怎么用一颗电池从水中氢气浓度测试提取氢气

  弗吉尼亚理工大学(Virginia Tech)的研究人员已发现从植物原料中有效提取氢的方法,克服了氢燃料电池技术中的几大障碍之一。正是这些障碍导致奥巴马政府将氢燃料电池技术搁置一边。  “我们认为这一发现会改变可替代能源行业的游戏规则。”弗吉尼亚理工大学生物系统工程系副教授珀西瓦尔·张(Y.H. Percival Zhang)表示。张带领弗吉尼亚理工大学的一支团队开发了从木糖中制备大量氢气的方法。木糖是一种广泛存在于自然界中的单糖,植物细胞壁的30%由其构成。  传统上,氢通过对天然气的汽化重整来制取,这一过程会浪费掉储存于天然气中的一部分能量,同时释放出大量的二氧化碳。2009年在接受《麻省理工科技评论》(MIT Technological Review)杂志采访时,美国能源部长朱棣文曾表示,汽车行业氢燃料电池技术面临的四大障碍中,氢的传统来源是第一个障碍:  “我一直对它持某种怀疑态度,因为目前我们主要从天然气的重整中获取氢。这并不是一个理想的来源。你会浪费掉天然气中的一部分能量,而天然气是一种非常宝贵的燃料。”  朱棣文刚刚将燃料电池汽车的开发预算从2.5亿美元削减至7,000万美元,他认为由电池驱动的电动汽车能比预期更快地达到奥巴马政府提出的“能与每加仑燃料行驶45甚至50英里的内燃发动机汽车竞争的20,000美元个人汽车”的目标。  在氢燃料电池技术方面,人们对奥巴马提名接替朱棣文的埃内斯特·莫尼兹(Ernest Moniz)所知甚少。但他2004年在麻省理工学院出席一个活动时表达了类似的看法:“考虑到安全以及环境问题,我们无法承受将关注重点放在这一方向。”他在谈到氢燃料电池技术时说道。  在弗吉尼亚理工大学,张一直在研究利用酶从植物生物质中提取氢的方法。最近一期的Angewandte Chemie报告说,当该团队将木糖放入含有13种酶的混合液体中时,他们在低温条件下得到了氢气,这是一个突破:  “为了产生氢气,弗吉尼亚理工大学的科学家们从原生微生物中分离出多种酶,制成无法在自然界中获取的特制的多酶混合液。这些酶在与木糖和一种多磷酸盐结合时,会从木糖中释放出氢气,产量之大前所未有……木糖中所含的能量分解了水分子,生产出高纯度的氢气,可直接用于质子交换膜燃料电池。更具吸引力的是,这一反应可在较低温度下发生,产生的氢能比木糖和多磷酸盐中储存的化学能还要高。该结果的能效超过了100%——是一种净能量增益。这意味着低温下浪费的热能首次可用于生产高能量的氢气。  ——弗吉尼亚理工大学  根据弗吉尼亚理工大学的报告,张的发现得到了乔纳森·米伦茨(Jonathan R. Mielenz)的认可,他是橡树岭国家实验室(Oak Ridge National Laboratory)生物科学部的小组领导。  “这一令人兴奋的发现的关键之处在于张使用了植物中分布第二广泛的糖制取氢气。”米伦茨告诉弗吉尼亚理工大学,“这使氢的制取具有重要的额外好处,它降低了从生物质中制氢的整体成本。”  米伦茨预计张的工艺能在3年后发展成为价值达1,000亿美元的制氢市场。即使这一预测能变为现实,朱棣文还提到了氢燃料电池技术面临的另外三个障碍:  “其他的问题是,在运输方面,我们还没找到理想的储存办法。压缩氢气是目前最好的办法,[但它需要]占用非常大的容积。我们还没想出如何储存高浓度的氢。还有什么?氢燃料电池还未发展成熟,输送氢气的基础设施也不足。因此你必须马上同时解决四个问题。因此,它看起来始终像是一个遥远的未来。如要推广氢燃料电池的使用,你需要取得四项重大的技术突破。这让氢燃料电池的推广无法实现。”  虽然削减了氢燃料电池项目的费用,能源部在攻克这些障碍方面仍取得了一些进展。例如,它最近发布了一份关于运输氢气的可行性报告,办法是将氢气混入现有的天然气管道设施中。  “在更长久的未来,在上游注入氢气然后在下游提取氢气以供燃料电池电动汽车或固定式燃料电池使用时,混和可能会为氢气的运送提供经济的方式。”该报告总结说。  002604  600701
楼主发言:1次 发图:0张 | 更多
请遵守言论规则,不得违反国家法律法规回复(Ctrl+Enter)如何提取氢气
清枫逦且慔
人工生产氢气,最为众所周知的方法莫过于电解水制氢.但是这种传统的方法并不经济,生产相当于一升汽油热量的氢气,至少需要消耗45度电能,况且人类电能本来已经非常缺乏.生产清洁的氢能源,关键在于能够寻找到一种没有污染耗能少的方法,从含氢最丰富的资源——水中提取出氢分子来.在过去几十年里,研究人员都在寻找一些独特的催化剂,利用太阳的能量将氢气从水中提取出来.那些催化剂首先吸取太阳中的光子能量,然后利用这些能量加快水分子中氢原子和氧原子的裂解速度,而这两种原子反过来组成水分子的速度仍然很慢,所以最终有氢气和氧气从水中冒出来.这样的催化剂通常都是由一些无机物半导体材料制备而来的,譬如用在计算机芯片里面的硅元素.但是半导体催化剂的工作效率非常低,消耗的能量还是太多,根本不能进入真正的生产和生活领域.现在,研究者们正在努力寻找一些能够更有效地吸取太阳能量的催化剂,使它们在原子间传送电子的能力更强大、速度更快.现在,这样的催化剂已经找到,不过它已经不是半导体类的无机物了,而是一种超级生物大分子,或者说巨型分子复合体.这种巨型分子复合体主要由两部分构成——分别称为分子的两种亚基,一部分负责从太阳光中吸收光子能量,另一部分负责获取自由电子.以这种超级分子复合体为核心,可以组成一种利用日光能量将氢原子从水中提取出来的特殊装置.这种廉价高效的方法,可以获得大量的氢气用于驱动汽车、飞机、火车等,也可以用它们与空气中的氧气燃烧后生产清洁的水和能量,当然也可以用来制造燃料电池生产电能.可以神奇组合的巨型分子早在数年以前,科学家们就发现,含有金属元素钌的生物大分子对阳光的吸收效率非常高,并能够产生足够的能量将氧化态的氢元素还原成氢气产物.这个具体的化学过程就是:这种含有钌的大分子每次“吃饱”了光子以后,可以产生两个以上的电子,这些电子的能量将水分子裂解开来,就形成了单独的氢分子和氧原子.最近科学家们创造的这种巨型分子由铑、钌、氯、碳、氮、氢等六种元素组成.这个巨型分子形状像一个长形的魔棒,它的两头是两个含有金属钌的亚基,用来捕捉太阳光子能量,产生自由电子;中心是含有金属铑的亚基,用来将钌亚基传来的能量(自由电子)裂解水分子间的化学键,从而分离出氢气;当然还有一个很重要的部分,那就是在这两个部位之间,有两个把它们联系起来的亚基,进行电子传输.这些亚基拆开以后可以独自完成自己的功能,当和其它的亚基组合起来后又可以完成新的更复杂的任务,这就像一些通用机械零件,通过不同的组装可以形成不同的机器,具有不同的功能,能完成不同的任务.为了完成对这种神奇大分子的设计、制备以及使这种分子利用光能收集电子进入实用阶段,研究者们花费了整整十年的时间.现在,由于已经充分理解了这种巨型分子各部件的原理,要设计一套从水中抽取氢原子的系统不再是难事了.目前,研究者们仍然在继续调整这个巨型分子的计方案,使它的生产效率更高,使用过程更稳定.这套巨型分子系统还可以通过安装具有新的功能的亚基,增加新的功能,从被裂解水分子中获取余下的部分——氧.除了裂解水以外,科学家们还相信,利用太阳能和这种巨型分子的设计思想,一些经济有效、功能多变的化学反应将出现在日常生活中,让人们能自己制造他们想要的化学产品.
为您推荐:
其他类似问题
扫描下载二维码 |  |  |  |  |  |  |  | &
河北沽源县境内建设的全球最大的风电制氢综合利用示范项目已经于9月8日全部并网发电,项目建成后,可形成每年制氢1752万立方米的生产能力。...
近日记者从河北沽源县发改局获悉,在该县境内建设的全球最大的风电制氢综合利用示范项目已经于9月8日全部并网发电。制氢站将于近日招投标,9月中旬开工建设。...
在积极使用氢气方面,相当于1万辆燃料电池车所需的氢气将在福岛县生产。构想中还提到,将在本年度结束前设立由经济产业省和福岛县等方面组成的讨论会,商讨具体措施以实现上述目标。...
据美国趣味科学网站24日报道,几周后,现代公司将开始出租新款途胜燃料电池跨界车,该车使用提取自粪便的氢气。...
从日本媒体的报道可以看出,我国的电动汽车汽车依旧徘徊在产业化的前夜,而一海之隔的日本,不仅在一直被认为“为时尚早”的燃料电池汽车领域取得了实质性的进步,更将其作为扭转汽车行业乃至国家运势的重要途径。那么,以丰田为代表的日本汽车企业,如何以及能否实现这一宏大而沉重的目标呢?...资源篮中还没有资源,赶紧挑选吧!
&& 资讯内容
站内推广 (本站广告位招租,欢迎联系QQ:)
? ? ? ? ? ?
客服热线:010-57
传真:010-
商务合作:010-
Copyright@ Phoenix E-Learning Corporation, All Rights Reserved
北京市公安局海淀分局备案号:
京ICP证080135号

我要回帖

更多关于 从水中制取氢气的方法 的文章

 

随机推荐