不同土壤渗透系数的土壤对组价的影响

不同管理调控措施对土壤水盐的影响研究
> 不同管理调控措施对土壤水盐的影响研究
盐渍土作为一种重要的后备土地资源,对其加以合理利用和有效改良发挥资源潜力,提高综合生产能力,对保障我国未来粮食安全和保护生态环境具有重要意义,同时也是我国农业可持续发展的重要途径之一。为了研究不同调控方式对土壤水盐分布的影响,2007年-2010年在河南省中科院封丘农业生态试验站进行了作物的田间微咸水灌溉和调控试验。  
1)通过5季作物的淡水-微咸水轮灌试验,土壤盐分以及水分的定期监测...
【学科专业】
【授予学位】
【授予单位】
【导师姓名】
【学位年度】
【关键词】
-中国第十届声发射学术研讨会论文集-2004
-2008中国电力系统保护与控制学术研讨会论文集-2008
-2008年全国声学学术会议论文集-2008
-2008年全国开放式分布与并行计算学术年会论文集-2008
-第二届应急管理国际研讨会暨第九届中国管理科学学术年会(北京会场)论文集-2007
-2004年全国水文学术讨论会论文集-2004
-2004年全国水文学术讨论会论文集-2004
-2008年中国信息技术与应用学术论坛论文集-2008
-2008年中国信息技术与应用学术论坛论文集-2008
-首届中国水旱灾害管理学术研讨会论文集-2008不同干扰强度对滩涂围垦区土壤颗粒组成的时空分异特征的影响
张濛, 濮励杰, 王小涵, 王琪琪, 于雪. .不同干扰强度对滩涂围垦区土壤颗粒组成的时空分异特征的影响.自然资源学报, ): 845-854
ZHANG Meng, PU Li-jie, WANG Xiao-han, WANG Qi-qi, YU Xue. .Effects of Disturbance Intensity on Spatio-temporal Differentiation of Soil Particle Size in Reclamation Areas of Tidal Flat.Journal of Natural Resources,): 845-854&&
Permissions
不同干扰强度对滩涂围垦区土壤颗粒组成的时空分异特征的影响
濮励杰1,2*,*,
1. 南京大学地理与海洋科学学院,南京 210023
2. 国土资源部海岸带开发与保护重点实验室,南京 210023
第一作者简介:张濛(1986- ),男,江苏南通人,博士研究生,自然地理学专业。E-mail: *通信作者简介:濮励杰(1965- ),男,江苏吴江人,教授,博士研究生导师,主要从事土地利用与生态环境研究。E-mail:
网络出版日期:
基金:国家自然科学基金()
滩涂是陆地与海洋间重要的生态交错带以及生态系统之一,随着沿海地区经济的发展,滩涂围垦成为缓解区域土地利用压力的重要途径之一。论文通过对不同围垦年限以及不同人类干扰强度下土壤粒径分布(Particle Size Distribution)的时空差异研究,比较了自然演变和人类活动双重影响下,垦区环境的变化过程及影响因素。结果表明:1)在60 a的围垦过程中,在强烈、中度和无人类干扰强度下,土壤粒径分布均表现出在脱盐过程中随围垦年限增加而砂粒减少、粉粒和粘粒增加的过程,脱盐后砂粒的年均下降率可达0.72%;2)在无干扰强度下,土壤粒径分布反映出滩涂围垦和脱离海水影响的自然过程,而强烈和中度干扰强度则在此基础上反映出人为和自然干扰的综合效果;3)耕种方式、时间以及土壤侵蚀等因素均会对土壤粒径分布的变化强度造成影响而表现出显著的空间差异性;4)土壤粒径的时空分布可以综合反映出滩涂围垦区的环境特点,对指导垦区内土地资源的合理开发利用具有重要意义。在长期的围垦过程中,不同的开发利用时间及区位表现出了不同的关键影响因素,使垦区内土地利用格局和资源配置仍存在诸多不合理之处,随之带来相应的环境问题必须引起重视,为未来滩涂围垦区的合理规划提供理论依据。
土壤粒径分布;
中图分类号:S152.3
文献标志码:A
文章编号:16)05-0845-10
Effects of Disturbance Intensity on Spatio-temporal Differentiation of Soil Particle Size in Reclamation Areas of Tidal Flat
ZHANG Meng1,
PU Li-jie1,2,
WANG Xiao-han1,
WANG Qi-qi1,
1. School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China
2. The Key Laboratory of the Coastal Zone Exploitation and Protection, Ministry of Land and Resources, Nanjing 210023, China
Fund:National Natural Science Foundation of China, No.
Tidal flat is one of the important ecotones and ecosystems between land and sea, but tidal flat reclamation has been an important way to release the increasing pressure of land-use due to the economic development in coastal regions. We analyzed the spatio-temporal differentiation of particle size distribution (PSD) on tidal flat with different years of reclamation and different intensities of disturbance, and compared the effects from natural succession and human activities on the process of environment change in the reclaimed zones. The results demonstrated: 1) During 60 years of reclamation, with the growth of reclamation period the content of sand decreased while those of silt and clay increased under all levels disturbance, and the decreasing rate of sand could reach 0.72% per year after desalination. 2) With no disturbance, the soil PSD could reflect the physical process of tidal flat being reclaimed and separated from the sea water, while under the intense natural and artificial disturbances it would reflect the integrated effects of both factors. 3) Cultivated methods, time and soil erosion would all induced significant spatio-temporal differentiation of PSD. 4) The spatio-temporal differentiation of PSD in reclaimed zones could generally demonstrate the environmental characteristics of tidal plat, and had significance in developing land resources in reclaimed tidal flat. During the long-time reclamation of tidal flat, the key affect factors were different in different regions at different stages, which lead to many unreasonable phenomena of land use pattern and resources allocation, and caused dramatic changes and fluctuations in soil environment. The correlation between natural resources and human activities should be carefully assessed.
tidal flat reclamation;
disturbance intensity;
particle size distribution;
coastal region of Jiangsu Province
滩涂是沿海地区由河流携带泥沙沉积形成的陆地和海洋生态交错带[], 是生物多样性最丰富的自然生态系统之一, 具有极高的污染物容纳和净化功能[], 但同时其脆弱性也很明显[]。随着沿海地区经济的高速发展, 滩涂围垦成为缓解土地利用压力的重要途径之一[]。与此同时, 围垦对自然滩涂生态系统产生了严重干扰, 使湿地生态系统快速向陆地生态系统转变, 生态系统结构以及生态系统服务价值发生了根本性的变化[, ]。耕地是江苏沿海滩涂围垦后的主要土地利用方式, 随着土壤逐渐脱离海水影响, 土壤理化性质发生了显著的改变, 而人类的耕种活动更加剧了这种改变的强度。已有的研究表明, 滩涂围垦后, 土壤盐分迅速下降[], 土壤pH值和有机质、氮、磷虽然受到耕种方式影响而波动, 但总体遵循pH值下降和养分积累的规律[], 而在60 a左右的耕种过程中, 表层和底层的土壤属性差异逐渐增大[]。土壤粒径分布(Particle Size Distribution, PSD)是土壤重要的物理属性之一, 它是由各种自然成土因素、自然条件转变以及人类活动影响相互叠加所决定的[, ], 和土壤水热条件、养分水平以及能量传输间有着密切的联系[, ]。土壤PSD在短期内比较稳定[], 因此可以作为一种合适的自然标度模型[]。已有研究虽然表明不同土地利用方式可以影响到土壤PSD[], 但并没有讨论自然条件变化在其中的影响程度, 而对滩涂围垦区土壤PSD的研究也主要集中于表层土壤的变化[], 对深层土壤PSD变化的研究不够深入, 且缺乏对其空间分布的探讨[]。江苏省如东县位于长江入海口北侧, 主要由来源于长江的泥沙沉积形成, 拥有超过1 000 a的围垦历史。不同规模的大型垦区是如东乃至整个沿海地区围垦的通常形态, 新中国成立后的不同时期均有形成, 且垦区发展成熟后以耕地为主要土地利用类型, 这为本文研究提供了良好的空间本底条件。本文通过对不同围垦时间下耕地剖面土壤PSD的变化研究, 描绘了不同干扰强度下土壤PSD的空间分布, 探讨滩涂围垦区土壤颗粒属性在中长时间尺度下(60 a)受耕种和土壤自然发育过程的影响程度, 为研究围垦后滩涂土壤的自然发育和人类影响过程以及未来合理开发提供理论依据。1 材料与方法1.1 研究区概况如东县位于江苏省东南部, 长江入海口北翼, 濒临黄海, 拥有丰富的泥沙沉积物来源, 属于北亚热带湿润季风气候, 降雨主要集中在5— 9月, 雨热同季, 四季分明, 年均降水量为1 026.0 mm, 年均气温达14.8 ℃。本文研究地点位于如东县东部滩涂围垦区(32° 17′ 00″~32° 26′ 00″N, 121° 17′ 00″~120° 26′ 00″E)()。滨海盐土是围垦区主要的土壤类型, 围垦土地主要用于种植农业、养殖渔业开发以及少量林业和工业。耕地主要种植作物有水稻、小麦、油菜、玉米和棉花, 采用一年两季轮作模式。图1Fig. 1 图1 研究区域Fig. 1 The study area1.2 实验设计本文选取不同年代围垦的老北坎垦区(1951年完成围垦)、新北坎垦区(1975年完成围垦)、东凌垦区(1982年完成围垦)、豫东垦区(2008年完成围垦)4个垦区以及堤外未围垦的自然滩涂为研究对象, 结合当地土地利用实际状况, 在主要耕地分布区按网格法(1 km× 1 km)均匀布设采样点58个, 同时在海堤外滩涂随机布设采样点6个, 其中仅以垦区内采样点用于空间分析。在58个采样点中, 每个垦区各选取6个耕种方式和时间类似的点, 以滩涂采样点作为对比, 用于差异性分析。1.3 样品采集采样时间为2011年8月, 采样前后天气晴朗无雨。在每个采样点去除表层覆被, 以土钻采集0~20 cm、20~40 cm和80~100 cm的土壤剖面样品, 分别代表受到强烈、中等人类干扰和未受人类干扰的土壤类型, 每层分别采集1 kg土壤样品。所有土样在实验室经自然风干, 过2 mm筛后保存备用。1.4 土壤粒径分析参照Murray的方法[], 将待测土壤样品先加入10%盐酸去除碳酸盐, 7 000 r/min离心后用蒸馏水清洗3次, 再加入30%过氧化氢去除样品中的有机质后烘干。最后加入0.05 mol/L的六偏磷酸钠溶液作为分散剂, 用超声波震荡仪震荡10 min后, 用Malvern Mastersizer 2000激光粒度分析仪(英国Malvern公司产)分析测得, 该仪器的测量范围为0.02~2.00 &#x003 m, 重复测量误差小于2%。按照国际制土壤颗粒分级标准将土壤颗粒分为砂粒(0.02~2 mm)、粉粒(0.002~0.02 mm)和粘粒(< 0.002 mm)。1.5 数据分析本文采用相对干扰强度指数(Relative Disturbed Index)来描述土壤PSD受人类耕种活动影响的变化, 公式如下: RDIi=PiS-PiB×100/PiB(1)式中:RDIi为i类颗粒组分的相对干扰强度指数, PiS和PiB分别表示剖面表层和底层i颗粒组分的含量(%)。利用SPSS 18.0统计软件对结果进行多因素方差分析, 比较不同围垦年限和人类干扰强度对土壤PSD影响的显著性, 然后使用单因素方差分析(one-way ANOVA)来比较某一因素对土壤颗粒组分间差异的影响, 并利用Duncan法检验不同耕种年限间差异的显著性。最后应用地统计学方法中的半方差图和Ordinary Kriging 插值法进行土壤PSD空间特性预测, 选择利用GS+ 9.0(Gamma Design Software Co.)进行半方差函数计算最优差值模型, 计算结果采用ArcGIS 10.0(ESRI)软件完成空间插值及分布预测图。2 结果与分析2.1 不同围垦年限及干扰强度对粒径分布的影响如东滩涂围垦区土壤PSD方差分析表明, 围垦年限的长短及不同人类干扰强度对土壤粒径分布具有显著性影响, 并且在围垦年限和人类干扰强度间存在显著的交互作用()。砂粒和粉粒均在不同围垦时间和不同干扰程度下分别表现出显著差异性, 且两者的交互作用差异性显著。粘粒含量虽然在围垦时间和不同干扰强度下分别表现出显著差异性, 但其交互作用差异性没有达到显著水平(P> 0.05), 即围垦时间的增加并没有使不同干扰程度下土壤粘粒含量差异的趋势变得更加明显。其原因可能是粘粒相较于大颗粒组分更易受到水蚀、风蚀等因素的影响而发生迁移, 而研究区内极少的粘粒含量(低于10%)在统计学上放大了这些影响因素的效果, 从而模糊了交互作用。表1Table 1表1(Table 1)
表1 土壤粒径分布多因素方差分析
Table 1 Multivariate analysis of variance of soil particle size distribution颗粒类型来源自由度均方F显著性砂粒围垦时间42 566.633242.4710.000干扰强度2226.62521.4090.000围垦时间× 干扰强度837.1473.5090.002误差7510.585粉粒围垦时间41 919.248243.6010.000干扰强度2177.05022.4720.000围垦时间× 干扰强度825.0773.1830.004误差757.879粘粒围垦时间451.62984.5860.000干扰强度23.7266.1050.003围垦时间× 干扰强度80.7171.1740.326误差750.610
表1 土壤粒径分布多因素方差分析
Table 1 Multivariate analysis of variance of soil particle size distribution2.2 不同围垦年限及干扰强度下粒径分布的变化趋势在强烈(0~20 cm)、中等(20~40 cm)和无人类干扰(80~100 cm)3个干扰强度下, 分别对土壤中砂粒(0.02~2 mm)、粉粒(0.002~0.02 mm)和粘粒(< 0.002 mm)组分的含量进行差异显著性分析()。结果表明, 在不同的干扰强度下, 土壤PSD整体呈现出随围垦年限增加而砂粒含量下降、同时粉粒和粘粒含量增加的趋势。在60 a的围垦及耕种时间尺度内, 土壤处于逐渐细化的过程中, 砂粒:粉粒:粘粒由未围垦时的86&#x02236; 11&#x02236; 3, 在围垦60 a后变为60&#x02236; 33&#x02236; 7。图2Fig. 2 图2 不同围垦年限下土壤颗粒含量变化Fig. 2 Particle size distribution of the reclaimed soils with different reclamation years未围垦及围垦初期(3 a)滩涂各干扰强度下的土壤砂粒含量在组分中均占据绝对优势(85.51%~90.27%)。未围垦时各层的砂粒(85.51%~86.92%)、粉粒(10.29%~10.86%)和粘粒含量(2.79%~3.02%)间不存在显著性差异; 围垦初期各干扰强度下的土壤PSD与围垦前差异不显著, 虽然砂粒含量表现出强干扰下略低于中等干扰和无干扰, 但差异仍不显著, 不同层面间的土壤PSD没有表现出明显的分层现象。围垦中期(29 a), 无干扰条件下的土壤PSD与围垦前没有显著差异, 但粉粒含量已明显表现出强烈干扰> 中度干扰> 无干扰; 砂粒含量在强烈干扰和中等干扰下分别下降至77.64%和81.50%, 粘粒含量则增至3.98%, 两者间的差异虽然不显著, 但均细于无干扰条件下的土壤颗粒。中长期围垦后(36~60 a), 各干扰强度下的土壤PSD均与围垦前发生了明显的细化。砂粒含量在强烈干扰下, 围垦36 a和60 a分别下降至71.22%和55.30%, 同时粘粒含量分别增至4.96%和7.46%, 比围垦前增加了77.78%和167.38%, 显著高于中等与无干扰下的粘粒含量。在60 a的围垦开发中, 土壤颗粒在3种不同的干扰强度下都表现出了细化的趋势, 土壤PSD总体呈现砂粒含量随围垦年限和干扰强度的增加而减少, 粉粒、粘粒含量增加, 但在围垦的前29 a, 无干扰下的土壤PSD并没有发生显著变化。在前29 a间, 强烈干扰下砂粒含量的年均下降率为0.32%, 而后31 a无干扰和强烈干扰砂粒含量年均下降率分别增至0.78%和0.72%, 表明土壤颗粒细化的速率虽然在逐渐提高, 但普通的耕种方式(旱作)并不是其提高的主要原因。粘粒和粉粒含量在不同围垦年限及干扰强度下的变化趋势类似, 相邻层次间的差异性较粉粒而言更加模糊, 说明在沿海地区气候条件下, 粘粒更容易受到侵蚀和黏化作用的影响而发生迁移。2.3 土壤颗粒含量及相对干扰强度的空间分布由可以发现, 在不同干扰强度下, 砂粒和粉粒含量的分布趋势线接近。在无干扰条件下, 趋势线均为南北向, 自西向东砂粒含量逐渐增加, 而粉粒含量逐渐减少 [(c)、(f)], 这与人类围垦的方向一致。东凌垦区(围垦29 a)西南角在有干扰条件下的土壤PSD明显区别于同一围垦年限下的其他区域, 砂粒含量较低而粉粒和粘粒含量较高, 该区域远早于垦区内的其他区域自然淤涨成陆, 在围垦后也先于同垦区其他区域得到开发利用。老北坎垦区(围垦60 a)东南角各干扰强度下土壤颗粒细化过程滞后于同垦区其他区域, 该区域受含盐地下水影响, 土壤含盐碱量相对于垦区其他区域依然较高, 至今难于进行种植业开发而分布有大面积的咸水养殖。无干扰下, 粘粒含量沿外围海堤向内陆逐渐增加但趋势较为平缓; 而在强烈和中度干扰下, 海陆方向变化更加剧烈, 在不同围垦年限下均表现出离海越近而粘粒含量越低, 新北坎垦区(围垦36 a)东北部近海区强烈和中等干扰下的粘粒含量甚至仅有豫东垦区(围垦3 a)的水平。图3Fig. 3 图3 不同干扰强度下土壤PSD空间分布Fig. 3 Spatial distribution of PSD under different disturbance intensities研究区域属于粉砂淤泥质海岸带, 在本文采用的颗粒分类系统下, 虽然以砂粒为主, 但主要组成为粉砂颗粒(0.02~0.05 mm), 在强烈干扰下土壤PSD由粉砂粒为主向以粉粒为主转变, 由于未围垦滩涂粉粒含量仅为10.29%, 因此围垦初期到中期粉粒的RDI对干扰较为敏感而表现出高RDI, 最高可达202.60%; 而随着粉粒含量的增加, 其RDI敏感度也随之下降, 因此粉粒RDI随围垦年限的增加而逐渐降低()。砂粒的RDI在东凌垦区西南部和老北坎垦区东南部均表现出中高值, 同样呈中高值的区域还有老北坎垦区中部, 该区域对应于垦区内最早开发的地区; 砂粒RDI的低值则出现在豫东垦区东部和新北坎垦区的西南部, 前者由于围垦时间较短, 受到干扰强度较小, 而后者则对应于垦区内主要的水田分布地区[]。粘粒的RDI兼具砂粒和粉粒的特征, 整体随围垦年限的增加而降低, 但在东凌垦区西南部和老北坎垦区东南部呈现出区别于同一垦区的中高值, 而与前两者不同的是, 粘粒RDI的中低值分布于海堤一线。图4Fig. 4 图4 相对干扰强度指数的空间分布Fig. 4 Spatial distribution of RDI3 讨论土壤颗粒是土壤固相的重要组分, 土壤颗粒分布是土壤理化与生物特征的基础, 关系到土壤水热和养分状态[, ]。研究表明耕种的方式[]以及耕种时间的长短[]可以显著影响到土壤粒径分布。新生滩涂以水云母等富含二氧化硅(SiO2)的矿物为母质, 在碱性条件下, SiO2易于与高含量的OH-发生反应而溶解流失[], 而在海水浸泡条件下, 这一过程由于海水中的高含盐量而受到抑制。因此, 在围垦初期至中期, 这一过程较为缓慢, 而围垦29 a的垦区由于还未完全脱离含盐地下水的影响, 其深层土壤PSD与未围垦时差异并不明显; 由于区域内超过1 000 mm的年降水量以及灌溉、翻耕等人类活动促进了淋溶作用的发生[], 表层土壤先于底层发生黏化。而在围垦中后期, 随着土壤脱盐过程的完成[]和地下水位的下降[], 不同干扰强度下的土壤层面均开始发生黏化过程。研究结果还表明, 促进围垦滩涂土壤颗粒黏化过程的最主要的因素在于使其脱离高盐土壤水影响的程度, 而非耕种活动直接对其物理形态造成影响。滩涂在自然淤涨的过程中会因为海陆交互作用而在滩面上形成洼地、潮沟等复杂的微地貌[], 这样的微地貌区域受到排水状况、含盐地下水等因素的影响[], 在围垦后形成了异于同时期垦区水热状态的环境条件[], 进而影响人类的开发利用行为和效率。老北坎垦区虽已围垦60 a, 垦区内主要地区已非常成熟并适宜耕种, 但其东南角地势低洼, 较之垦区内其他地区较粗的土壤PSD, 说明其仍受到含盐地下水影响而各层的黏化速率缓慢, 这也造成了该区域耕地质量较差而仍有大面积咸水养殖分布的现状。高盐碱是滩涂围垦区开发利用的主要限制性因子, 熊亮等[]的研究表明, 滩涂围垦区土壤盐碱随季节变化波动剧烈, 而江苏滩涂围垦区受条件限制, 大多缺乏大范围、长时期的监测研究, 从而加大围垦后滩涂资源合理开发利用的难度。本文研究认为, 土壤PSD可以综合反映出区域盐碱及水热条件状态, 对判断围垦滩涂资源的成熟度, 进而合理优化资源配置具有重要的指导意义。根据沿海滩涂的不同属性, 人类会选择不同的土地利用方式进行开发[, ]。相较于水田, 旱地的利用方式对土壤颗粒的影响更为强烈[]。由于土壤颗粒黏化的直接原因在于脱盐, 因此在土壤未完全脱盐时, 旱作严格控制了表层含盐量, 从而造成了东凌垦区西南部旱作区干扰条件下土壤PSD与无干扰间的巨大差异; 而水田作为人工湿地的一种, 不仅加快了土壤脱盐的进程[], 而且使土壤各层面间盐分分布更为均匀, 因此新北坎垦区西南部水旱轮作区土壤PSD具有偏细且表层与底层差异较小的特征。虽然人类的耕种活动加快了滩涂围垦后土壤颗粒黏化速率, 使耕种的适宜性不断提高, 但这一过程中由于不同类型的侵蚀作用而发生的土壤流失不容忽视[]。围垦初期土壤有机质含量低, 土壤结构松散, 沟渠灌溉和雨水冲刷就可以造成土壤颗粒的大量流失[], 从而抵消部分土壤黏化的效果; 滩涂围垦区地处海陆交界带, 土壤受强烈的海陆风蚀影响很大[], 强烈的风蚀作用也明显削弱了耕种对土壤PSD的影响效果。围垦60 a以后, 垦区内土壤整体已趋于成熟, 土壤各层pH值降至接近中性, 自然条件对土壤PSD的影响速率降低而持续的耕种使表层的砂粒进一步细化, 但与此同时, 土壤条件的改善使土壤孔隙度增加而促进了粘粒由表层形成并向底层迁移的过程, 因此砂粒在强烈干扰下与无干扰间差异较大, 而粘粒差异较小。滩涂围垦区在长期受到自然驱动力和人为驱动力的双重影响下可能向完全不同的方向发展[], 从而形成不同的土地利用格局和资源配置, 而以自然条件对现有资源配置格局进行合理性评价以及对未来开发利用方式进行科学规划, 应该是该区域研究的难点和重点。土壤PSD则能成为衔接两者间空白的桥梁, 帮助我们更好地理解围垦后环境变化过程以及区域差异性形成的原因, 为合理分配利用围垦滩涂资源提供科学指导。4 结论江苏沿海围垦区土地在60 a的开发利用中, 不同干扰强度下土壤PSD均表现出随围垦年限增加, 土壤砂粒减少而粉粒、粘粒增加, 这一过程与不同自然条件和耕种活动综合作用下土壤脱盐过程直接相关, 在完全脱盐的条件下砂粒的年均下降率可达0.72%。无干扰状态下土壤PSD的空间分布较为简单, 大致可以反映出围垦以及脱离海水影响的趋势; 而强烈和中度干扰状态下, 土壤PSD的空间分布则在无干扰的基础上叠加了人类耕种行为以及土壤侵蚀等因素的共同影响, 高强度的耕种活动加快了脱盐过程, 从而使砂粒含量急剧减少, 而由陆向海增强的风蚀则增加了粘粒的流失。不同的开发利用时间、方式均可以影响到土壤PSD的变化强度。旱作相较于水旱轮作, 对土壤颗粒黏化过程的影响强度更弱, 但加剧了不同层次间的差异; 而水旱轮作作为更为温和的耕种方式, 对过渡期的土壤具有很好的保护作用。土壤PSD的时空分布可以综合反映滩涂围垦区自然条件的变化过程, 如特殊微地貌引起的小区域水热差异、土地利用强度的大小以及土壤侵蚀程度的强弱等, 因此可作为垦区内资源合理配置和利用的科学依据。
The authors have declared that no competing interests exist.
任美锷, 丁方叔, 万延森, 等. 江苏省海岸带和海涂资源综合调查报告 [M]. 北京: 海洋出版社, 1986. [REN M E, DING F S, WAN Y S, et al. Comprehensive Investigation of the Coastal Zone and
Tidal Land
Resources of Jiangsu Province.
Beijing: Ocean Press, 1986. ]
[本文引用:1]
WILLIAMS T P, BUBBJ M, LESTER J N.
Metal accumulation within salt marsh environments: A review[J]. , 1994, 28(5): 277-290.
[本文引用:1]
GROSHOLZ E.
Ecological and
evolutionary consequences of coastal invasions[J]. Trends in Ecology &#x00026; Evolution, 2002, 17(1): 22-27.
[本文引用:1]
欧维新, 杨桂山, 李恒鹏, 等.
苏北盐城海岸带景观格局时空变化及驱动力分析[J]. 地理科学, 2004, 24(5): 610-615. [OU W X, YANG G S, LI H P, et al.
Spatio-temporal variation and
driving forces of land scape patterns in the coastal zone of Yancheng, Jiangsu.
Scientia Geographica Sinica, 2004, 24(5): 610-615. ]
[本文引用:1]
林黎, 崔军, 陈学萍, 等.
滩涂围垦和土地利用对土壤微生物群落的影响[J]. , 2014, 34(4): 899-906. [LIN L, CUI J, CHEN X P, et al.
Effects of reclamation on tidal flat and
use on soil microbial community.
, 2014, 34(4): 899-906. ]
[本文引用:1]
ZHAO B, KREUTER U, LI B, et al.
An ecosystem service value assessment of land -use change on Chongming Island , China[J]. , 2004, 21(2): 139-148.
[本文引用:1]
XU Y, PU L J, ZHU M, et al.
Spatial variation of soil salinity in the coastal reclamation area, Eastern China[J]. Journal of Coastal Research, 2013: 411-417.
[本文引用:1]
张晶, 濮励杰, 朱明, 等.
如东县不同年限滩涂围垦区土壤pH与养分相关性研究[J]. , 2014, 23(2): 225-230. [ZHANG J, PU L J, ZHU M, et al.
Correlation between soil pH and
nutrients of tidal-flat reclamation with different years in Rudong County.
, 2014, 23(2): 225-230. ]
[本文引用:1]
李鹏, 濮励杰, 朱明, 等.
江苏沿海不同时期滩涂围垦区土壤剖面盐分特征分析&#x02014;&#x02014;以江苏省如东县为例[J]. 资源科学, 2013, 35(4): 764-772. [LI P, PU L J, ZHU M, et al.
Characteristicsof soil profile salt in tidal flats under different reclamation years in Jiangsu Province.
Resources Science, 2013, 35(4): 764-772. ]
[本文引用:2]
王国梁, 周生路, 赵其国.
土壤颗粒的体积分形维数及其在土地利用中的应用[J]. 土壤学报, 2005, 42(4): 545-550. [WANG G L, ZHOU S L, ZHAO Q G.
Volume fractal dimension of soil particles and
its applications to land
Acta Pedologica Sinica, 2005, 42(4): 545-550. ]
[本文引用:1]
王德, 傅伯杰, 陈利顶, 等.
不同土地利用类型下土壤粒径分形分析&#x02014;&#x02014;以黄土丘陵沟壑区为例[J]. , 2007, 27(7): 3081-3089. [WANG D, FU B J, CHEN L D, et al.
Fractal analysis on soil particle size distributions under different land -use types: A case study in the loess hilly areas of the Loess Plateau, China.
, 2007, 27(7): 3081-3089. ]
[本文引用:1]
张世熔, 邓良基, 周倩, 等.
耕层土壤颗粒表面的分形维数及其与主要土壤特性的关系[J]. 土壤学报, 2002, 39(2): 221-226. [ZHANG S R, DENG L J, ZHOU Q, et al.
Fractal dimensions of particle surface in the plowed layers and
their relationships with main soil properties.
Acta Pedologica Sinica, 2002, 39(2): 221-226. ]
[本文引用:1]
梁士楚, 董鸣, 王伯荪, 等.
英罗港红树林土壤粒径分布的分形特征[J]. 应用生态学报, 2003, 14(1): 11-14. [LIANG S C, DONG M, WANG B S, et al.
Fractal characteristics of particle size distributions of mangroves soils in Yingluo Bay.
Chinese Journal of Applied Ecology, 2003, 14(1): 11-14. ]
[本文引用:2]
Long-term effects of cultivation on particle size and
water-retention characteristics determined using wetting curves[J]. Soil Science, 2003, 168(7): 459-468.
[本文引用:1]
WANG D, FU B J, ZHAO W W, et al.
Multifractal characteristics of soil particle size distribution under different land -use types on the Loess Plateau, China[J]. , 2008, 72(1): 29-36.
[本文引用:1]
刘美龄, 叶勇, 曹长青, 等.
海南东寨港红树林土壤粒径分布的分形特征及其影响因素[J]. , 2008, 27(9): 1557-1561. [LIU M L, YE Y, CAO C Q, et al.
Fractal characteristics and
related affecting factors of particle size distribution in mangrove soil in Dongzhai Harbor of Hainan.
, 2008, 27(9): 1557-1561. ]
[本文引用:1]
周学峰, 赵睿, 李媛媛, 等.
围垦后不同土地利用方式对长江口滩地土壤粒径分布的影响[J]. , 2009, 29(10): 5544-5551. [ZHOU X F, ZHAO R, LI YY, et al.
Effects of land
use types on particle size distribution of reclaimed Alluvial soils of the Yangtze Estuary.
, 2009, 29(10): 5544-5551. ]
[本文引用:2]
MURRAY M R.
Is laser particle size determination possible for carbonate-rich lake sediments?[J]. , 2002, 27(2): 173-183.
[本文引用:1]
许艳, 濮励杰.
江苏海岸带滩涂围垦区土地利用类型变化研究&#x02014;&#x02014;以江苏省如东县为例[J]. 自然资源学报, 2014, 29(4): 643-652. [XU Y, PU L J.
The variation of land
use pattern in tidal flat reclamation zones in Jiangsu coastal area: A case study of Rudong County of Jiangsu Province.
Journal of Natural Resources, 2014, 29(4): 643-652. ]
[本文引用:2]
盛学斌, 刘云霞, 孙建中.
近50年冀北高原土地利用变化的土壤生境效应[J]. 应用生态学报, 2004, 15(4): 589-592. [SHENG X B, LIU Y X, SUN J Z.
Effect of land -use change on soil habitat in North Hebei Plateau during last 50 years.
Chinese Journal of Applied Ecology, 2004, 15(4): 589-592. ]
[本文引用:1]
MONTERO E.
R&#x000e9;nyi dimensions analysis of soil particle-size distributions[J]. , 2005, 182(3/4): 305-315.
[本文引用:1]
张俊华, 李国栋, 南忠仁.
黑河中游典型土地利用方式下土壤粒径分布及与有机碳的关系[J]. , 2012, 32(12): 3745-3753. [ZHANG J H, LI G D, NAN Z R.
Soil particle size distribution and
its relationship with soil carbons under different land
uses in the middle of Heihe River.
, 2012, 32(12): 3745-3753. ]
[本文引用:2]
桂东伟, 雷加强, 曾凡江, 等.
绿洲农田土壤粒径分布特征及其影响因素分析──以策勒绿洲为例[J]. 土壤, 2010, 43(7): 411-417. [GUI D W, LEI J Q, ZENG F J, et al.
Characterizing soil particle-size distribution and
its variation in farmland
of oasis&#x02014;A case study of Cele Oasis.
Soils, 2010, 43(7): 411-417. ]
[本文引用:1]
RASHAD M, DULTZ S.
Decision factors of clay dispersion in alluvial soils of the Nile River Delta&#x02014;A study on surface charge properties[J]. American-Eurasian Journal of Agricultural and
Environmental Sciences, 2007, 2(3): 213-219.
[本文引用:1]
FU Q L, DING N F, LIU C, et al.
Soil development under different cropping systems in a reclaimed coastal soil chronosequence [J]. Geoderma, 2014, 230/231: 50-57.
[本文引用:1]
GUO H P, JIAO J J.
Impact of coastal land
reclamation on ground water level and
the sea water interface[J]. , 2007, 45(3): 362-367.
[本文引用:1]
张忍顺, 王雪瑜.
江苏省淤泥质海岸潮沟系统[J]. 地理学报, 1991, 46(2): 195-206. [ZHANG R S, WANG X Y.
Tidal creek system on tidal mud flat of Jiangsu Province.
Acta Geographica Sinica, 1991, 46(2): 195-206. ]
[本文引用:1]
ONDRASEK G, RENGEL Z,
ROMIC D et al. Environmental salinisation processesin agro-ecosystem of Neretva River estuary[J]. N&#x000f6;v&#x000e9;nytermel&#x000e9;s, 2010, 59: 223-226.
[本文引用:1]
VINCENT R, BURDICK D, DIONNE M.
Ditching and
ditch-plugging in New England
salt marshes: Effects on hydrology, elevation, and
soil characteristics[J]. , 2013, 36(3): 610-625.
[本文引用:1]
熊亮, 殷云龙, 莫海波, 等.
江苏洋口港台田土壤盐分动态变化特征研究[J]. 土壤, 2012, 44(1): 95-100. [XIONG L, YIN Y L, MO H B, et al.
Dynamics of soil content in platform fields in Yangkouport of Jiangsu Province.
Soils, 2012, 44(1): 95-100. ]
[本文引用:1]
林岳夫, 尹卫平.
海洋生物技术研究开发动向[J]. 海洋开发与管理, 1996(4): 33-35. [LINY F, YIN W P.
he research and
development heading of marine biotechnology. TOcean Development and
Management, 1996(4): 33-35. ]
[本文引用:1]
丁能飞, 厉仁安, 董炳荣, 等.
新围砂涂土壤盐分和养分的定位观测及研究[J]. 土壤通报, 2001, 32(2): 57-60. [DING N F, LI R A, DONG B R, et al.
Long-term observation and
study on salinity and
nutrients of coastal saline soils (sand y soil).
Chinese Journal of Soil Science, 2001, 32(2): 57-60. ]
[本文引用:1]
滩涂围垦区的水土流失及其治理[J]. 水土保持学报, 2001, 15(5): 50-52. [WANG Z S.
water losses and
management in enclose tidalland
for cultivation zone.
Journal of Soil and
Water Conservation, 2001, 15(5): 50-52. ]
[本文引用:1]
SHE D L, FEI Y H, LIU Z P, et al.
Soil erosion characteristics of ditch banks during reclamation of a saline/sodic soil in a coastal region of China: Field investigation and
rainfall simulation[J]. , 2014, 121(5): 176-185.
[本文引用:1]
方仁建, 沈永明.
围垦对海滨地区景观演变及其质心移动的影响&#x02014;&#x02014;以盐城保护区部分区域为例[J]. 自然资源学报, 2015, 30(5): 772-783. [FANG R J, SHEN Y M.
Effects of coastal beach reclamation on the change of land scape pattern and
its spatial centroids: A case study in coastal wetland
of part of Yancheng National Natural Reserve.
Journal of Natural Resources, 2015, 30(5): 772-783. ]
[本文引用:1]
... 滩涂是沿海地区由河流携带泥沙沉积形成的陆地和海洋生态交错带[1],是生物多样性最丰富的自然生态系统之一,具有极高的污染物容纳和净化功能[2],但同时其脆弱性也很明显[3] ...
... 滩涂是沿海地区由河流携带泥沙沉积形成的陆地和海洋生态交错带[1],是生物多样性最丰富的自然生态系统之一,具有极高的污染物容纳和净化功能[2],但同时其脆弱性也很明显[3] ...
... 滩涂是沿海地区由河流携带泥沙沉积形成的陆地和海洋生态交错带[1],是生物多样性最丰富的自然生态系统之一,具有极高的污染物容纳和净化功能[2],但同时其脆弱性也很明显[3] ...
... 随着沿海地区经济的高速发展,滩涂围垦成为缓解土地利用压力的重要途径之一[4] ...
林黎, 崔军, 陈学萍, 等.
滩涂围垦和土地利用对土壤微生物群落的影响[J]. , 2014, 34(4): 899-906. [LIN L, CUI J, CHEN X P, et al.
Effects of reclamation on tidal flat and
use on soil microbial community.
, 2014, 34(4): 899-906. ]
Soil microbes play a vital role in nutrient cycling, especially in carbon and nitrogen cycling. Microbes are influenced and regulated by many factors, such as anthropogenic disturbances, environmental conditions and soil properties. Little has been reported on soil microbial response to long term cultivation after reclamation of estuary wetland. One of possible reasons may be the heterogeneity of soil background and complicated land use history. The Chongming Island, located in the estuary of Yangtze River, was originated mainly from periodical reclamation on tidal flat. Because of an excellent homogeneous soil background and a relatively short and clear land use history on the island, the chronosequence of soils reflects mainly microbial response to soil development and cultivation. Phospholipid Fatty Acids (PLFA) are principle components of microbial cell membranes. Its pattern can be used as a fingerprint of soil microbes to provide insight information of soil bacterial and fungal communities because different microbes show different PLFA profile patterns. This research focused on a chronosequence of 6 soil ages under two different cultivation (paddy rice and upland cropping) systems, including 0 (unclaimed wetland soil), 16, 40, 75, 120 and 300 years old soils. PLFA analysis results showed that after reclamation of coastal wetland, soil total PLFA, bacterial PLFA, Gram-positive (G + ) PLFA and Gram-negative (G - ) PLFA all reduced significantly in both paddy rice and upland cropping soils. Microbial PLFA abundance then increased gradually over several decades in both paddy rice and upland cropping soils. After a long-term human cultivation, no significant difference in G + PLFA was observed in 120 or 300 years old soils, either in paddy rice or upland cropping soils. No significant difference in total PLFA, bacterial PLFA or G - PLFA was observed among 75, 120 or 300 years old soils. Principle component analysis (PCA) showed that two principle components, PC1 and PC2, could explain 51.12% and 18.57% of the total PLFA variation, respectively. PCA also revealed that PLFA profiles of 75, 120 and 300 years old soil were clearly different from those of 0, 16 and 40 years old soil. Cultivations of paddy rice and upland crops have significantly affected soil microbial structure. Total PLFA and G + PLFA were significantly higher in 16 and 40 years old paddy soils than those of upland cropping soils. Bacterial and G - PLFA were significantly higher in 40 years old paddy rice soils than those of upland cropping soils. Soil total PLFA and bacterial PLFA were significantly correlated to soil total nitrogen and clay content, suggesting strong relations between soil microbes and soil nutrient status. The PLFA results indicated that human cultivations have led to environmental stress on soil microbes and this stress was gradually relieved along with long-term cultivations, because of improved soil nutrient conditions due to inputs of carbon, nitrogen and phosphorus fertilizers. This study provided deep insights into soil microbial structures of different soil ages based on PLFA analysis under paddy and upland cultivation systems, which are two major cropping systems in China. It was helpful for us to better understand the development of soil microbial communities along with soil succession in arable soils.
土壤微生物在生态系统营养物质循环过程,特别是碳、氮循环过程中扮演着重要的角色。上海市崇明岛位于长江入海口,因其土壤发育时间较短、土地利用历史背景清晰、土壤本底均一,不同土壤围垦年代的土壤,代表了土壤发育年代的不同时期。以空间变化代替时间变化,对崇明岛稻田和旱地6个不同围垦年代土壤的磷酸脂肪酸(PLFA)指纹图谱研究表明,湿地滩涂围垦16a后土壤微生物总PLFA、细菌PLFA、革兰氏阳性菌(G + ) PLFA和革兰氏阴性菌(G - ) PLFA含量显著降低。随着围垦时间的逐步增加,PLFA含量逐步上升。经过长时间的农业种植,G + PLFA在围垦120a和300a稻田和旱地土壤中没有显著性差异;而总PLFA、细菌和G - PLFA在围垦75、120a和300a的土壤中含量趋于稳定且没有显著性差异。围垦16a和40a稻田土壤中总PLFA和G + PLFA显著高于旱地土壤;围垦40a稻田土壤中细菌和G - PLFA显著高于旱地土壤。不同围垦年代土壤总PLFA、细菌PLFA与土壤总氮、粘土含量成显著的正相关关系。河口湿地围垦后微生物数量的变化与土壤营养含量存在强烈相关关系,提示土壤围垦及演替过程中微生物与土壤肥力之间的紧密关系,对探讨土壤演替过程中微生物群落的变化具有重要意义。
... 与此同时,围垦对自然滩涂生态系统产生了严重干扰,使湿地生态系统快速向陆地生态系统转变,生态系统结构以及生态系统服务价值发生了根本性的变化[5,6] ...
... 与此同时,围垦对自然滩涂生态系统产生了严重干扰,使湿地生态系统快速向陆地生态系统转变,生态系统结构以及生态系统服务价值发生了根本性的变化[5,6] ...
... 已有的研究表明,滩涂围垦后,土壤盐分迅速下降[7],土壤pH值和有机质、氮、磷虽然受到耕种方式影响而波动,但总体遵循pH值下降和养分积累的规律[8],而在60 a左右的耕种过程中,表层和底层的土壤属性差异逐渐增大[9] ...
张晶, 濮励杰, 朱明, 等.
如东县不同年限滩涂围垦区土壤pH与养分相关性研究[J]. , 2014, 23(2): 225-230. [ZHANG J, PU L J, ZHU M, et al.
Correlation between soil pH and
nutrients of tidal-flat reclamation with different years in Rudong County.
, 2014, 23(2): 225-230. ]
Tidal flat reclamation is one of the most important methods for coastal countries and areas to increase the land and reconcile the conflict between human and land? Large?scale reclamation activities have extremely severe impact on the tidal?flat soil environment, and then affect the carbon, nitrogen, phosphorus, potassium and other soil nutrient cycle? Studying the changes of soil environmental has important implications in this area? The tidal flat land resource of Jiangsu Province is abundant and the reclamation activities have been lasting for many years, and these reclamation activities will continue to exist for a long period of time in the future? Based on the distribution of soil pH value, organic matter content and available nutrients of reclamation soils with different reclamation years in Jiangsu Rudong coastal intertidal zones, the relationships between pH value, soil organic matter and available nutrients were analyzed? The results indicated: firstly, soils of Rudong intertidal reclamation zones were slightly alkaline to alkaline, and available potassium was abundant while the contents of other soil available nutrients were below the average level of Rudong county? With increasing reclamation years, a series of soil improvement measures were adopted, and pH value decreased and the surface soil nutrients increased? Secondly, at the beginning of the reclamation, there was positive correlation between soil pH and organic matter, and negative correlation between soil pH and available phosphorus, however it was the opposite in the zone with longer reclamation years? The correlation between pH and alkali solution nitrogen was negative, and pH was negatively related to available potassium except for the reclamation zone with 20 years? Finally, in the reclamation zone that was reclaimed long years ago, the relationship between soil organic matter and available nutrients was much more significant than that in the initial reclaimed zones? Ten?year?reclamation was the turning point of the correlation between organic matter and alkali solution nitrogen, available potassium? These results suggest that the tidal flat reclamation not only affected the distribution and absolute content of soil pH, organic matter and available nutrients, but also had a significant impact on the relationships among them? With increasing reclamation year, the human activities such as cultivation, irrigation, fertilization, are deeper and deeper, and the soil gradually is evaluated from natural coastal saline soil to agricultural soils, and the relationship among soil elements gradually becomes closer to general farming soil
(1?School of Geographic and Oceanographic Sciences| Nanjing University| Nanjing 210023|China;? (2?Key Laboratory of the Coastal Zone Exploitation and Protection|Ministry of Land and Resources|Beijing 100029|China)
滩涂围垦是沿海地区开拓土地资源和缓解人地矛盾的重要措施,土壤环境也因此发生剧烈变化。以江苏如东县沿海不同年限的垦区土壤为研究对象,探讨土壤pH值、有机质和氮、磷、钾速效养分的分布情况,pH值、有机质和速效养分之间的关系,以及这种相关性随垦区围垦年限而发生的变化。结果表明:如东滩涂围垦区土壤呈碱性,土壤养分较为缺乏;随着围垦年限的增加,垦区土壤pH值下降,土壤养分呈增加趋势,垦区围垦年限对土壤pH值、有机质与速效养分之间的相关性存在一定影响,其中10 a围垦期是pH与有机质、速效磷之间相关性变化的转折点。围垦年限不仅对垦区土壤pH值、土壤有机质和速效养分的绝对含量有着明显影响,还影响土壤pH值、有机质与土壤速效养分之间的相关关系,随着垦区围垦年限的增加,人为活动影响程度加深,土壤逐渐从自然的滨海盐土向农业土壤演化,土壤要素间的相关关系逐渐向一般耕作土壤靠近
... 已有的研究表明,滩涂围垦后,土壤盐分迅速下降[7],土壤pH值和有机质、氮、磷虽然受到耕种方式影响而波动,但总体遵循pH值下降和养分积累的规律[8],而在60 a左右的耕种过程中,表层和底层的土壤属性差异逐渐增大[9] ...
... 已有的研究表明,滩涂围垦后,土壤盐分迅速下降[7],土壤pH值和有机质、氮、磷虽然受到耕种方式影响而波动,但总体遵循pH值下降和养分积累的规律[8],而在60 a左右的耕种过程中,表层和底层的土壤属性差异逐渐增大[9] ...
... 而在围垦中后期,随着土壤脱盐过程的完成[9]和地下水位的下降[26],不同干扰强度下的土壤层面均开始发生黏化过程 ...
... 土壤粒径分布(Particle Size Distribution,PSD)是土壤重要的物理属性之一,它是由各种自然成土因素、自然条件转变以及人类活动影响相互叠加所决定的[10,11],和土壤水热条件、养分水平以及能量传输间有着密切的联系[12,13] ...
王德, 傅伯杰, 陈利顶, 等.
不同土地利用类型下土壤粒径分形分析&#x02014;&#x02014;以黄土丘陵沟壑区为例[J]. , 2007, 27(7): 3081-3089. [WANG D, FU B J, CHEN L D, et al.
Fractal analysis on soil particle size distributions under different land -use types: A case study in the loess hilly areas of the Loess Plateau, China.
, 2007, 27(7): 3081-3089. ]
Soil particle-size distribution (PSD) is one of the most important physical attributes due to its strong influence on soil properties related to water movement, productivity and skil erosion. The fractal and multifractal measures were useful tools in identifying soil PSD with different taxonomy. Land-use type, as one of important factors to affect soil PSD, was paid little attention in the previous research. In this paper, Tyler and Wheatcraft power law and multifractal Rényi dimension were applied to characterize PSD in soils with the same taxonomy and different land-use types. Then the effects of land use on the fractal and multifractal parameters were analyzed. The study was conducted on the loess hilly areas of the Loess Plateau in China, of which the environment is characterized by hilly terrain with an altitude between 997 and 1731m, and semi-arid climate with a mean annual rainfall of 505mm and temperature of 8.6℃. A Calcic Cambisols soil was sampled from five land use types: woodland, shrub land, grassland, terrace farmland and abandoned slope farmland with planted trees (ASFP). The soil PSDs were obtained by laser diffraction technique using a Longbench Mastersizer2000. The result showed that: (1) fractal and multifractal parameters reflect different aspect of soil PSDs. There existed three power-law domains, namely Dsand, Dsilt, Dclay in all PSDs and can be ranked as Dsand > Dsilt > Dclay. The boundaries of three domains were close to the soil textural classification boundaries. (2) fractal dimension (D), dimension of silt domain (Dsilt),dimension of sand domain (Dsand), entropy dimension (D1) and entropy dimension/capacity dimension ratio (D1/D0) were significantly positively correlated with finer particle content. thus they could be potential parameters to reflect soil physical propertias influenced by land use. (3) D, Dsilt, Dsand, D0, D1 and D1/D0 were correlated with soil organic matter and were influenced by land use, providing potential indicator of soil quality influenced by land use. More significant result is required in the future study to test the applicability of fractal and multifractal parameters in characterizing land use effect on soil PSDs.
土壤粒径分布影响土壤的水力特性、土壤肥力状况以及土壤侵蚀等,是重要土壤物理特性之一。在水蚀严重的黄土丘陵沟壑区,不同的土地利用类型对水土流失的阻截作用不同,因而进一步导致其土壤粒径分布的差异。对不同土地利用类型下土壤粒径分布的分形和多重分形分析发现:黄绵土土壤粒径分布包含有3个无标度区间,分别为粘粒域、粉粒域和砂粒域;土壤粒径分布的分形维数D、粉粒域维数Dsilt、砂粒域维数Dsand、信息维数D1、信息维数/容量维数D1/D0&与土壤细颗粒含量和有机质含量成显著的正相关关系;土地利用对分形维数D、粉粒域维数Dsilt、砂粒域维数Dsand、容量维数D0、信息维数D1、信息维数/容量维数比值D1/D0的影响较显著。这表明这些分形和多重分形参数可以作为反映土壤物理性质和土壤质量的潜在性指标,其实用性有待进一步探讨。
... 土壤粒径分布(Particle Size Distribution,PSD)是土壤重要的物理属性之一,它是由各种自然成土因素、自然条件转变以及人类活动影响相互叠加所决定的[10,11],和土壤水热条件、养分水平以及能量传输间有着密切的联系[12,13] ...
... 土壤粒径分布(Particle Size Distribution,PSD)是土壤重要的物理属性之一,它是由各种自然成土因素、自然条件转变以及人类活动影响相互叠加所决定的[10,11],和土壤水热条件、养分水平以及能量传输间有着密切的联系[12,13] ...
... 土壤粒径分布(Particle Size Distribution,PSD)是土壤重要的物理属性之一,它是由各种自然成土因素、自然条件转变以及人类活动影响相互叠加所决定的[10,11],和土壤水热条件、养分水平以及能量传输间有着密切的联系[12,13] ...
... 土壤PSD在短期内比较稳定[14], 因此可以作为一种合适的自然标度模型[13] ...
... 土壤PSD在短期内比较稳定[14], 因此可以作为一种合适的自然标度模型[13] ...
... 已有研究虽然表明不同土地利用方式可以影响到土壤PSD[15],但并没有讨论自然条件变化在其中的影响程度,而对滩涂围垦区土壤PSD的研究也主要集中于表层土壤的变化[16],对深层土壤PSD变化的研究不够深入,且缺乏对其空间分布的探讨[17] ...
刘美龄, 叶勇, 曹长青, 等.
海南东寨港红树林土壤粒径分布的分形特征及其影响因素[J]. , 2008, 27(9): 1557-1561. [LIU M L, YE Y, CAO C Q, et al.
Fractal characteristics and
related affecting factors of particle size distribution in mangrove soil in Dongzhai Harbor of Hainan.
, 2008, 27(9): 1557-1561. ]
The analysis with fractal theory on the fractal characteristics and re lated affecting factors of particle size distribution in mangrove soils in Dongz hai Harbor of Hainan showed that the fractal dimension of mangrove soils ranged from 2.302-2.575. There was a significant positive linear relationship between the fractal dimension and the contents of soil clay, salts, organic matter and total nitrogen. The fractal dimension was lower in outside bea ch than in middle and inner beach, and changed with soil texture, being in the order of sandy loam
State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, Fujian, China
应用分形理论分析了海南东寨港红树林土壤粒径分布的分形特征及其影响因素,海南 东寨港土壤的分形维数为2.302~2.575,分形维数的大小与土壤中的粘粒、盐分、有机质、全氮含量呈显著正相关,外滩红树林土壤的分形维数低于中滩和内滩;随着土壤质地由砂壤土、轻壤土、中壤土、重壤土的变化,分形维数逐渐增大;从陆到海土壤分形维数逐渐减小。群落类型、土壤质地、滩位、含盐量、有机质、全氮含量等是影响海南东寨港红树林土壤分形维数的主要因子。
... 已有研究虽然表明不同土地利用方式可以影响到土壤PSD[15],但并没有讨论自然条件变化在其中的影响程度,而对滩涂围垦区土壤PSD的研究也主要集中于表层土壤的变化[16],对深层土壤PSD变化的研究不够深入,且缺乏对其空间分布的探讨[17] ...
周学峰, 赵睿, 李媛媛, 等.
围垦后不同土地利用方式对长江口滩地土壤粒径分布的影响[J]. , 2009, 29(10): 5544-5551. [ZHOU X F, ZHAO R, LI YY, et al.
Effects of land
use types on particle size distribution of reclaimed Alluvial soils of the Yangtze Estuary.
, 2009, 29(10): 5544-5551. ]
Reclamation is a very common disturbance to the alluvial lands of estuaries. In China, the reclaimed alluvial lands are generally used for agricultural or industrial purposes. However, the physical and chemical properties of these reclaimed lands had been rarely studied. Particle size distribution (PSD) has been proven to be a useful indicator of land use. In the present study, we tried to clarify the changes of PSD under different land use types and durations. East End of Chongming Island at the Yangtze Estuary, the largest alluvial island in the world, which has a chronosequence of reclaimed lands, provides a good and special case to study the changes of PSD after reclamation. Three long-term land use types, i.e. paddy field, vegetable field and woodland, were involved. Soil samples of different land use types and different durations were collected. The soil particle size distribution was determined by using a Beckman-Coulter LS 13320 laser particle size analyzer, and the particle size fractions were performed. The changes of particle size fractions (i.e., >63μm, 63-32μm, 32-16μm, 16-4μm, and <4μm representing sand-, coarse silt-, medium silt-, fine silt-, and clay-sized fractions, respectively) were analyzed. An order of magnitude was revealed in the terms of the soil mean particle size: tidal flat <paddy field<vegetable field <woodland. Moreover, compared to the tidal flat, fractions of the fine particle size of the other three land use types were significantly decreased, probably due to the wind erosions (anova, post hoc). Soils of vegetable fields and woodlands were more susceptible to wind erosion than the paddy field owing to their dryness and bareness. On the other hand, the mean particle size increased significantly during the soil development for the first 15 years after reclamation (one-way anova), result from the severe wind erosion while soil organic matters increased during this period. However, at the duration of 38 years, particle sizes decreased again, due to the accumulation of organic matters and the improved forest coverage on those fields. Significant changes were found in the soils with the depth of 0-40 cm, with no distinguishable changes were observed below 40cm, reflecting the impacts of wind erosions and cultivations. Our results show that the distinct changes in soil particle size distribution can occur after reclamation, which sheds light on differential impacts of land uses on soil properties.
土壤粒径分布影响土壤水分、肥力等传输与保持,是土壤的重要物理性质。崇明东滩滩地围垦后,表层0~20cm及20~40cm土层土壤粒径分布受土地利用方式和利用年限的显著影响。不同土地利用方式下,土壤平均粒径为高潮滩<稻田<菜地<林地。不同围垦年限下,土地利用15a间土壤平均粒径逐渐增加,但土地利用年限延长至38a时,平均粒径显著降低。不同土地利用方式下土壤水分、植被覆盖和受风蚀程度,以及不同土地利用年限下土壤有机质含量与受风蚀影响程度,改变了粘粒和细粉粒等土壤细颗粒的含量,引起土壤粒径分布的差异。
... 已有研究虽然表明不同土地利用方式可以影响到土壤PSD[15],但并没有讨论自然条件变化在其中的影响程度,而对滩涂围垦区土壤PSD的研究也主要集中于表层土壤的变化[16],对深层土壤PSD变化的研究不够深入,且缺乏对其空间分布的探讨[17] ...
... 滩涂围垦区地处海陆交界带,土壤受强烈的海陆风蚀影响很大[17],强烈的风蚀作用也明显削弱了耕种对土壤PSD的影响效果 ...
... 4 土壤粒径分析参照Murray的方法[18],将待测土壤样品先加入10%盐酸去除碳酸盐,7 000 r/min离心后用蒸馏水清洗3次,再加入30%过氧化氢去除样品中的有机质后烘干 ...
... 砂粒RDI的低值则出现在豫东垦区东部和新北坎垦区的西南部,前者由于围垦时间较短,受到干扰强度较小,而后者则对应于垦区内主要的水田分布地区[19] ...
... 根据沿海滩涂的不同属性,人类会选择不同的土地利用方式进行开发[19,31] ...
... 3 讨论土壤颗粒是土壤固相的重要组分,土壤颗粒分布是土壤理化与生物特征的基础,关系到土壤水热和养分状态[20,21] ...
... 3 讨论土壤颗粒是土壤固相的重要组分,土壤颗粒分布是土壤理化与生物特征的基础,关系到土壤水热和养分状态[20,21] ...
张俊华, 李国栋, 南忠仁.
黑河中游典型土地利用方式下土壤粒径分布及与有机碳的关系[J]. , 2012, 32(12): 3745-3753. [ZHANG J H, LI G D, NAN Z R.
Soil particle size distribution and
its relationship with soil carbons under different land
uses in the middle of Heihe River.
, 2012, 32(12): 3745-3753. ]
Land use plays an important role in soil particle size distribution,soil organic carbon (SOC) and its components. Based on the methods of field sampling, laboratory analysis and statistical analysis, soil particle size distribution and its relationship with SOC under different land uses are researched in the middle of Heihe river, which locates in Hexi corridor, Gansu province. We sampled the soil down to 100 cm in depth with interval of 0-20 cm, 20-40 cm, 40-60 cm, 60-80 cm and 80-100 cm. Distribution of particle size under different land uses shows that percentage of the particle size P P P
P <0.05) with sand fractions surpass 50 μm size. The result show silt- and clay-size fractions play a major role in the formation and stabilization of soil aggregates. Measures of increasing vegetation coverage, vegetation restoration of degraded ecosystems, tillage, wind-break and sand-fixing can enhance content of SOC, silt- and clay-size fractions, and further provide foundation and stability for soil aggregates formation.
土地利用方式是影响土壤粒径分布、土壤有机碳及其组成含量的重要因素。研究显示:黑河中游典型土地利用类型下,不同土壤粒径分布和土壤总有机碳(TOC)、活性有机碳(AOC)、非活性有机碳(NOC)的含量存在差异。剖面上TOC、AOC、NOC含量较高的旱地、水田、中覆盖度草地与含量较低的戈壁、裸土地、沙地、盐碱地相比,<1 μm、1-5 μm、5-10 μm、10-50 μm的粒径含量较高,而50-250 μm、250-1000 μm的含量较低,这种变化以50 μm为分界,分析表明<50 μm的粉粒和粘粒可起到固碳作用,而50-250 μm、250-1000 μm的砂粒起碳损失作用。统计结果表明,以50 μm为分界,水田、戈壁、中覆盖度草地剖面上TOC、AOC、NOC与1-5 μm、5-10 μm、10-50 μm呈正相关,与50-250 μm、250-1000 μm呈负相关。分析发现,粉粒和粘粒与土壤TOC、AOC、NOC的关系较显著,是影响和控制团聚体形成和稳定的重要因素。增加地表植被覆盖度、退化生态系统的植被恢复、农田耕种、防风固沙措施是提高土壤有机碳、粘粒和粉粒含量的方式,也为土壤团聚体的形成和稳定提供基础。
... 研究表明耕种的方式[22]以及耕种时间的长短[23]可以显著影响到土壤粒径分布 ...
... 相较于水田,旱地的利用方式对土壤颗粒的影响更为强烈[22] ...
... 研究表明耕种的方式[22]以及耕种时间的长短[23]可以显著影响到土壤粒径分布 ...
... 新生滩涂以水云母等富含二氧化硅(SiO2)的矿物为母质,在碱性条件下,SiO2易于与高含量的OH-发生反应而溶解流失[24],而在海水浸泡条件下,这一过程由于海水中的高含盐量而受到抑制 ...
... 由于区域内超过1 000 mm的年降水量以及灌溉、翻耕等人类活动促进了淋溶作用的发生[25],表层土壤先于底层发生黏化 ...
... 而在围垦中后期,随着土壤脱盐过程的完成[9]和地下水位的下降[26],不同干扰强度下的土壤层面均开始发生黏化过程 ...
... 滩涂在自然淤涨的过程中会因为海陆交互作用而在滩面上形成洼地、潮沟等复杂的微地貌[27],这样的微地貌区域受到排水状况、含盐地下水等因素的影响[28],在围垦后形成了异于同时期垦区水热状态的环境条件[29],进而影响人类的开发利用行为和效率 ...
... 滩涂在自然淤涨的过程中会因为海陆交互作用而在滩面上形成洼地、潮沟等复杂的微地貌[27],这样的微地貌区域受到排水状况、含盐地下水等因素的影响[28],在围垦后形成了异于同时期垦区水热状态的环境条件[29],进而影响人类的开发利用行为和效率 ...
... 滩涂在自然淤涨的过程中会因为海陆交互作用而在滩面上形成洼地、潮沟等复杂的微地貌[27],这样的微地貌区域受到排水状况、含盐地下水等因素的影响[28],在围垦后形成了异于同时期垦区水热状态的环境条件[29],进而影响人类的开发利用行为和效率 ...
... 高盐碱是滩涂围垦区开发利用的主要限制性因子,熊亮等[30]的研究表明,滩涂围垦区土壤盐碱随季节变化波动剧烈,而江苏滩涂围垦区受条件限制,大多缺乏大范围、长时期的监测研究,从而加大围垦后滩涂资源合理开发利用的难度 ...
... 根据沿海滩涂的不同属性,人类会选择不同的土地利用方式进行开发[19,31] ...
... 而水田作为人工湿地的一种,不仅加快了土壤脱盐的进程[32],而且使土壤各层面间盐分分布更为均匀,因此新北坎垦区西南部水旱轮作区土壤PSD具有偏细且表层与底层差异较小的特征 ...
... 虽然人类的耕种活动加快了滩涂围垦后土壤颗粒黏化速率,使耕种的适宜性不断提高,但这一过程中由于不同类型的侵蚀作用而发生的土壤流失不容忽视[33] ...
... 围垦初期土壤有机质含量低,土壤结构松散,沟渠灌溉和雨水冲刷就可以造成土壤颗粒的大量流失[34],从而抵消部分土壤黏化的效果 ...
... 滩涂围垦区在长期受到自然驱动力和人为驱动力的双重影响下可能向完全不同的方向发展[35],从而形成不同的土地利用格局和资源配置,而以自然条件对现有资源配置格局进行合理性评价以及对未来开发利用方式进行科学规划,应该是该区域研究的难点和重点 ...
不同干扰强度对滩涂围垦区土壤颗粒组成的时空分异特征的影响
[张濛1, 濮励杰1,2&#x0002A;,&#x0002A;, 王小涵1, 王琪琪1, 于雪1]

我要回帖

更多关于 土壤对农作物的影响 的文章

 

随机推荐