,每个齿对应1&工作台靠油缸上下运动实现工作的离合,通过伺服电机拉动同步齿形带,带动工作台旋转通过脉冲编码器来检测工作台的旋转角度和定位,工作台在96年8月份出现定位故障,工作台不能正确参考点,每次定位错误不管自动还是手动都相差几个角度,角度数,有时1&,有时2&,但是工作台如果分别正转几个角度如30&、60&、90&,再相应的反转30&、60&、90&时,定位准确,出现定位错误时,CRT出现NC 228*报警显示。
故障分析:查询228*报警内容为:M19选择无效,即:M19定位程序在运行时没有完成,当时我们认为是M19定位程序和有关的NC MD有错,但是检查程序和数据正常,经分析有可能是下面几种原因引起工作台定位错误:(1)同步齿形带损坏,导致工作台实际转数与检测到的数值不符;(2)编码器联轴节损坏;(3)测量电路不良导致定位错误。
故障解决:根据以上原因,我们对同步齿形带和编码器联轴节,进行检查,发现一切正常,排除上述原因后,我们判断极有可能是测量电路不良引起的故障,本机床是由RAC 2:2-200驱动模块,驱动交流伺服电机构成Sl轴,由6Fxl l21-4BA测量模块与一个1024脉冲的光电脉冲编码器组成NC测量电路,在工作台定位出现故障时,检查工作台定位PLC图,PLC图人板4Al-C8上输人点E9.3、E9.4、E9.5、E9.6、E9.7是工作台在旋转联结定位的相关点,输出板4Al-C5上A2.2、A2.3、A2.4、A2.5、A2.6是相应的输出点,检查这几个点,工作状态正常,从PLC图上无法判断故障原因,于是我们检查测量电路模块6Fx1,121- 4BA无报警显示正常。在工作台定位的过程中,用示波器测量编码器的反馈信号,判定编码器出现故障。于是我们拆下编码器,拆下其外壳,发现其光电盘与底下的指示光栅距离大近,旋转时产生摩擦,光电盘里圈不透光部分被摩擦划了一个透光圆环,导致产生不良脉冲信号,经更换编码器问题解决,现在考虑当初的报警没有显示测量电路故障,是因为编码器光电盘还没有完全损坏,是一个随机性故障,CNC无法真实的显示真正的报警内容,因此数控设备的报警并不能完全彻底的说明故障原因,需要更加深入地进行分析。
故障二:脉冲编码器A相信号错误导致轴运动产生振动。故障现象:FAUNUC 6ME系统双面加工中心96年10月份X向在运动的过程中产生振动,并且在CRT上出现NC416报警。故障分析:根据故障现象,我们分析引起故障的原因可能有以下几种。(1)速度控制单元出现故障;(2)位置检测电路不良;(3)脉冲编码器反馈电缆的连线和连接不良;(4)脉冲编码器不良;(5)机床数据是否正确;(6)伺服电机及测速机故障。故障解决:针对上述分析出的原因,对速度控制单元、主电路板、脉冲编码器反馈电缆的连接和连线进行检查,发现一切正常,机床数据正常,然后将电动机与机械部分脱开,用手转动电动机,观察713号诊断状态,713诊断内容为:713.3为X轴脉冲编码器反馈信号,如果断线,此位为1。713.2为X轴编码器反馈一转信号。713.1为X轴脉冲编码器B相反馈信号。713.0为X轴脉冲编码器A相反馈信号。713.2、713.1、713.0正常时电动机转动应为&0&、&1&不断变化,在转动电动机时,发现713.0信号只为&0&不变&1&,我们又用示波器检测脉冲编码器的A相、B相和一转信号,发现A相信号不正常,因此通过上述检查可判定调轴脉冲编码器不良,经更换新编码器,故障解决。
故障三:测速发电机的励磁绕组线引起控制轴振动的故障。故障现象:从芬兰引进的IRB2000机器人98年10份出现故障,启动机器人,机器人在导轨(第七轴)上不运行,并有强烈振动,在控制器上出现506 7报警。
故障分析:报警内容为:(1)机器人在第七轴运行时遇到障碍;(2)驱动电机超载,电磁刹车没有松开;(3)驱动电机通过电流,但不能正确换向;(4)驱动电机没有通过电流。509 237报警内容为:第七轴的测速发电机不良,测速机断路。
故障解决:根据故障现象和报警内容,我们对驱动系统进行检查,驱动电机为交流伺服电机,型号为NAC093A-O-WS-3-C/110-B-1,驱动板为DSQC236B,该系统的检测为测速发电机和脉冲编码器对速度和位置进行检测控制,首先我们检查各连接电缆的连线,接头和驱动板都正常,然后我们又检查强电电路,经检查发现控制驱动电机电磁刹车的时间继电器有一触点断线,焊好后,重新启动,时间继电器虽然工作正常,但是电机仍不能运行,报警仍未消除,随后我们把电机与机械部分脱开,只接通刹车电源,用手转动电机,电机不动,同时测量刹车线圈,发现线圈烧损,经修复刹车故障解除,506 1407报警消除,但是509 237报警仍未消除,机器人运行仍有振动,于是我们测量测速发电机励磁绕组,发现绕组断线,因绕组线为0.2mm,线太细并且断掉好几根,修复难度太大,修复无望,于是我们向ABB公司定货,经更换测速发电机,故障解除。
故障四:脉冲编码器受油污染,导致轴定位故障。故障现象:SIEMENS 880卧式加工中心工作台98年10月份在旋转定位过程中出现故障,运行中断,CRT出现报警号: 1364报警内容为1364 ORD 4B2 measuing System Dirty即测量系统受污染。
故障解决:根据故障报警内容,我们先拆下检测线路板和反馈电缆接头,用酒精清洗其灰尘和油污,起动工作台,故障没消除,随后我们又拆下检测工作台位置的脉冲编码器,发现里面充满了大量机械油,原来有一通入编码器的压缩空气气路,压缩空气能把进入编码器的灰尘吹出,起到清洁编码器的作用,这些机械油是由气路通气时,因压缩空气不洁净,由压缩空气带进来的,我们用汽油把这些油污洗干净,并提高压缩空气质量,重新安装好编码器后,起动工作台,故障消除。
故障五:闭环电路检测信号线折断,导致控制轴运行故障。故障现象:SIEMENS 8系统卧式加工中心有一次正在工作过程中,机床突然停止运行,CRT出现NC报警104,关断电源重新起动,报警消除,机床恢复正常,然而工作不久,又出现上述故障,如此反复。
故障分析及解决:查询NC 1O4报警,内容为:X轴测量闭环电缆折断短路,信号丢失,不正确的门槛信号不正确的频率信号,本机床的X、Y、Z三轴采用光栅尺对机床位移进行位置检测,进行反馈控制形成一个闭环系统。
根据故障现象和报警,我们先检查读数头和光栅尺,光栅尺密封良好,里面洁净,读数头和光栅尺没有受到油污和灰尘污染,并且读数头和光栅尺正常,随后我们又检查差动放大器和测量线路板,经检查未发现不良现象,经过这些工作后,我们把重点放在反馈电缆上,测量反馈端子,发现13号线电压不稳,停电后测量13号线,发现有较大电阻,经仔细检查,发现此线在X向随导轨运动的一段有一处将要折断,似接非接,造成反馈值不稳,偏离其实际值,导致电机失步,经对断线重新接线,起动机床,故障消除。
故障六:脉冲编码器感应光电盘损伤导致加工件加工尺寸误差。故障现象:CNC 862数控20车床X向切削零件时尺寸出现误差,达到0.30mm/250mm,CRT无报警显示。
故障解决:本机床的X、Z轴为伺服单元控制直流伺服电机驱动,用光电脉冲编码器作为位置检测,据分析造成加工尺寸误差的原因一般为:(1)X向滚珠丝杠与丝母副存在比较大的间隙或电机与丝杠相连接的轴承受损,导致实行行程与检测到的尺寸出现误差;(2)测量电路不良。
根据上述分析,经检查发现丝杠与丝母间隙正常,轴承也无不良现象,测量电路的电缆连线和接头良好,最后我们用示波器检查编码器的检测信号,波形不正常。于是我们拆下编码器,打开其外壳,发现光电盘不透光部分不知什么原因出现三个透明点致使检测信号出现误差,更换编码器,问题解决,因为CNC 862系统的自诊断功能不是特别强,因此在出现这样的故障时,机床不停机,也无NC报警显示:
还有几次因检测元件不良造成的设备故障,在此就不一一列述。检测元件是一种极其精密和容易受损的器件,一定要从下面几个方面注意,进行正确的使用和维护保养。1.不能受到强烈振动和摩擦以免损伤代码板,不能受到灰尘油污的污染,以免影响正常信号的输出。2.工作环境周围温度不能超标,额定电源电压一定要满足,以便于集成电路片子的正常工作。3.要保证反馈线电阻,电容的正常,保证正常信号的传输。4.防止外部电源、噪声干扰,要保证屏蔽良好,以免影响反馈信号。5.安装方式要正确,如编码器联接轴要同心对正,防止轴超出允许的载重量,以保证其性能的正常。总之,在数控设备的故障中,检测元件的故障比例是比较高的,只要正确的使用并加强维护保养,对出现的问题进行深入分析,就一定能降低故障率,并能迅速解决故障,保证设备的正常运行。 作者:山东工程机械厂 卡军林& & 怎样修好数控机: & 众所周知数控机床是当代高新技术机、电、光、气一体化的结晶,电气复杂,管路交叉林立,数控系统五花八门,产品从70年代到90年代,不能互换,故障现象也是千奇百怪,各不相同,特别是大型、重型数控机床,价格昂贵,每台约几百万美金、安装调整时间长(几个月到l年以上)。大型数控机床内有成千上万只元器件,若其中有一个元件有故障,就会引起机床的不正常现象,还有导线的连接、管子互相的联结,有一点疏忽就会出问题,再加上大型、重型数控机床体积庞大,在无恒温厂房条件下使用,环境的影响很容易引发故障。为此,数控机床&维修难&的问题就放在我们的面前。   我们国家引进和制造了这么多的数控机床,如何能迅速找出故障、隐患,并及时排除之?如何能维修好这些昂贵的设备?我认为首先要有高度的责任心和不怕困难的精神;第二,要努力掌握数控技术,联系本人十多年维修数控机床的实践,我认为要多看、多问、多记、多思、多练(五多),逐步提高自己的技术水准和维修能力,才能适应各种较复杂的局面,解决困难的问题,修好数控机床。
一、 要多看
  1. 要多看数控资料   要多看,要了解各种数控系统和PLC可编程序控制器的特点和功能;要了解数控系统的报警及排除方法;要了解NC、PLC机床参数设定的含义;要了解PLC的编程语言;要了解数控编程的方法;要了解控制面板的操作和各菜单的内容;要了解主轴和走刀电机的性能和驱动器的特征等等,往往数控资料一大堆,怎么看?我认为主要要突出重点,搞清来龙去脉,重点是吃透数控系统的基本组成和结构,掌握方框图。其余的可以&游览&和通读,但每部分内容要有重点的了解、掌握。由于数控系统内部线路图相当复杂,而制造商均不提供。因此也不必详细地搞清楚。比如NX一154四轴五连动叶片加工机床上采用A一B10系统,要重点了解每部分的作用,各板子的功能,接口的去向,LED灯的含义等。现在数控系统型号多、更新快,不同的制造厂、不同型号往往差别很大。要了解其共性与个性(特殊性)。一般熟悉维修SIEMENS数控系统的人不见得会熟练排除A- B 系统的故障,因此,要多看,不断学习、更新知识。
  2.要多看电气图、消化电气图   对于每一个电气元件,比如:接触器、继电器、时间继电器等以及PLC的输入、输出,要在电气图上一一注明。举一个简单例子来说,比如1A1为液压泵电机1M启动的接触器,一般在图下注出其常开、常闭触点的去向。因此,可对其对应的某页上的常开或常闭触点1A1,注明内容为液压泵电机开,对于大型的数控机床的电气图有几十页,甚至上百页。要看懂,表明每个元件的功能要化很长时间。有时,一、二次看可能还搞不清楚该元件的作用,要多看等以后消化后再写上。因此,刚才讲到的启动液压泵电机1M,也应清楚标明是PLC的哪一外输出带动接触器1A1动作的,要做到来龙去脉,一清二楚。而对电气线路图中的某些方框图,比如每个轴的驱动器,只是一个方框图,只要了解某控制条件(通断情况),对于详细的东西等可等有空再研究、考虑。各个国家的电气符号是不一样的,就首先要清楚了解。对于制造厂所编写的厚厚的几本PLC语句表,也要多看,掌握其编程语言,在看懂的基础上进行中文注译。这样可以大大节省以后排除故障的时间,如果等发生故障再去熟悉了解电气图,PLC语句表,势必要化费大量时间,还往往会造成错误的判断。 3,要多看液压、气动图,并深入消化之   对于数控机床的机械、液压、气动图,要搞清楚其作用和来龙去脉。并在图纸上一一注明,比如德国COBURG数控龙门铣附件、刀具安装动作比较复杂,要分解其图,如锁紧刀具是由哪个电磁阀动作的?对应的PLC输出、输入是哪几个?在图上写明,这样从电气到机械动作一竿到底,同时特别对机、电关系比较密切的部分要重点了解,比如意大利INNSE数控搪铣床采用电液比例阀技术,要重点了解其作用和功能,特别要了解其调整方法及调整数据,静态和动态时比例阀电流及对应的平衡泵的压力,既懂电又懂机,机电一体化,掌握多种本领,这样解决问题的本领就大了。
  4.要多看外文,要提高自己专业外文的阅读能力   不懂得外文,特别是英语。就无法看懂大量的外文技术资料,单依靠翻译,往往是不太理想。看外文版的技术资料,开始时比较吃力,生字多,多看多记后,常用的专业单词也只有这样多,以后看起来就流畅了,一个称职的维修人员要基本掌握语言工具。
二、要多问
  1.要多问外国专家   如果你能有出国培训的机会或者外国专家来你厂安装调试机床,你最好有机会参加。这是一次最好的学习机会,因为能获得大量的第一手资料和机床调试的方法及技巧。比如在激光测定各轴精度后,电气如何进行修正的办法等。要多问,不懂就要搞清楚。通过这段时间,会有极大的收获,能够获得不少内部的资料和手册(对用户是保密的)。当机床投入正式生产之后,也应该经常与外国有关专家保持密切的联系。通过FAX、E-MALL,询问获得解决机床疑难故障进一步的解决办法及有关资料,还可得到特殊、专用的备件,这是非常有益的,同时对数控系统的代理商,比如SIEMENS、FANUC等公司也应保持良好的关系,多询问,也可及时得到该数控系统深一步的资料及有关备件,还可有机会参加有关数控系统的专题学习班。
  2.发生故障后,要向操作者师傅询问故障的全过程,不要不问,或者随便问一下就好了,这样往往得不到正确的现场资料会造成错误的判断,使问题复杂化了,因此,要多问,问详细一点,了解故障出现的全过程(开始、中间、结束),产生过什么报警号,当时操作过什么元件,碰过什么,改过什么,外界环境情况如何?要在充分调查现场掌握第一手材料的基础上,把故障问题正确地列出来,实际上已经解决了问题的一半,然后再分析解决之,对于经验丰富熟练的操作者师傅,他们对机床操作熟悉,加工程序熟悉,机床常见病十分了解,与他们密切配合,对于迅速排除故障十分有利。 3.要多问其它维修人员   当其它维修人员在维修机床,而你没有去时,等他们回来后,也应多问一声,刚才发生了什么毛病?他是如何排除的?请他介绍其排除方法。这也是一种较好的学习机会。学习他人正确的排除故障的技巧和方法,特别是向经验丰富的老维修人员学习,把他们的本领学到手,来提高自己的知识和水平。
三、要多记
  1.要记录有关的各种参数   重点记录机床调整好后各种有关参数,比如NC机床参数,PLC机床参数、PLC程序(以上可存在磁盘中)以及主轴和各走刀电机的电流、电压、转速等数据。还要记下电柜中继电器、接触器等在通电和正式加工时的状态(吸合还是断开)以及PLC所有输入、输出LED发光二极管的状态(亮暗、闪耀)或者记录下屏幕上PLC状态IB(输入位)、QB(输出位)是0还是1,比如IB1=:,即I1.0=1,I1.1-1.7=0。这样记录下来对以后分析判断故障好处极大。比如德国SCHIESS数控立车发生Z轴电机电流继电器动作,我们通过检查Z轴电机正常工作时的PLC状态(0、1)与不正常情况相比较,迅速地找到故障原因,原因是有1只比较继电器状态不对,通过调整,故障立即排除。
  2.要记录液压、气动的状态   同样记录液压、气动在正式加工或不加工时各种压力表、气压表的压力,电磁阀的吸断状态,这对于调整、判断帮助也很大。如美国INGERSOLL OPENsIDE MASTERHEAD数控搪铣床静压采用双薄膜技术,有一百多个压力的测量点,其压力的高低直接影响机床功能动作的正常与否,记录静态、动态时的压力很重要。  3. 随身带一本笔记本,把每天发生的故障,如何排除的过程一一记录下来,人的脑子时间长了易忘记,&好记性,不如烂笔头&,记录下来好处极大。我们发现数控机床往往有的故障会重复出现,而且老是这几个故障,只要查一下当时是如何解决的,几分钟就可排除故障,既快又好。我们公司有一本《数控机床运行日记》及一本《数控机床排故记录本》,要记录好这二本资料,这是一台数控机床完整的历史档案。
四、要多思
  1.要多思,要开阔视野   往往有时修理是,不够冷静,没有很好地分析,钻牛角尖。记得有一次COBURG龙门铣Y轴在加工中突然停机,屏幕上曾多次出现1361Y轴光栅脏报警,当时我们就事论事地清洁光栅尺及光栅头2次,结果还是停机。化几天时间还没有解决,最后才找到了真正的原因,原因是Y轴光栅头到EXE放大器之间的导线有问题,由于Y轴移动时蛇皮管长期弯曲,其中一根位置反馈线不好,到某一位置折断引起机床停机。当时,我们只注意静态,忽略了动态,曾经出现过1321控制回路开路警,但未引起我们足够的重视。因此,我们应该把所发生的报警、故障情况全部列出来,通过由表及里,去伪存真,进行综合判断和筛选,预测发生故障的最大可能性,随后进行排除。&山穷水尽疑无路,柳暗花明又一村&,多思,给你指明了方向。
  2.要多思,要知其所以然   往往我们在排除故障时,有时没找到故障的真实原因,过后故障又继续发生。记得INGERSOLL转子叶根槽铣床,主轴Sl发生了运转2小时后&自动停车&的故障,当时外国专家换了一块顺序板,毛病似乎解决了,但过了一个多月之后,老毛病又犯了,换一块的顺序板的备板也好了,但没有搞清楚其损坏原因。我们仔细地检查,借助于示波器,发现了&启动&指令所对应的光电耦合器反峰电压特别高,单独加了一根接地线后,其光电耦合器的反峰电压极大地减少,从此,再也没有发生过&自动停车&的故障,原因是由于反峰电压太高,时间长后,使其光电耦合器逐步失效所致。
  3.要多思,考虑要领先一步   根据故障发生的频率、重复性、机械电器的寿命,认真做好备件工作。这是保证机床连续、正常运行的重要工作,非做好不可。同时对于有些器件,随着时间的推迟、淘汰了,市场上已买不到或购买十分昂贵,怎么办?要事先考虑,比如有一台80年代初的数控机床用的光电阅读机,用LOOP方式读入加工程序,又可用SPOOL方式选入原带(机床设置数据),万一送不进去,则整台机床会变成&死&机,后果十分严重,由于我们领先一步考虑,与有关单位合作,经多次试验,采用了软盘处理机解决了这个问题,保证了该台机床能使用至今。多思,要事前考虑,给领导提合理化建议,努力改善数控机床的外部环境,从温度、灰尘、湿度等几个方面想办法,采用加装电源稳压器、加装电柜空调小房子等措施,使机床的故障大大地减少。
五、要多练,即多实践:
  1.要多实践,要敢于动手,善于动手   对于维修人员来说,要胆大心细,要敢于动手,只会讲,不动手,修不好数控机床。但是要熟情况再动手,不要盲目,否则会扩大故障,造成事故,后果不堪设想。同时我们还要善于动手,首先要上机熟悉机床的操作面板和各菜单的内容,做好操作自如,因为各种型号及系统操作是一样的。同时也要充分利用数控机床的自诊断技术来迅速地处理解决故障。现在数控技术越发展,则自诊能力越来越强。比如A一B10系统,有专用诊断软件,可连网诊断等。
  2.要多实践,培养自己的动手能力和掌握实验技能   有时有些故障看起来很模糊,分不清是电气故障还是机械故障,比如COBURG龙门铣发生过这样的故障,即开Z轴无论是向上升,还是向下降,Z轴滑枕总是向下移动而报警。我们采用了&分开法&,把电气部分的控制与原电路完全分开,把Z轴直流电机的接线端子上的线拆下,另通直流电(可由交流220V电源通过调压器经过4只二极管整流给出)接到电机二端,发现电机能根据直流电的极性的变换能改变旋转去向,排除了电气故障,再检查发现是由于机械磨擦片打滑滑枕下垂所致。其它还有很多方法,比如&隔离法&、&置换法&、&对比法&、&敲击法&等方法都可以作为一种有效的手段来帮助我们寻找、排除故障。
  3.要多实践,学会使用有关仪器   比如示波器、万用表、在线电路检测仪、短路检查仪、电脑、编程器等能够帮助我们具体电路的判断、检查,特别是PLC编程器、电脑、要熟练使用,可自由输入、输出机床参数,在线测试有关状态,系统初始化等。这对分析故障,特别是复杂故障,解决问题有很大帮助。
  4.要多实践,进行&小改小革& 往往在正常工作中发生某一元件损坏(如选择开关、按钮、继电器等)而暂无备件时,自己动手尽可能用粘合法等办法修复或采用暂时的特殊办法,使机床能正常工作下去,等到备件来后再恢复。比如德国VDF数控大车的第2刀背中有5只夹紧用的微型压力开关,其中2只微型开关不慎损坏,而无备件,我们采用了&短接法&,使压力开关的触点符合PLC的输入条件,使机床不报警又能正常工作下去了。有时机械使用时间长后,定位精度差了,产生了定位报警,在无法重新调整机床的情况下可暂时修正机床参数,加大&公差&带,使之能正常工作,总之,这样的办法还很多。
  5.要多实践,要自己动手修板子 一般说来数控机床的电路板可靠性好,故障率极低,一般去检查数控机床时,不要先怀疑板子的问题。比如西门子850系统,有时会出现41NC-CPU报警或43PLC-CPU报警,实际上并不是板子有故障,可以通过拆拔法,NC初始化,冷热启动PLC等方法反复试验一般可以排除。若确实证明是电路板问题时,要进行修复。这些板(一般无图纸)价格昂贵,一般要几千元─几万元,对于每个企业来说&备件难&,价格太贵了,备不起,因此数控机床电路板的好坏极为重要,一旦电路板损坏而无备件,一时又修不好,势必会停机,严重影响生产。有时往往电路板只是一个极小的故障,只要认真检查,不难发现问题,我们已多次发现个别电容漏电、板子虚焊、短路等故障,有些电路板故障比较复杂,但是只要化时间,通过用仪器检查,还是能够修好的;但还有部分电路板情况严重,特别是大规模集成电路,维修困难,加上原器件无备件,只能提早买备板或送出去修。自己动手修板子,有很大好处,一方面可以为企业节约成本,解决燃眉之急,另一方面可以&解剖麻雀&熟悉电子电路,培养自己的分析判断和动手能力是非常有益的。
  通过了十多年来的维修实践,我们也感到外国人设计的数控机床,特别是大型的数控机床也不是十全十美的,也存在不少问题和缺陷。通过我们对数控机床的学习、深化,找出其中问题的所在,大胆地对有些问题进行改进,取得了较好的效果。比如德国VDF数控大车,原设计2只静压托架一通电就工作,静压泵连续运转,这样又费电又缩短了进口泵的寿命。我们通过PLC进行了修改,增加了2只开关,只化了几十元钱,使2只静压托架可根据需要任意地开或停,这样延长了进口泵的寿命,全年可节电2万多度。还有INGERSOLL叶轮槽铣原设计中,主头及副头只有反向铣,而无同向铣。在加工高中压转子第20级叶轮时,由于叶轮间距离小,不能用反向铣,因此只能用一个头进行加工。经过我们研究,巧妙地改动了双向的限位接线,增加了PLC程序,结果几乎没有化钱,实现了同向铣。现在可二个头同时加工,提高工效一倍,可提前3─4天完成加工转子的任务。因此,我们要进一步挖掘数控机床的潜力,更好地发挥它的威力为生产服务。
  尽管数控机床故障复杂,千变万化,只要我们认真对待,培养一支高素质的机电一体化的维修队伍,通过多看、多问、多思、多练、积累经验,掌握维修技巧,融会贯通,我们一定能够主要依靠自己的力量,把数控机床修好、用好、管好。
作者:上海汽轮机有限公司 陈禹明& & &数控机床润滑系统控制的改进 :机床润滑系统的设计、调试和维修保养,对于提高机床加工精度、延长机床使用寿命等都有着十分重要的作用。但是在润滑系统的电气控制方面,仍存在以下问题:一是润滑系统工作状态的监控。数控机床控制系统中一般仅设油箱油面监控,以防供油不足,而对润滑系统易出现的漏油、油路堵塞等现象,不能及时做出反应。二是设置的润滑循环和给油时间单一,容易造成浪费。数控机床在不同的工作状态下,需要的润滑剂量是不一样的,如在机床暂停阶段就比加工阶段所需要的润滑油量要少。针对上述情况,在数控机床电气控制系统中,对润滑控制部分进行了改进设计,时刻监控润滑系统的工作状况,以保证机床机械部件得到良好润滑,并且还可以根据机床的工作状态,自动调整供油、循环时间,以节约润滑油。 1 润滑系统工作状态的监控 润滑系统中除了因油料消耗,油箱油过少而使润滑系统供油不足外,常见的故障还有油泵失效、供油管路堵塞、分流器工作不正常、漏油严重等。因此,在润滑系统中设置了下述检测装置,用于对润滑泵的工作状态实施监控,避免机床在缺油状态下工作,影响机床性能和使用寿命。 过载检测 在润滑泵的供电回路中使用过载保护元件,并将其热过载触点作为PMC系统的输入信号,一旦润滑泵出现过载,PMC系统即可检测到并加以处理,使机床立即停止运行。 油面检测 润滑油为消耗品,因此机床工作一段时间后,润滑泵油箱内润滑油会逐渐减少。如果操作人员没有及时添加,当油箱内润滑油到达最低油位,油面检测开关随即动作,并将此信号传送给PMC系统进行处理。 压力检测 机床采用递进式集中润滑系统,只要系统工作正常,每个润滑点都能保证得到预定的润滑剂。一旦润滑泵本身工作不正常、失效,或者是供油回路中有一处出现供油管路堵塞、漏油等情况,系统中的压力就会显现异常。根据这个特点,设计时在润滑泵出口处安装压力检测开关,并将此开关信号输入PMC系统,在每次润滑泵工作后,检查系统内的压力,一旦发现异常则立即停止机床工作,并产生报警信号。 2 润滑时间及润滑次数的控制 为了要使机床运动副的磨损减小,必须在运动副表面保持适当的清洁的润滑油膜,即维持摩擦表面之间恒量供油以形成油膜。但是数控机床运动副需要的润滑油量不是太多时,采用连续供油方式既不经济也不合理。因为过量供油与供油不足同样是有害的、会产生附加热量、污染和浪费。因此,润滑系统均采用定期、定量的周期工作方式。
集中润滑系统本身可以配置微处理器,专门用于设定润滑泵停止的时间和每次供油时间,以控制润滑泵间隙工作,设计人员往往也借此来简化自己的PMC程序。
但机床在不同的工作状态下,如刚刚通电初始工作阶段、加工运行和因调整、检测工件而使机床暂停运行时,机床对润滑油的需求量各不相同。在配置FANUC数控系统的机床中,通常通过控制润滑泵工作的时间来调节提供的润滑油量,但是,习惯考虑的是润滑系统在机床加工运行状态下的供油方式,而没有顾及其它工作状态,这样,当机床处于其它工作状态时,润滑系统所提供的润滑油量要么不够,要么过多。
机床导轨需要的润滑油量近似可用下面公式计算:(长度+移动行程)&宽度&K。从公式中可以看出,机床导轨需要的润滑油量与该导轨上的轴的移动距离有关。欧美生产的数控系统大多以行程量作为依据,来控制润滑泵工作,间隙供油,并在系统中提供了相应的参数,便于机床制造商通过PMC程序对润滑泵进行电气控制。而在FANUC 0i系统中没有类似的控制方法,为了能在配置FANUC 0i的数控机床上,采用近似的供油方式控制润滑泵工作,我们改进了润滑控制部分的电气设计,让控制系统能根据机床的具体工作情况自动调整润滑泵工作频率和每次的工作时间,在机床暂停时适当减少供油量,而机床初始工作时适当增加。
现将润滑泵的工作状态分成三类,分别设置润滑泵工作时间和频率。 开机初始阶段 机床开机,润滑泵即刻开始工作,连续供油一段时间,此时润滑泵工作的时间T1比正常状态下的要长,以便在短时间内提供足够润滑油,使机床导轨上迅速形成一层油膜。润滑泵运行时间由PMC程序中的TMRB指令设定。与TMR指令不同,由TMRB设定的时间,用户不能随意修改调整。 加工运行阶段 机床开机以后,经过空载运行预热后,进入稳定工作状态。此后,控制系统控制润滑泵间歇工作,以保证机床导轨能够得到定期、定量的润滑。润滑泵每次工作的时间和其停止的时间由PMC程序中的TMR指令设定。TMR设定的时间参数,用户可以在PMC数据窗口中根据需要适当调整。 暂停阶段 工件待加工或加工完毕时,机床往往处于暂停工作状态,润滑油的需求量相应减少,因此,需要及时调整控制方式,适当延长润滑泵停止工作的时间,以减少其工作频率,从而减少油品消耗。实现的关键是机床处于暂停状态时,系统如何获知。FANUC 0i数控系统中提供了信号MVX(F102.0)、MVY(F102.1)、MVZ(F102.3),用于反映机床各轴的移动状态。如果该信号状态为&0&,表明相应机床轴静止不动,如果所有移动轴均静止不动,则表明机床此时处于暂停工作状态。所以,只要上述所有信号状态都为&0&,通过设计,PMC程序自动改变润滑泵工作及停止时间。此时,润滑泵工作的时间T2和停止的时间T3均使用TMRB指令设定,同样,用户不可以随意修改这两个时间参数。 3 润滑报警信号的处理 压力异常 数控机床中润滑系统为间歇供油工作方式。因此,润滑系统中的压力采用定期检查方式,即在润滑泵每次工作以后检查。如果出现故障,如漏油、油泵失效、油路堵塞,润滑系统内的压力就会突然下降或升高,此时应立即强制机床停止运行,进行检查,以免事态扩大。 油面过低 以往习惯的处理方法是将& 油面过低&信号与& 压力异常&报警信号归为一类,作为紧急停止信号。一旦PMC系统接收到上述信号,机床立即进入紧急停止状态,同时让伺服系统断电。但是,与润滑系统因油路堵塞或漏油现象而造成& 压力异常&的情况不同,如果润滑泵油箱内油不够,短时间不至于影响机床的性能,无需立即使机床停止工作。但是,出现此现象后,控制系统应及时显示相应的信息,提醒操作人员及时添加润滑油。如果操作人员没有在规定时间内予以补充,系统就会控制机床立即进入暂停状态。只有及时补给润滑油后,才允许操作人员运行机床,继续中断的工作。针对&油面过低&信号,这样的处理方法可以避免发生不必要的停机,减少辅助加工时间,特别是在加工大型模具的时候。在设计时,我们将& 油面过&
参考知识库
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
访问:4016次
排名:千里之外

我要回帖

更多关于 servo 的文章

 

随机推荐